664
Views
45
CrossRef citations to date
0
Altmetric
Reviews

New AMPA antagonists in epilepsy

, , , & , MD
Pages 1371-1389 | Published online: 13 Jul 2012

Bibliography

  • Moult PR. Neuronal glutamate and GABAA receptor function in health and disease. Biochem Soc Trans 2009;37(Pt 6):1317-22
  • Gillardon F, Bottiger B, Schmitz B, Activation of CPP-32 protease in hippocampal neurons following ischemia and epilepsy. Brain Res Mol Brain Res 1997;50(1-2):16-22
  • De Sarro G, Gitto R, Russo E, AMPA receptor antagonists as potential anticonvulsant drugs. Curr Top Med Chem 2005;5(1):31-42
  • Gitto R, Barreca ML, De Luca L, Chimirri A. New trends in the development of AMPA receptor antagonists. Expert Opin Ther Patents 2004;14(8):1199-213
  • Lees GJ. Pharmacology of AMPA/kainate receptor ligands and their therapeutic potential in neurological and psychiatric disorders. Drugs 2000;59(1):33-78
  • Stensbol TB, Madsen U, Krogsgaard-Larsen P. The AMPA receptor binding site: focus on agonists and competitive antagonists. Curr Pharm Des 2002;8(10):857-72
  • Watkins JC. l-glutamate as a central neurotransmitter: looking back. Biochem Soc Trans 2000;28(4):297-309
  • Meldrum BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 2000;130(4S Suppl):1007S-15S
  • Rogawski MA. Revisiting AMPA receptors as an antiepileptic drug target. Epilepsy Curr Am Epilepsy Soc 2011;11(2):56-63
  • Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 2010;460(2):525-42
  • Katsumori H, Minabe Y, Osawa M, Ashby CR Jr. Acute effects of various GABA receptor agonists and glutamate antagonists on focal hippocampal seizures in freely moving rats elicited by low-frequency stimulation. Synapse 1998;28(1):103-9
  • Meldrum BS, Rogawski MA. Molecular targets for antiepileptic drug development. Neurotherapeutics 2007;4(1):18-61
  • Namba T, Morimoto K, Sato K, Antiepileptogenic and anticonvulsant effects of NBQX, a selective AMPA receptor antagonist, in the rat kindling model of epilepsy. Brain Res 1994;638(1-2):36-44
  • Rogawski MA, Donevan SD. AMPA receptors in epilepsy and as targets for antiepileptic drugs. Adv Neurol 1999;79:947-63
  • Tortorella A, Halonen T, Sahibzada N, Gale K. A crucial role of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype of glutamate receptors in piriform and perirhinal cortex for the initiation and propagation of limbic motor seizures. J Pharmacol Exp Ther 1997;280(3):1401-5
  • Szenasi G, Vegh M, Szabo G, 2,3-benzodiazepine-type AMPA receptor antagonists and their neuroprotective effects. Neurochem Int 2008;52(1-2):166-83
  • Angehagen M, Ronnback L, Hansson E, Ben-Menachem E. Topiramate reduces AMPA-induced Ca(2+) transients and inhibits GluR1 subunit phosphorylation in astrocytes from primary cultures. J Neurochem 2005;94(4):1124-30
  • Lee CY, Fu WM, Chen CC, Lamotrigine inhibits postsynaptic AMPA receptor and glutamate release in the dentate gyrus. Epilepsia 2008;49(5):888-97
  • Russo E, Constanti A, Ferreri G, Nifedipine affects the anticonvulsant activity of topiramate in various animal models of epilepsy. Neuropharmacology 2004;46(6):865-78
  • Xu L, Rensing N, Yang XF, Leptin inhibits 4-aminopyridine- and pentylenetetrazole-induced seizures and AMPAR-mediated synaptic transmission in rodents. J Clin Invest 2008;118(1):272-80
  • Traynelis SF, Wollmuth LP, McBain CJ, Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010;62(3):405-96
  • Kaczor AA, Matosiuk D. Molecular structure of ionotropic glutamate receptors. Curr Med Chem 2010;17(24):2608-35
  • Sobolevsky AI, Rosconi MP, Gouaux E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 2009;462(7274):745-56
  • Armstrong N, Gouaux E. Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron 2000;28(1):165-81
  • Hogner A, Greenwood JR, Liljefors T, Competitive antagonism of AMPA receptors by ligands of different classes: crystal structure of ATPO bound to the GluR2 ligand-binding core, in comparison with DNQX. J Med Chem 2003;46(2):214-21
  • Kasper C, Pickering DS, Mirza O, The structure of a mixed GluR2 ligand-binding core dimer in complex with (S)-glutamate and the antagonist (S)-NS1209. J Mol Biol 2006;357(4):1184-201
  • Cruz LA, Estebanez-Perpina E, Pfaff S, 6-Azido-7-nitro-1,4-dihydroquinoxaline-2,3-dione (ANQX) forms an irreversible bond to the active site of the GluR2 AMPA receptor. J Med Chem 2008;51(18):5856-60
  • Ahmed AH, Thompson MD, Fenwick MK, Mechanisms of antagonism of the GluR2 AMPA receptor: structure and dynamics of the complex of two willardiine antagonists with the glutamate binding domain. Biochemistry 2009;48(18):3894-903
  • Krintel C, Frydenvang K, Olsen L, Thermodynamics and structural analysis of positive allosteric modulation of the ionotropic glutamate receptor GluA2. Biochem J 2012;441(1):173-8
  • Frolund S, Bella A, Kristensen AS, Assessment of structurally diverse philanthotoxin analogues for inhibitory activity on ionotropic glutamate receptor subtypes: discovery of nanomolar, nonselective, and use-dependent antagonists. J Med Chem 2010;53(20):7441-51
  • Sager C, Terhag J, Kott S, Hollmann M. C-terminal domains of transmembrane alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor regulatory proteins not only facilitate trafficking but are major modulators of AMPA receptor function. J Biol Chem 2009;284(47):32413-24
  • Sager C, Tapken D, Hollmann M. The C-terminal domains of TARPs: unexpectedly versatile domains. Channels (Austin) 2010;4(3):155-8
  • Nicoll RA, Tomita S, Bredt DS. Auxiliary subunits assist AMPA-type glutamate receptors. Science 2006;311(5765):1253-6
  • Catarzi D, Colotta V, Varano F. Competitive AMPA receptor antagonists. Med Res Rev 2007;27(2):239-78
  • De Sarro G, Gitto R, Russo E, AMPA receptor antagonists as potential anticonvulsant drugs. Curr Top Med Chem 2005;5(1):31-42
  • Nikam SS, Kornberg BE. AMPA receptor antagonists. Curr Med Chem 2001;8(2):155-70
  • Mattes H, Carcache D, Kalkman HO, Koller M. Alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) antagonists: from bench to bedside. J Med Chem 2010;53(15):5367-82
  • Gitto R, De Luca L, De Grazia S, Chimirri A. Glutamatergic neurotransmission as molecular target of new anticonvulsants. Curr Top Med Chem 2012;12(9):971-93
  • Nakano M, Ueda H, Li JY, A potent AMPA/kainate receptor antagonist, YM90K, attenuates the loss of N-acetylaspartate in the hippocampal CA1 area after transient unilateral forebrain ischemia in gerbils. Life Sci 2001;69(17):1983-90
  • Turski L, Huth A, Sheardown M, ZK200775: a phosphonate quinoxalinedione AMPA antagonist for neuroprotection in stroke and trauma. Proc Natl Acad Sci USA 1998;95(18):10960-5
  • Hara H, Yamada N, Kodama M, Effect of YM872, a selective and highly water-soluble AMPA receptor antagonist, in the rat kindling and rekindling model of epilepsy. Eur J Pharmacol 2006;531(1-3):59-65
  • Takahashi M, Kohara A, Shishikura J, YM872: a selective, potent and highly water-soluble alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist. CNS Drug Rev 2002;8(4):337-52
  • Auberson YP, Acklin P, Bischoff S, N-phosphonoalkyl-5-aminomethylquinoxaline-2,3-diones: in vivo active AMPA and NMDA(glycine) antagonists. Bioorg Med Chem Lett 1999;9(2):249-54
  • Schielke GP, Kupina NC, Boxer PA, The neuroprotective effect of the novel AMPA receptor antagonist PD152247 (PNQX) in temporary focal ischemia in the rat. Stroke 1999;30(7):1472-7
  • Desos P, Lepagnol JM, Morain P, Structure-activity relationships in a series of 2(1H)-quinolones bearing different acidic function in the 3-position: 6,7-dichloro-2(1H)-oxoquinoline-3-phosphonic acid, a new potent and selective AMPA/kainate antagonist with neuroprotective properties. J Med Chem 1996;39(1):197-206
  • Cordi AA, Desos P, Ruano E, Novel quinolinone-phosphonic acid AMPA antagonists devoid of nephrotoxicity. Farmaco 2002;57(10):787-802
  • Orain D, Ofner S, Koller M, 6-Amino quinazolinedione sulfonamides as orally active competitive AMPA receptor antagonists. Bioorg Med Chem Lett 2012;22(2):996-9
  • Koller M, Lingenhoehl K, Schmutz M, Quinazolinedione sulfonamides: a novel class of competitive AMPA receptor antagonists with oral activity. Bioorg Med Chem Lett 2011;21(11):3358-61
  • Mignani S, Bohme GA, Birraux G, 9-Carboxymethyl-5H,10H-imidazo[1,2-a]indeno[1,2-e]pyrazin-4-one-2-carbocylic acid (RPR117824): selective anticonvulsive and neuroprotective AMPA antagonist. Bioorg Med Chem 2002;10(5):1627-37
  • Canton T, Bohme GA, Boireau A, RPR 119990, a novel alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid antagonist: synthesis, pharmacological properties, and activity in an animal model of amyotrophic lateral sclerosis. J Pharmacol Exp Ther 2001;299(1):314-22
  • Stutzmann JM, Bohme GA, Boireau A, 4,10-Dihydro-4-oxo-4H-imidazo[1,2-a]indeno[1,2-e]pyrazin-2-carboxylic acid derivatives: highly potent and selective AMPA receptors antagonists with in vivo activity. Bioorg Med Chem Lett 2000;10(10):1133-7
  • Figueiredo TH, Qashu F, Apland JP, The GluK1 (GluR5) Kainate/{alpha}-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist LY293558 reduces soman-induced seizures and neuropathology. J Pharmacol Exp Ther 2011;336(2):303-12
  • Solyom S. Research on new AMPA antagonists of 2,3-benzodiazepine type. Pharmazie 2001;56(Suppl 1):S62-6
  • Donevan SD, Rogawski MA. GYKI 52466, a 2,3-benzodiazepine, is a highly selective, noncompetitive antagonist of AMPA/kainate receptor responses. Neuron 1993;10(1):51-9
  • Chimirri A, De Sarro G, De Sarro A, 1-Aryl-3,5-dihydro-4H-2,3-benzodiazepin-4-ones: novel AMPA receptor antagonists. J Med Chem 1997;40(8):1258-69
  • de Sarro G, Chimirri A, De Sarro A, GYKI 52466 and related 2,3-benzodiazepines as anticonvulsant agents in DBA/2 mice. Eur J Pharmacol 1995;294(2-3):411-22
  • Chimirri A, De Sarro G, De Sarro A, 3,5-Dihydro-4H-2,3-benzodiazepine-4-thiones: a new class of AMPA receptor antagonists. J Med Chem 1998;41(18):3409-16
  • De Sarro G, Rizzo M, Sinopoli VA, Relationship between anticonvulsant activity and plasma level of some 2,3-benzodiazepines in genetically epilepsy-prone rats. Pharmacol Biochem Behav 1998;61(3):215-20
  • Abraham G, Solyom S, Csuzdi E, New non competitive AMPA antagonists. Bioorg Med Chem 2000;8(8):2127-43
  • Gitto R, Zappal M, De SG, Chimirri A. Design and development of 2,3-benzodiazepine (CFM) noncompetitive AMPA receptor antagonists. Farmaco 2002;57(2):129-34
  • De Sarro G, Ferreri G, Gareri P, Comparative anticonvulsant activity of some 2,3-benzodiazepine derivatives in rodents. Pharmacol Biochem Behav 2003;74(3):595-602
  • Gitto R, Orlando V, Quartarone S, Synthesis and evaluation of pharmacological properties of novel annelated 2,3-benzodiazepine derivatives. J Med Chem 2003;46(17):3758-61
  • Ferreri G, Chimirri A, Russo E, Comparative anticonvulsant activity of N-acetyl-1-aryl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline derivatives in rodents. Pharmacol Biochem Behav 2004;77(1):85-94
  • Rogawski MA. Diverse mechanisms of antiepileptic drugs in the development pipeline. Epilepsy Res 2006;69(3):273-94
  • Pelletier JC, Hesson DP, Jones KA, Costa AM. Substituted 1,2-dihydrophthalazines: potent, selective, and noncompetitive inhibitors of the AMPA receptor. J Med Chem 1996;39(2):343-6
  • Chimirri A, De Sarro G, Quartarone S, Search for noncompetitive 2-amino-3(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid receptor (AMPAR) antagonists: synthesis, pharmacological properties, and computational studies. Pure Appl Chem 2004;76(5):931-9
  • Chimirri A, De Luca L, Ferro S, Combined strategies for the discovery of ionotropic glutamate receptor antagonists. ChemMedChem 2009;4(6):917-22
  • Gitto R, Barreca ML, De Luca L, Discovery of a novel and highly potent noncompetitive AMPA receptor antagonist. J Med Chem 2003;46(1):197-200
  • Gitto R, Caruso R, Pagano B, Novel potent anticonvulsant agent containing a tetrahydroisoquinoline skeleton. J Med Chem 2006;49(18):5618-22
  • Macchiarulo A, De Luca L, Costantino G, QSAR study of anticonvulsant negative allosteric modulators of the AMPA receptor. J Med Chem 2004;47(7):1860-3
  • Gitto R, Ficarra R, Stancanelli R, Synthesis, resolution, stereochemistry, and molecular modeling of (R)- and (S)-2-acetyl-1-(4'-chlorophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinol ine AMPAR antagonists. Bioorg Med Chem 2007;15(16):5417-23
  • Hanada T, Hashizume Y, Tokuhara N, Perampanel: a novel, orally active, noncompetitive AMPA-receptor antagonist that reduces seizure activity in rodent models of epilepsy. Epilepsia 2011;52(7):1331-40
  • Gill MB, Frausto S, Ikoma M, A series of structurally novel heterotricyclic alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor-selective antagonists. Br J Pharmacol 2010;160(6):1417-29
  • Yamaguchi S, Donevan SD, Rogawski MA. Anticonvulsant activity of AMPA/kainate antagonists: comparison of GYKI 52466 and NBOX in maximal electroshock and chemoconvulsant seizure models. Epilepsy Res 1993;15(3):179-84
  • Durmuller N, Craggs M, Meldrum BS. The effect of the non-NMDA receptor antagonist GYKI 52466 and NBQX and the competitive NMDA receptor antagonist D-CPPene on the development of amygdala kindling and on amygdala-kindled seizures. Epilepsy Res 1994;17(2):167-74
  • Kawasaki-Yatsugi S, Ichiki C, Yatsugi S, Neuroprotective effects of an AMPA receptor antagonist YM872 in a rat transient middle cerebral artery occlusion model. Neuropharmacology 2000;39(2):211-17
  • Kodama M, Yamada N, Sato K, Effects of YM90K, a selective AMPA receptor antagonist, on amygdala-kindling and long-term hippocampal potentiation in the rat. Eur J Pharmacol 1999;374(1):11-19
  • Meldrum BS, Craggs MD, Durmuller N, The effects of AMPA receptor antagonists on kindled seizures and on reflex epilepsy in rodents and primates. Epilepsy Res Suppl 1992;9:307-11
  • Yamashita H, Ohno K, Inami H, Suppression of fully kindled seizure and retardation of kindling acquisition by YM928 in the rat kindling model of epilepsy. Eur J Pharmacol 2004;494(2-3):147-54
  • Loscher W, Lehmann H, Behl B, A new pyrrolyl-quinoxalinedione series of non-NMDA glutamate receptor antagonists: pharmacological characterization and comparison with NBQX and valproate in the kindling model of epilepsy. Eur J Neurosci 1999;11(1):250-62
  • Pitkanen A, Mathiesen C, Ronn LC, Effect of novel AMPA antagonist, NS1209, on status epilepticus. An experimental study in rat. Epilepsy Res 2007;74(1):45-54
  • Fritsch B, Stott JJ, Joelle Donofrio J, Rogawski MA. Treatment of early and late kainic acid-induced status epilepticus with the noncompetitive AMPA receptor antagonist GYKI 52466. Epilepsia 2010;51(1):108-17
  • Mazarati AM, Wasterlain CG. N-methyl-D-asparate receptor antagonists abolish the maintenance phase of self-sustaining status epilepticus in rat. Neurosci Lett 1999;265(3):187-90
  • Langer M, Brandt C, Zellinger C, Loscher W. Therapeutic window of opportunity for the neuroprotective effect of valproate versus the competitive AMPA receptor antagonist NS1209 following status epilepticus in rats. Neuropharmacology 2011;61(5-6):1033-47
  • Levi MS, Brimble MA. A review of neuroprotective agents. Curr Med Chem 2004;11(18):2383-97
  • Nielsen EO, Varming T, Mathiesen C, SPD 502: a water-soluble and in vivo long-lasting AMPA antagonist with neuroprotective activity. J Pharmacol Exp Ther 1999;289(3):1492-501
  • Stone TW, Addae JI. The pharmacological manipulation of glutamate receptors and neuroprotection. Eur J Pharmacol 2002;447(2-3):285-96
  • Weiczner R, Krisztin-Peva B, Mihaly A. Blockade of AMPA-receptors attenuates 4-aminopyridine seizures, decreases the activation of inhibitory neurons but is ineffective against seizure-related astrocytic swelling. Epilepsy Res 2008;78(1):22-32
  • Loscher W, Rundfeldt C, Honack D. Low doses of NMDA receptor antagonists synergistically increase the anticonvulsant effect of the AMPA receptor antagonist NBQX in the kindling model of epilepsy. Eur J Neurosci 1993;5(11):1545-50
  • Czuczwar SJ, Borowicz KK, Kleinrok Z, Influence of combined treatment with NMDA and non-NMDA receptor antagonists on electroconvulsions in mice. Eur J Pharmacol 1995;281(3):327-33
  • Szabados T, Gigler G, Gacsalyi I, Comparison of anticonvulsive and acute neuroprotective activity of three 2,3-benzodiazepine compounds, GYKI 52466, GYKI 53405, and GYKI 53655. Brain Res Bull 2001;55(3):387-91
  • Tarnawa I, Vize ES. 2,3-benzodiazepine AMPA antagonists. Restor Neurol Neurosci 1998;13(1-2):41-57
  • Chapman AG, Smith SE, Meldrum BS. The anticonvulsant effect of the non-NMDA antagonists, NBQX and GYKI 52466, in mice. Epilepsy Res 1991;9(2):92-6
  • Weiser T. AMPA receptor antagonists for the treatment of stroke. Curr Drug Targets CNS Neurol Disord 2005;4(2):153-9
  • Citraro R, Russo E, Gratteri S, Effects of non-competitive AMPA receptor antagonists injected into some brain areas of WAG/Rij rats, an animal model of generalized absence epilepsy. Neuropharmacology 2006;51(6):1058-67
  • Kaminski RM, Van Rijn CM, Turski WA, AMPA and GABA(B) receptor antagonists and their interaction in rats with a genetic form of absence epilepsy. Eur J Pharmacol 2001;430(2-3):251-9
  • Jakus R, Graf M, Ando RD, Effect of two noncompetitive AMPA receptor antagonists GYKI 52466 and GYKI 53405 on vigilance, behavior and spike-wave discharges in a genetic rat model of absence epilepsy. Brain Res 2004;1008(2):236-44
  • Ramakers GM, Peeters BW, Vossen JM, Coenen AM. CNQX, a new non-NMDA receptor antagonist, reduces spike wave discharges in the WAG/Rij rat model of absence epilepsy. Epilepsy Res 1991;9(2):127-31
  • Russo E, Citraro R, De Fazio S, Enhancement of anti-absence effects of ethosuximide by low doses of a noncompetitive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist in a genetic animal model of absence epilepsy. Epilepsy Behav 2008;13(2):295-9
  • Howes JF, Bell C. Talampanel. Neurotherapeutics 2007;4(1):126-9
  • Lodge D, Bond A, O'Neill MJ, Stereoselective effects-of 2,3-benzodiazepines in vivo: electrophysiology and neuroprotection studies. Neuropharmacology 1996;35(12):1681-8
  • Belayev L, Alonso OF, Liu Y, Talampanel, a novel noncompetitive AMPA antagonist, is neuroprotective after traumatic brain injury in rats. J Neurotrauma 2001;18(10):1031-8
  • Bialer M, Johannessen SI, Kupferberg HJ, Progress report on new antiepileptic drugs: a summary of the Sixth Eilat Conference (EILAT VI). Epilepsy Res 2002;51(1-2):31-71
  • Bialer M, Johannessen SI, Kupferberg HJ, Progress report on new antiepileptic drugs: a summary of the Seventh Eilat Conference (EILAT VII). Epilepsy Res 2004;61(1-3):1-48
  • Czuczwar SJ, Swiader M, Kuzniar H, LY 300164, a novel antagonist of AMPA/kainate receptors, potentiates the anticonvulsive activity of antiepileptic drugs. Eur J Pharmacol 1998;359(2-3):103-9
  • Borowicz KK, Kleinrok Z, Czuczwar SJ. Effects of LY 300164, a selective non-competitive antagonist of AMPA/KA receptors, on the protective activity of diazepam and diphenylhydantoin in the kindling model of epilepsy in rats. Pol J Pharmacol 1999;51(1):103
  • Kapus G, Kertesz S, Gigler G, Comparison of the AMPA antagonist action of new 2,3-benzodiazepines in vitro and their neuroprotective effects in vivo. Pharm Res 2004;21(2):317-23
  • Swiader M, Kuzniar H, Kleinrok Z, Czuczwar SJ. Influence of LY 300164, an AMPA/kainate receptor antagonist upon the anticonvulsant action of antiepileptic drugs against aminophylline-induced seizures in mice. Pol J Pharmacol 2003;55(1):103-7
  • Borowicz KK, Kleinrok Z, Czuczwar SJ. The AMPA/kainate receptor antagonist, LY 300164, increases the anticonvulsant effects of diazepam. Naunyn Schmiedebergs Arch Pharmacol 2000;361(6):629-35
  • Borowicz KK, Gasior M, Kleinrok Z, Czuczwar SJ. The non-competitive AMPA/kainate receptor antagonist, GYKI 52466, potentiates the anticonvulsant activity of conventional antiepileptics. Eur J Pharmacol 1995;281(3):319-26
  • Czuczwar SJ, Gasior M, Kaminski R, GYKI 52466 [1-(4-aminophenyl)-4-methoxy-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride] and the anticonvulsive activity of conventional antiepileptics against pentetrazol in mice. Mol Chem Neuropathol 1998;33(3):149-62
  • Erdo F, Berzsenyi P, Andrasi F. The AMPA-antagonist talampanel is neuroprotective in rodent models of focal cerebral ischemia. Brain Res Bull 2005;66(1):43-9
  • Liu XH, Wang P, Barks JD. The non-competitive AMPA antagonist LY 300168 (GYKI 53655) attenuates AMPA-induced hippocampal injury in neonatal rodents. Neurosci Lett 1997;235(1-2):93-7
  • Erdo F, Berzsenyi P, Nemet L, Andrasi F. Talampanel improves the functional deficit after transient focal cerebral ischemia in rats. A 30-day follow up study. Brain Res Bull 2006;68(4):269-76
  • Aujla PK, Fetell MR, Jensen FE. Talampanel suppresses the acute and chronic effects of seizures in a rodent neonatal seizure model. Epilepsia 2009;50(4):694-701
  • Weiser T, Brenner M, Palluk R, BIIR 561 CL: a novel combined antagonist of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and voltage-dependent sodium channels with anticonvulsive and neuroprotective properties. J Pharmacol Exp Ther 1999;289(3):1343-9
  • Taylor CP, Meldrum BS. Na+ channels as targets for neuroprotective drugs. Trends Pharmacol Sci 1995;16(9):309-16
  • Weiser T, Iizuka M, Nishimura S, Characterization of the anticonvulsant and neuroprotectant BIIR 561 CL in vitro: effects on native and recombinant alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Naunyn Schmiedebergs Arch Pharmacol 2000;362(4-5):419-26
  • Wienrich M, Brenner M, Loscher W, In vivo pharmacology of BIIR 561 CL, a novel combined antagonist of AMPA receptors and voltage-dependent Na(+) channels. Br J Pharmacol 2001;133(6):789-96
  • Weiser T, Wienrich M, Brenner M, The AMPA receptor/Na(+) channel blocker BIIR 561 CL is protective in a model of global cerebral ischaemia. Eur J Pharmacol 2001;421(3):165-70
  • Feigin V. Irampanel boehringer ingelheim. Curr Opin Investig Drugs 2002;3(6):908-10
  • Blackburn-Munro G, Bomholt SF, Erichsen HK. Behavioural effects of the novel AMPA/GluR5 selective receptor antagonist NS1209 after systemic administration in animal models of experimental pain. Neuropharmacology 2004;47(3):351-62
  • Bialer M, Johannessen SI, Kupferberg HJ, Progress report on new antiepileptic drugs: a summary of the Eigth Eilat Conference (EILAT VIII). Epilepsy Res 2007;73(1):1-52
  • McCracken E, Fowler JH, Dewar D, Grey matter and white matter ischemic damage is reduced by the competitive AMPA receptor antagonist, SPD 502. J Cereb Blood Flow Metab 2002;22(9):1090-7
  • Gigler G, Moricz K, Agoston M, Neuroprotective and anticonvulsant effects of EGIS-8332, a non-competitive AMPA receptor antagonist, in a range of animal models. Br J Pharmacol 2007;152(1):151-60
  • Gressens P, Spedding M, Gigler G, The effects of AMPA receptor antagonists in models of stroke and neurodegeneration. Eur J Pharmacol 2005;519(1-2):58-67
  • Matucz E, Moricz K, Gigler G, Reduction of cerebral infarct size by non-competitive AMPA antagonists in rats subjected to permanent and transient focal ischemia. Brain Res 2004;1019(1-2):210-16
  • Matucz E, Moricz K, Gigler G, Therapeutic time window of neuroprotection by non-competitive AMPA antagonists in transient and permanent focal cerebral ischemia in rats. Brain Res 2006;1123(1):60-7
  • Vegh MG, Kovacs AD, Kovacs G, The new 2,3-benzodiazepine derivative EGIS-8332 inhibits AMPA/kainate ion channels and cell death. Neurochem Int 2007;50(3):555-63
  • Kovacs A, Szenasi G. Effects of dofetilide and EGIS-7229, an antiarrhythmic agent possessing class III, IV, and IB activities, on myocardial refractoriness in hyperkalemia, hypokalemia, and during beta-adrenergic activation in the rabbit papillary muscle in vitro. J Pharmacol Sci 2006;100(4):303-9
  • Kovacs AD, Saje A, Wong A, Temporary inhibition of AMPA receptors induces a prolonged improvement of motor performance in a mouse model of juvenile Batten disease. Neuropharmacology 2011;60(2-3):405-9
  • Kovacs AD, Pearce DA. Attenuation of AMPA receptor activity improves motor skills in a mouse model of juvenile Batten disease. Exp Neurol 2008;209(1):288-91
  • Ceolin L, Bortolotto ZA, Bannister N, A novel anti-epileptic agent, perampanel, selectively inhibits AMPA receptor-mediated synaptic transmission in the hippocampus. Neurochem Int 2012; in press
  • Bialer M, Johannessen SI, Levy RH, Progress report on new antiepileptic drugs: a summary of the Tenth Eilat Conference (EILAT X). Epilepsy Res 2010;92(2-3):89-124
  • Ikoma M, Oikawa M, Gill MB, Regioselective domino metathesis of 7-oxanorbornenes and its application to the synthesis of biologically active glutamate analogues. Eur J Org Chem 2008;2008(31):5215-20
  • Oikawa M, Ikoma M, Sasaki M, Regioselective domino metathesis of unsymmetrical 7-oxanorbornenes with electron-rich vinyl acetate toward biologically active glutamate analogues. Eur J Org Chem 2009;2009(32):5531-48
  • Stephen LJ, Brodie MJ. Pharmacotherapy of epilepsy: newly approved and developmental agents. CNS Drugs 2011;25(2):89-107
  • Jonker DM, Voskuyl RA, Danhof M. Synergistic combinations of anticonvulsant agents: what is the evidence from animal experiments? Epilepsia 2007;48(3):412-34
  • Langan YM, Lucas R, Jewell H, Talampanel, a new antiepileptic drug: single- and multiple-dose pharmacokinetics and initial 1-week experience in patients with chronic intractable epilepsy. Epilepsia 2003;44(1):46-53
  • Chappell AS, Sander JW, Brodie MJ, A crossover, add-on trial of talampanel in patients with refractory partial seizures. Neurology 2002;58(11):1680-2
  • Grossman SA, Ye X, Chamberlain M, Talampanel with standard radiation and temozolomide in patients with newly diagnosed glioblastoma: a multicenter phase II trial. J Clin Oncol 2009;27(25):4155-61
  • Grossman SA, Ye X, Piantadosi S, Survival of patients with newly diagnosed glioblastoma treated with radiation and temozolomide in research studies in the United States. Clin Cancer Res 2010;16(8):2443-9
  • Pascuzzi RM, Shefner J, Chappell AS, A phase II trial of talampanel in subjects with amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2010;11(3):266-71
  • Krauss GL, Bar M, Biton V, Tolerability and safety of perampanel: two randomized dose-escalation studies. Acta Neurol Scand 2012;125(1):8-15
  • Langan YM, Lucas R, Jewell H, Talampanel, a new antiepileptic drug: single- and multiple-dose pharmacokinetics and initial 1-week experience in patients with chronic intractable epilepsy. Epilepsia 2003;44(1):46-53
  • Kalia LV, Kalia SK, Salter MW. NMDA receptors in clinical neurology: excitatory times ahead. Lancet Neurol 2008;7(8):742-55
  • Wasterlain CG, Chen JW. Mechanistic and pharmacologic aspects of status epilepticus and its treatment with new antiepileptic drugs. Epilepsia 2008;49(Suppl 9):63-73
  • Krauss GL, Serratosa JM, Villanueva V, Randomized phase III study 306: adjunctive perampanel for refractory partial-onset seizures. Neurology 2012;78(18):1408-15
  • Eggert K, Squillacote D, Barone P, Safety and efficacy of perampanel in advanced Parkinson's disease: a randomized, placebo-controlled study. Mov Disord 2010;25(7):896-905
  • Rascol O, Barone P, Behari M, Perampanel in Parkinson disease fluctuations: a double-blind randomized trial with placebo and entacapone. Clin Neuropharmacol 2012;35(1):15-20
  • Umemura K, Kondo K, Ikeda Y, Pharmacokinetics and safety of the novel amino-3-hydroxy-5-methylisoxazole-4-propionate receptor antagonist YM90K in healthy men. J Clin Pharmacol 1997;37(8):719-27
  • Gormsen L, Finnerup NB, Almqvist PM, Jensen TS. The efficacy of the AMPA receptor antagonist NS1209 and lidocaine in nerve injury pain: a randomized, double-blind, placebo-controlled, three-way crossover study. Anesth Analg 2009;108(4):1311-19

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.