1,003
Views
93
CrossRef citations to date
0
Altmetric
Reviews

Natural polyphenols in the management of major depression

, & , MPharm PhD
Pages 863-880 | Published online: 06 May 2013

Bibliography

  • Perron NR, Brumaghim JL. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys 2009;53:75-100
  • Manach C, Williamson G, Morand C, et al. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 2005;81:230S-42S
  • Han XH, Hong SS, Hwang JS, et al. Monoamine oxidase inhibitory components from Cayratia japonica. Arch Pharm Res 2007;30:13-17
  • Agouni A, Lagrue-Lak-Hal AH, Mostefai HA, et al. Red wine polyphenols prevent metabolic and cardiovascular alterations associated with obesity in Zucker fatty rats (Fa/Fa). PLoS One 2009;4:e5557
  • Visioli F, Galli C. The effect of minor constituents of olive oil on cardiovascular disease: new findings. Nutr Rev 1998;56:142-7
  • Middleton E Jr, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 2000;52:673-751
  • Urquiaga I, Leighton F. Plant polyphenol antioxidants and oxidative stress. Biol Res 2000;33:55-64
  • Visioli F, Galli C. The role of antioxidants in the Mediterranean diet. Lipids 2001;36:S49-52
  • Simonyi A, Wang Q, Miller RL, et al. Polyphenols in cerebral ischemia: novel targets for neuroprotection. Mol Neurobiol 2005;31:135-47
  • Scalbert A, Manach C, Morand C, et al. Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 2005;45:287-306
  • Tian WX. Inhibition of fatty acid synthase by polyphenols. Curr Med Chem 2006;13:967-77
  • Yoshimura Y, Nakazawa H, Yamaguchi F. Evaluation of the NO scavenging activity of procyanidin in grape seed by use of the TMA-PTIO/NOC 7 ESR system. J Agric Food Chem 2003;51:6409-12
  • Park S, Sima Y, Hanb P, et al. Antidepressant-like effect of chlorogenic acid isolated from Artemisia capillaris Thunb. Animal Cells Syst 2010;14:253-9
  • Arora V, Kuhad A, Tiwari V, et al. Curcumin ameliorates reserpine-induced pain-depression dyad: behavioural, biochemical, neurochemical and molecular evidences. Psychoneuroendocrinology 2011;36:1570-81
  • Mei X, Xu D, Xu S, et al. Gastroprotective and antidepressant effects of a new zinc(II)-curcumin complex in rodent models of gastric ulcer and depression induced by stresses. Pharmacol Biochem Behav 2011;99:66-74
  • Kulkarni SK, Bhutani MK, Bishnoi M. Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacology (Berl) 2008;201:435-42
  • Sanmukhani J, Anovadiya A, Tripathi CB. Evaluation of antidepressant like activity of curcumin and its combination with fluoxetine and imipramine: an acute and chronic study. Acta Pol Pharm 2011;68:769-75
  • Wong ML, Licinio J. Research and treatment approaches to depression. Nat Rev Neurosci 2001;2:343-51
  • Wong ML, Licinio J. From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nat Rev Drug Discov 2004;3:136-51
  • Kessler RC, Berglund P, Demler O, et al. National Comorbidity Survey Replication. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 2003;289:3095-4105
  • Greist JH, Mundt JC, Kobak K. Factors contributing to failed trials of new agents: can technology prevent some problems? J Clin Psychiatry 2002;2:8-13
  • Artigas F, Romero L, De Montigny C, et al. Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci 1996;19:378-83
  • Cryan JF, Leonard BE. Depression: from psychopathology to pharmacotherapy. Mod Trends Pharmacopsychiat 2010;27:1-19
  • Kulkarni SK, Dhir A. Current investigational drugs for major depression. Expert Opin Investig Drugs 2009;18:767-88
  • Andrews JM, Ninan PT, Nemeroff CB. Venlafaxine: a novel antidepressant that has a dual mechanism of action. Depression 1996;4:48-56
  • Al-Harbi KS. Treatment-resistant depression: therapeutic trends, challenges, and future directions. Patient Prefer Adherence 2012;6:369-88
  • Joffe RT, Levitt AJ, Sokolov ST. Augmentation strategies. J Clin Psychiatry 1996;57:2-31
  • Montgomery SA. Why do we need new and better antidepressants? Int Clin Psychopharmacol 2006;21:S1-S10
  • Petit-Demouliere B, Chenu F, Bourin M. Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology (Berl) 2005;177:245-55
  • Rupniak NM. Animal models of depression: challenges from a drug development perspective. Behav Pharmacol 2003;14:385-90
  • Yan HC, Cao X, Das M, et al. Behavioral animal models of depression. Neurosci Bull 2010;26:327-37
  • Borsini F, Lecci A, Sessarego A, et al. Discovery of antidepressant activity by forced swimming test may depend on pre-exposure of rats to a stressful situation. Psychopharmacology (Berl) 1989;97:183-8
  • Ebrahimi A, Schluesener H. Natural polyphenols against neurodegenerative disorders: potentials and pitfalls. Ageing Res Rev 2012;11:329-45
  • Kulkarni SK, Dhir A. An overview of curcumin in neurological disorders. Indian J Pharm Sci 2010;72:149-54
  • Darvesh AS, Carroll RT, Bishayee A, et al. Curcumin and neurodegenerative diseases: a perspective. Expert Opin Investig Drugs 2012;21:1123-40
  • Xu Y, Ku B, Cui L, et al. Curcumin reverses impaired hippocampal neurogenesis and increases serotonin receptor 1A mRNA and brain-derived neurotrophic factor expression in chronically stressed rats. Brain Res 2007;1162:9-18
  • Xu Y, Ku BS, Yao HY, et al. The effects of curcumin on depressive-like behaviors in mice. Eur J Pharmacol 2005;518:40-6
  • Xu Y, Ku BS, Yao HY, et al. Antidepressant effects of curcumin in the forced swim test and olfactory bulbectomy models of depression in rats. Pharmacol Biochem Behav 2005;82:200-6
  • Wang R, Xu Y, Wu HL, et al. The antidepressant effects of curcumin in the forced swimming test involve 5-HT1 and 5-HT2 receptors. Eur J Pharmacol 2008;578:43-50
  • Li YC, Wang FM, Pan Y, et al. Antidepressant like effects of curcumin on serotonergic receptor-coupled AC-cAMP pathway in chronic unpredictable mild stress of rats. Prog Neuropsychopharmacol Biol Psychiatry 2009;33:435-49
  • Lin TY, Lu CW, Wang CC, et al. Curcumin inhibits glutamate release in nerve terminals from rat prefrontal cortex: possible relevance to its antidepressant mechanism. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:1785-93
  • Zhang L, Xu T, Wang S, et al. NMDA GluN2B receptors involved in the antidepressant effects of curcumin in the forced swim test. Prog Neuropsychopharmacol Biol Psychiatry 2013;40:12-17
  • Wang R, Li YB, Li YH, et al. Curcumin protects against glutamate excitotoxicity in rat cerebral cortical neurons by increasing brain-derived neurotrophic factor level and activating TrkB. Brain Res 2008;1210:84-91
  • Wang R, Li YH, Xu Y, et al. Curcumin produces neuroprotective effects via activating brain-derived neurotrophic factor/TrkB-dependent MAPK and PI-3K cascades in rodent cortical neurons. Prog Neuropsychopharmacol Biol Psychiatry 2010;34:147-53
  • Huang Z, Zhong XM, Li ZY, et al. Curcumin reverses corticosterone-induced depressive-like behavior and decrease in brain BDNF levels in rats. Neurosci Lett 2011;493:145-8
  • Hurley LL, Akinfiresoye L, Nwulia E, et al. Antidepressant-like effects of curcumin in WKY rat model of depression is associated with an increase in hippocampal BDNF. Behav Brain Res 2013;239:27-30
  • Johnson JL, Rupasinghe SG, Stefani F, et al. Citrus flavonoids luteolin, apigenin, and quercetin inhibit glycogen synthase kinase-3β enzymatic activity by lowering the interaction energy within the binding cavity. J Med Food 2011;14:325-33
  • Avallone R, Zanoli P, Puia G, et al. Pharmacological profile of apigenin, a flavonoid isolated from Matricaria chamomilla. Biochem Pharmacol 2000;59:1387-94
  • Zanoli P, Avallone R, Baraldi M. Behavioral characterisation of the flavonoids apigenin and chrysin. Fitoterapia 2000;71:S117-23
  • Liu C, Tu FX, Chen X. Neuroprotective effects of apigenin on acute transient focal cerebral ischemia-reperfusion injury in rats. Zhong Yao Cai 2008;31:870-3
  • Rezai-Zadeh K, Ehrhart J, Bai Y, et al. Apigenin and luteolin modulate microglial activation via inhibition of STAT1-induced CD40 expression. J Neuroinflammation 2008;5:41
  • Liu R, Zhang T, Yang H, et al. The flavonoid apigenin protects brain neurovascular coupling against amyloid-β-induced toxicity in mice. J Alzheimers Dis 2011;24:85-100
  • Han JY, Ahn SY, Kim CS, et al. Protection of apigenin against kainate-induced excitotoxicity by anti-oxidative effects. Biol Pharm Bull 2012;35:1440-6
  • Nakazawa T, Yasuda T, Ueda J, et al. Antidepressant-like effects of apigenin and 2,4,5-trimethoxycinnamic acid from Perilla frutescens in the forced swimming test. Biol Pharm Bull 2003;26:474-80
  • Han XH, Hong SS, Hwang JS, et al. Monoamine oxidase inhibitory components from Cayratia japonica. Arch Pharm Res 2007;30:13-17
  • Yi LT, Li JM, Li YC, et al. Antidepressant-like behavioral and neurochemical effects of the citrus-associated chemical apigenin. Life Sci 2008;82:741-51
  • Gutmann H, Bruggisser R, Schaffner W, et al. Transport of amentoflavone across the blood-brain barrier in vitro. Planta Med 2002;68:804-7
  • Colovic M, Fracasso C, Caccia S. Brain-to-plasma distribution ratio of the biflavone amentoflavone in the mouse. Drug Metab Lett 2008;2:90-4
  • Baureithel KH, Büter KB, Engesser A, et al. Inhibition of benzodiazepine binding in vitro by amentoflavone, a constituent of various species of Hypericum. Pharm Acta Helv 1997;72:153-7
  • Ishola IO, Chatterjee M, Tota S, et al. Antidepressant and anxiolytic effects of amentoflavone isolated from Cnestis ferruginea in mice. Pharmacol Biochem Behav 2012;103:322-31
  • Chu YF, Brown PH, Lyle BJ, et al. Roasted coffees high in lipophilic antioxidants and chlorogenic acid lactones are more neuroprotective than green coffees. J Agric Food Chem 2009;57:9801-8
  • Bouayed J, Rammal H, Dicko A, et al. Chlorogenic acid, a polyphenol from Prunus domestica (Mirabelle), with coupled anxiolytic and antioxidant effects. J Neurol Sci 2007;262:77-84
  • Kwon SH, Lee HK, Kim JA, et al. Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur J Pharmacol 2010;649:210-17
  • Oboh G, Agunloye OM, Akinyemi AJ, et al. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer's disease and some pro-oxidant induced oxidative stress in rats' brain-in vitro. Neurochem Res 2012; published online November 2012; doi:10.1007/s11064-012-0935-6
  • Ahn EH, Kim DW, Shin MJ, et al. Chlorogenic acid improves neuroprotective effect of PEP-1-ribosomal protein S3 against ischemic insult. Exp Neurobiol 2011;20:169-75
  • Lapchak PA. The phenylpropanoid micronutrient chlorogenic acid improves clinical rating scores in rabbits following multiple infarct ischemic strokes: synergism with tissue plasminogen activator. Exp Neurol 2007;205:407-13
  • Cropley V, Croft R, Silber B, et al. Does coffee enriched with chlorogenic acids improve mood and cognition after acute administration in healthy elderly? A pilot study. Psychopharmacology (Berl) 2012;219:737-49
  • Girish C, Pradhan SC. Drug development for liver diseases: focus on picroliv, ellagic acid and curcumin. Fundam Clin Pharmacol 2008;22:623-32
  • Uzar E, Alp H, Cevik MU, et al. Ellagic acid attenuates oxidative stress on brain and sciatic nerve and improves histopathology of brain in streptozotocin-induced diabetic rats. Neurol Sci 2012;33:567-74
  • Girish C, Raj V, Arya J, et al. Evidence for the involvement of the monoaminergic system, but not the opioid system in the antidepressant-like activity of ellagic acid in mice. Eur J Pharmacol 2012;682:118-25
  • Dhingra D, Chhillar R. Antidepressant-like activity of ellagic acid in unstressed and acute immobilization-induced stressed mice. Pharmacol Rep 2012;64:796-807
  • Srinivasan M, Sudheer AR, Menon VP. Ferulic acid: therapeutic potential through its antioxidant property. J Clin Biochem Nutr 2007;40:92-100
  • Kawabata K, Yamamoto T, Hara A, et al. Modifying effects of ferulic acid on azoxymethane-induced colon carcinogenesis in F344 rats. Cancer Lett 2000;157:15-21
  • Balasubashini MS, Rukkumani R, Viswanathan P, et al. Ferulic acid alleviates lipid peroxidation in diabetic rats. Phytother Res 2004;18:310-14
  • Sultana R, Ravagna A, Mohmmad-Abdul H, et al. Ferulic acid ethyl ester protects neurons against amyloid beta- peptide(1-42)-induced oxidative stress and neurotoxicity: relationship to antioxidant activity. J Neurochem 2005;92:749-58
  • Yogeeta SK, Hanumantra RB, Gnanapragasam A, et al. Attenuation of abnormalities in the lipid metabolism during experimental myocardial infarction induced by isoproterenol in rats: beneficial effect of ferulic acid and ascorbic acid. Basic Clin Pharmacol Toxicol 2006;98:467-72
  • Luo Y, Zhao HP, Zhang J, et al. Effect of ferulic acid on learning and memory impairments of vascular dementia rats and its mechanism of action. Yao Xue Xue Bao 2012;47:256-60
  • Yan JJ, Cho JY, Kim HS, et al. Protection against beta-amyloid peptide toxicity in vivo with long-term administration of ferulic acid. Br J Pharmacol 2001;133:89-96
  • Zhang YP, Yu LJ, Ma RD. Sedative and hypnotic effect of sodium ferulate in mice. Nei Mongol J Trad Chinese Med 2008;27:9-11
  • Li S. Compendium of materia medica (reprinted from 1590 Jinling wood-engraved edition). People's Health Press; Beijing: 2004
  • Jiangsu college of new medicine, dictionary of traditional Chinese and herbal medicine, Shanghai:1986
  • Yabe T, Hirahara H, Harada N, et al. Ferulic acid induces neural progenitor cell proliferation in vitro and in vivo. Neuroscience 2010;165:515-24
  • Zhang YJ, Huang X, Wang Y, et al. Ferulic acid-induced anti-depression and prokinetics similar to Chaihu-Shugan-San via polypharmacology. Brain Res Bull 2011;86:222-8
  • Zeni AL, Zomkowski AD, Maraschin M, et al. Ferulic acid exerts antidepressant-like effect in the tail suspension test in mice: evidence for the involvement of the serotonergic system. Eur J Pharmacol 2012;679:68-74
  • Zheng LT, Ock J, Kwon BM, et al. Suppressive effects of flavonoid fisetin on lipopolysaccharide-induced microglial activation and neurotoxicity. Int Immunopharmacol 2008;8:484-94
  • Maher P, Akaishi T, Abe K. Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proc Natl Acad Sci USA 2006;103:16568-73
  • Ishige K, Schubert D, Sagara Y. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic Biol Med 2001;30:433-46
  • Maher P. The flavonoid fisetin promotes nerve cell survival from trophic factor withdrawal by enhancement of proteasome activity. Arch Biochem Biophys 2008;476:139-44
  • Maher P. Modulation of multiple pathways involved in the maintenance of neuronal function during aging by fisetin. Genes Nutr 2009;4:297-307
  • Maher P, Dargusch R, Bodai L, et al. ERK activation by the polyphenols fisetin and resveratrol provides neuroprotection in multiple models of Huntington's disease. Hum Mol Genet 2011;20:261-70
  • Akaishi T, Morimoto T, Shibao M, et al. Structural requirements for the flavonoid fisetin in inhibiting fibril formation of amyloid beta protein. Neurosci Lett 2008;444:280-5
  • Zhen L, Zhu J, Zhao X, et al. The antidepressant-like effect of fisetin involves the serotonergic and noradrenergic system. Behav Brain Res 2012;228:359-66
  • Lam TK, Shao S, Zhao Y, et al. Influence of quercetin-rich food intake on microRNA expression in lung cancer tissues. Cancer Epidemiol Biomarkers Prev 2012;21:2176-84
  • Butterweck V, Jurgenliemk G, Nahrstedt A, et al. Flavonoids from Hypericum perforatum show antidepressant activity in the forced swimming test. Planta Med 2000;66:3-6
  • Sakakibara H, Yoshino S, Kawai Y, et al. Antidepressant-like effect of onion (Allium cepa L.) powder in a rat behavioral model of depression. Biosci Biotechnol Biochem 2008;72:94-100
  • Sakakibara H, Ishida K, Grundmann O, et al. Antidepressant effect of extracts from Ginkgo biloba leaves in behavioral models. Biol Pharm Bull 2006;29:1767-70
  • Paulke A, Noldener M, Schubert-Zsilavecz M, et al. St. John's wort flavonoids and their metabolites show antidepressant activity and accumulate in brain after multiple oral doses. Pharmazie 2008;63:296-302
  • Haleagrahara N, Radhakrishnan A, Lee N, et al. Flavonoid quercetin protects against swimming stress-induced changes in oxidative biomarkers in the hypothalamus of rats. Eur J Pharmacol 2009;621:46-52
  • Dixon Clarke SE, Ramsay RR. Dietary inhibitors of monoamine oxidase. A. J, Neural Transm 2011;118:1031-41
  • Anjaneyulu M, Chopra K, Kaur I. Antidepressant activity of quercetin, a bioflavonoid, in streptozotocin-induced diabetic mice. J Med Food 2003;6:391-5
  • Kaur R, Chopra K, Singh D. Role of alpha2 receptors in quercetin-induced behavioral despair in mice. J Med Food 2007;10:165-8
  • Kawabata K, Kawai Y, Terao J. Suppressive effect of quercetin on acute stress-induced hypothalamic-pituitary-adrenal axis response in Wistar rats. J Nutr Biochem 2010;21:374-80
  • Bhutada P, Mundhada Y, Bansod K, et al. Reversal by quercetin of corticotrophin releasing factor induced anxiety- and depression-like effect in mice. Prog Neuropsychopharmacol Biol Psychiatry 2010;34:955-60
  • Bandaruk Y, Mukai R, Kawamura T, et al. Evaluation of the inhibitory effects of quercetin-related flavonoids and tea catechins on the monoamine oxidase-A reaction in mouse brain mitochondria. J Agric Food Chem 2012;60:10270-7
  • Yoshino S, Hara A, Sakakibara H, et al. Effect of quercetin and glucuronide metabolites on the monoamine oxidase-A reaction in mouse brain mitochondria. Nutrition 2011;27:847-52
  • Park HR, Kong KH, Yu BP, et al. Resveratrol inhibits the proliferation of neural progenitor cells and hippocampal neurogenesis. J Biol Chem 2012;287:42588-600
  • Aggarwal BB, Bhardwaj A, Aggarwal RS, et al. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 2004;24:2783-840
  • Frémont L. Biological effects of resveratrol. Life Sci 2000;66:663-73
  • Yanez M, Fraiz N, Cano E, et al. Inhibitory effects of cis- and trans-resveratrol on noradrenaline and 5-hydroxytryptamine uptake and on monoamine oxidase activity. Biochem Biophys Res Commun 2006;344:688-95
  • Xu Y, Wang Z, You W, et al. Antidepressant-like effect of trans-resveratrol: involvement of serotonin and noradrenaline system. Eur Neuropsychopharmacol 2010;20:405-13
  • Zhang F, Lu YF, Wu Q, et al. Resveratrol promotes neurotrophic factor release from astroglia. Exp Biol Med (Maywood) 2012;237:943-8
  • Park HR, Kong KH, Yu BP, et al. Resveratrol inhibits the proliferation of neural progenitor cells and hippocampal neurogenesis. J Biol Chem 2012;287:42588-600
  • Di Liberto V, Mäkelä J, Korhonen L, et al. Involvement of estrogen receptors in the resveratrol-mediated increase in dopamine transporter in human dopaminergic neurons and in striatum of female mice. Neuropharmacology 2012;62:1011-18
  • Wasowski C, Loscalzo LM, Higgs J, et al. Chronic intraperitoneal and oral treatments with hesperidin induce central nervous system effects in mice. Phytother Res 2012;26:308-12
  • Morii S. Research for vitamin-P. J Biochem 1939;29:487-501
  • Fernández SP, Wasowski C, Paladini AC, et al. Synergistic interaction between hesperidin, a natural flavonoid, and diazepam. Eur J Pharmacol 2005;512:189-98
  • Guzmán-Gutiérrez SL, Navarrete A. Pharmacological exploration of the sedative mechanism of hesperidin identified as the active principle of Citrus sinensis flowers. Planta Med 2009;75:295-301
  • Hirata A, Murakami Y, Shoji M, et al. Kinetics of radical-scavenging activity of hesperetin and hesperidin and their inhibitory activity on COX-2 expression. Anticancer Res 2005;25:3367-74
  • Galati EM, Monforte MT, Kirjavainen S, et al. Biological effects of hesperidin, a citrus flavonoid. (note I): anti-inflammatory and analgesic activity. Farmaco 1994;49:709-12
  • Souza LC, de Gomes MG, Goes AT, et al. Evidence for the involvement of the serotonergic 5-HT(1A) receptors in the antidepressant-like effect caused by hesperidin in mice. Prog Neuropsychopharmacol Biol Psychiatry 2013;40:103-9
  • Filho CB, Fabbro LD, de Gomes MG, et al. Kappa-opioid receptors mediate the antidepressant-like activity of hesperidin in the mouse forced swimming test. Eur J Pharmacol 2013;698:286-91
  • Raza SS, Khan MM, Ahmad A, et al. Hesperidin ameliorates functional and histological outcome and reduces neuroinflammation in experimental stroke. Brain Res 2011;1420:93-105
  • Nones J, E Spohr TC, Gomes FC. Hesperidin, a flavone glycoside, as mediator of neuronal survival. Neurochem Res 2011;36:1776-84
  • Wentworth JM, Agostini M, Love J, et al. St John's wort, a herbal antidepressant, activates the steroid X receptor. J Endocrinol 2000;166:R11-16
  • Noldner M, Schötz K. Rutin is essential for the antidepressant activity of Hypericum perforatum extracts in the forced swimming test. Planta Med 2002;68:577-80
  • Arima H, Ashida H, Danno G. Rutin-enhanced antibacterial activities of flavonoids against Bacillus cereus and Salmonella enteritidis. Biosci Biotechnol Biochem 2002;66:1009-14
  • Guardia T, Rotelli AE, Juarez AO, et al. Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco 2001;56:683-7
  • Ostrakhovitch EA, Afanas'ev IB. Oxidative stress in rheumatoid arthritis leukocytes: suppression by rutin and other antioxidants and chelators. Biochem Pharmacol 2001;62:743-6
  • Gupta R, Singh M, Sharma A. Neuroprotective effect of antioxidants on ischaemia and reperfusion-induced cerebral injury. Pharmacol Res 2003;48:209-15
  • La Casa C, Villegas I, Alarcon de la Lastra C, et al. Evidence for protective and antioxidant properties of rutin, a natural flavone, against ethanol induced gastric lesions. J Ethnopharmacol 2000;71:45-53
  • Manach C, Morand C, Demigne C, et al. Bioavailability of rutin and quercetin in rats. FEBS Lett 1997;409:12-16
  • Machado DG, Bettio LE, Cunha MP, et al. Antidepressant-like effect of rutin isolated from the ethanolic extract from Schinus molle L. in mice: evidence for the involvement of the serotonergic and noradrenergic systems. Eur J Pharmacol 2008;587:163-8
  • Pyrzanowska J, Piechal A, Blecharz-Klin K, et al. Influence of long-term administration of rutin on spatial memory as well as the concentration of brain neurotransmitters in aged rats. Pharmacol Rep 2012;64:808-16
  • Javed H, Khan MM, Ahmad A, et al. Rutin prevents cognitive impairments by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type. Neuroscience 2012;210:340-52
  • Pu F, Mishima K, Irie K, et al. Neuroprotective effects of quercetin and rutin on spatial memory impairment in an 8-arm radial maze task and neuronal death induced by repeated cerebral ischemia in rats. J Pharmacol Sci 2007;104:329-34
  • Silva AR, Pinheiro AM, Souza CS, et al. The flavonoid rutin induces astrocyte and microglia activation and regulates TNF-alpha and NO release in primary glial cell cultures. Cell Biol Toxicol 2008;24:75-86
  • Boyle SP, Dobson VL, Duthie SJ, et al. Bioavailability and efficiency of rutin as an antioxidant: a human supplementation study. Eur J Clin Nutr 2000;54:774-82
  • Zygmunt K, Faubert B, MacNeil J, et al. Naringenin, a citrus flavonoid, increases muscle cell glucose uptake via AMPK. Biochem Biophys Res Commun 2010;398:178-83
  • Maes M. The cytokine hypothesis of depression: inflammation, oxidative & nitrosative stress (IO&NS) and leaky gut as new targets for adjunctive treatments in depression. Neuro Endocrinol Lett 2008;29:287-91
  • Amaro MI, Rocha J, Vila-Real H, et al. Anti-inflammatory activity of naringin and the biosynthesised naringenin by naringinase immobilized in microstructured materials in a model of DSS-induced colitis in mice. Food Res Int 2009;42:1010-17
  • Raza SS, Khan MM, Ahmad A, et al. Neuroprotective effect of naringenin is mediated through suppression of NF-κB signaling pathway in experimental stroke. Neuroscience 2012; published online 26 October 2012; doi: 10.1016/j.neuroscience.2012.10.041
  • Bugianesi R, Catasta G, Spigno P, et al. Naringenin from cooked tomato paste is bioavailable in men. J Nutr 2002;132:3349-52
  • Olsen HT, Stafford GI, van Staden J, et al. Isolation of the MAO-inhibitor naringenin from Mentha aquatica L. J Ethnopharmacol 2008;117:500-2
  • Yi LT, Li CF, Zhan X, et al. Involvement of monoaminergic system in the antidepressant-like effect of the flavonoid naringenin in mice. Prog Neuropsychopharmacol Biol Psychiatry 2010;34:1223-8
  • Pataki T, Bak I, Kovacs P, et al. Grape seed proanthocyanidins improved cardiac recovery during reperfusion after ischemia in isolated rat hearts. Am J Clin Nutr 2002;75:894-9
  • Yamakoshi J, Sano A, Tokutake S, et al. Oral intake of proanthocyanidin-rich extract from grape seeds improves chloasma. Phytother Res 2004;18:895-9
  • Preuss HG, Wallerstedt D, Talpur N, et al. Effects of niacin-bound chromium and grape seed proanthocyanidin extract on the lipid profile of hypercholesterolemic subjects: a pilot study. J Med 2000;31:227-46
  • Uchida S, Hirai K, Hatanaka J, et al. Antinociceptive effects of St. John's wort, Harpagophytum procumbens extract and Grape seed proanthocyanidins extract in mice. Biol Pharm Bull 2008;31:240-5
  • Sato M, Bagchi D, Tosaki A, et al. Grape seed proanthocyanidin reduces cardiomyocyte apoptosis by inhibiting ischemia/reperfusion-induced activation of JNK-1 and C-JUN. Free Radic Biol Med 2001;31:729-37
  • Lu M, Xu L, Li B, et al. Protective effects of grape seed proanthocyanidin extracts on cerebral cortex of streptozotocin-induced diabetic rats through modulating AGEs/RAGE/NF-kappaB pathway. J Nutr Sci Vitaminol 2010;56:87-97
  • Wang J, Ferruzzi MG, Ho L, et al. Brain-targeted proanthocyanidin metabolites for Alzheimer's disease treatment. J Neurosci 2012;32:5144-50
  • Ahn SH, Kim HJ, Jeong I, et al. Grape seed proanthocyanidin extract inhibits glutamate-induced cell death through inhibition of calcium signals and nitric oxide formation in cultured rat hippocampal neurons. BMC Neurosci 2011; published online 3 August 2011; doi: 1186/1471-2202-12-78
  • Mazzio EA, Harris N, Soliman KF. Food constituents attenuate oxidase activity and peroxide levels in C6 cells. Planta Med 1998;64:603-7
  • Xu Y, Li S, Chen R, et al. Antidepressant-like effect of low molecular proanthocyanidin in mice: involvement of monoaminergic system. Pharmacol Biochem Behav 2010;94:447-53
  • Onoue S, Uchida A, Takahashi H, et al. Development of high-energy amorphous solid dispersion of nanosized nobiletin, a citrus polymethoxylated flavone, with improved oral bioavailability. J Pharm Sci 2011;100:3793-801
  • Nakajima A, Yamakuni T, Haraguchi M, et al. Nobiletin, a citrus flavonoid that improves memory impairment, rescues bulbectomy-induced cholinergic neurodegeneration in mice. J Pharmacol Sci 2007;105:122-6
  • Miyata Y, Oshitari T, Okuyama Y, et al. Polymethoxyflavones as agents that prevent formation of cataract: nobiletin congeners show potent growth inhibitory effects in human lens epithelial cells. Bioorg Med Chem Lett 2013;23:183-7
  • Lee YS, Cha BY, Choi SS, et al. Nobiletin improves obesity and insulin resistance in high-fat diet-induced obese mice. J Nutr Biochem 2013;24:156-62
  • Baek SH, Kim SM, Nam D, et al. Antimetastatic effect of nobiletin through the down-regulation of CXC chemokine receptor type 4 and matrix metallopeptidase-9. Pharm Biol 2012;50:1210-18
  • Cui Y, Wu J, Jung SC, et al. Anti-neuroinflammatory activity of nobiletin on suppression of microglial activation. Biol Pharm Bull 2010;33:1814-21
  • Lee YS, Cha BY, Saito K, et al. Nobiletin improves hyperglycemia and insulin resistance in obese diabetic ob/ob mice. Biochem Pharmacol 2010;79:1674-83
  • Yamamoto Y, Shioda N, Han F, et al. Nobiletin improves brain ischemia-induced learning and memory deficits through stimulation of CaMKII and CREB phosphorylation. Brain Res 2009;1295:218-29
  • Matsuzaki K, Miyazaki K, Sakai S, et al. Nobiletin, a citrus flavonoid with neurotrophic action, augments protein kinase A-mediated phosphorylation of the AMPA receptor subunit, GluR1, and the postsynaptic receptor response to glutamate in murine hippocampus. Eur J Pharmacol 2008;578:194-200
  • Yi LT, Xu HL, Feng J, et al. Involvement of monoaminergic systems in the antidepressant-like effect of nobiletin. Physiol Behav 2011;102:1-6
  • Nagase H, Omae N, Omori A, et al. Nobiletin and its related flavonoids with CRE-dependent transcription-stimulating and neuritogenic activities. Biochem Biophys Res Commun 2005;337:1330-6
  • Sebastià N, Soriano JM, Barquinero JF, et al. In vitro cytogenetic and genotoxic effects of curcumin on human peripheral blood lymphocytes. Food Chem Toxicol 2012;50:3229-33
  • Du WY, Chang C, Zhang Y, et al. High-dose chlorogenic acid induces inflammation reactions and oxidative stress injury in rats without implication of mast cell degranulation. J Ethnopharmacol 2013; published online March 7 2013; doi: 10.1016/j.jep.2013.01.042
  • Cardoso CR, de Syllos Cólus IM, Bernardi CC, et al. Mutagenic activity promoted by amentoflavone and methanolic extract of Byrsonima crassa Niedenzu. Toxicology 2006;225:55-63
  • Hodek P, Hanustiak P, Krízková J, et al. Toxicological aspects of flavonoid interaction with biomacromolecules. Neuro Endocrinol Lett 2006;27(Suppl 2):14-17
  • Detampel P, Beck M, Krähenbühl S, et al. Drug interaction potential of resveratrol. Drug Metab Rev 2012;44:253-65
  • Yun S, Zhang T, Li M, et al. Proanthocyanidins inhibit iron absorption from soybean (Glycine max) seed ferritin in rats with iron deficiency anemia. Plant Foods Hum Nutr 2011;66:212-17
  • Jazvinšćak Jembrek M, Čipak Gašparović A, Vuković L, et al. Quercetin supplementation: insight into the potentially harmful outcomes of neurodegenerative prevention. Naunyn Schmiedebergs Arch Pharmacol 2012;385:1185-97

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.