636
Views
49
CrossRef citations to date
0
Altmetric
Reviews

New perspectives of valproic acid in clinical practice

, &
Pages 1535-1547 | Published online: 28 Oct 2013

Bibliography

  • Johannessen CU, Johannessen SI. Valproate: past, present, and future. CNS Drug Rev 2003;9:199-216
  • Bowden CL, Singh V. Valproate in bipolar disorder. Acta psychiatr Scand 2005;111:13-20
  • Spasić M, Živković M, Lukić S. Prophylactic treatment of migraine by valproate. Igaku To Seibutsugaku 2003;10:106-10
  • Bowden CL, Brugger AM, Swann AC, et al. Efficacy of divalproex vs lithium and placebo in the treatment of mania. JAMA 1995;271:918-24
  • Ornoy A. Valproic acid in pregnancy: how much are we endangering the embryo and fetus? Reprod Toxicol 2009;28:1-10
  • Kini U. Fetal valproate syndrome: a review. PPDT 2006;7:123-30
  • Koren G, Nava-Ocampo AA, Moretti M, et al. Major malformations with valproic acid. Can Fam Physician 2006;52:441-2
  • Meador KJ, Baker GA, Clayton-Smith J, et al. Cognitive function at 3 years of age after fetal exposure to antiepileptic drugs. NEJM 2009;360(16):1597-605
  • Christense J, Grønborg TK, Sørensen MJ, et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA 2013;309(16):1696-703
  • Lloyd KA. A scientific review: mechanisms of valproate-mediated teratogenesis. Bio Horizons 2013; doi: 10.1093/biohorizons/hzt003
  • Lampen A, Siehler S, Ellerbeck U, et al. New molecular bioassays for the estimation of the teratogenic potency of VPA derivatives in vitro: activation of the peroxisomal proliferator-activated receptor (PPARδ). Toxicol appl pharmacol 1999;160:238-49
  • Radatz M, Ehlers K, Yagen B, et al. Valnoctamid, valpromid and valnoctic acid are much less teratogenic in mice than valproic acid. Epilepsy Res 1998;30:41-8
  • Spielgelstein O, Chatterjie N, Alexander G, et al. Teratogenicity of vlaproate conjugates with anticovulsant activity in mice. Epilepsy Res 2003;57:145-52
  • Ahmad TS, Bialer M, Yavin E. Synthesis and anticonvulsant evaluation of dimethylethanolamine analogues of valproic acid and its tetramethylcyclopropyl analogue. Epilepsy Res 2012;98:238-46
  • GL, Popli GS, Silvia MT. Lacosamide-induced valproic acid toxicity. Pediatr Neurol 2012;48:308-10
  • Johannessen CU. Mechanisms of action of valproate: a commentatory. Neurochem Int 2000;37:103-10
  • Basselin M, Chang L, Chen M, et al. Chronic administration of valproic acid reduces brain NMDA signaling via arachidonic acid in unanesthetized rats. Neurochem Res 2008;33:2229-40
  • Fisher C, Broderic W. Sodium valproate or valproate semisodium: is there a difference in the treatment of bipolar disorder? Psychiatr Bull 2003;27:446-8
  • Carrigan PJ, Brinker DR, Cavanaugh JH, et al. Absorption characteristics of a new valproate formulation: divalproex sodium-coated particles in capsules (Depakote Sprinkle). J Clin Pharmacol 1990;30:743-7
  • Zaccara G, Messori A, Moroni F. Clinical pharmacokinetics of valproic acid. Clin Pharmacokinet 1988;15:367-89
  • Coradini D, Pellizzaro C, Miglierini G, et al. Hyaluronic acid as drug delivery for sodium butyrate: improvement of the anti-proliferative activity on a breast-cancer cell line. Int J Cancer 1999;81:411-16
  • Atmaca A, Al-Batran S-E, Mauer A, et al. Valproic acid (VPA) in patients with refractory advanced cancer: a dose escalating phase I clinical trial. Br J Cancer 2007;97:177-82
  • Göttlicher M, Minucci S, Zhu P, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 2001;20:6969-78
  • Phiel CJ, Zhang F, Hung EJ, et al. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer and teratogen. J Biol Chem 2001;276:36734-41
  • Blaheta RA, Cinatl J. Anti-tumor mechanism of valproate: a novel role for an old drug. Med Res Rev 2002;22:492-511
  • Peserico A, Simone C. Physical and functional HAT/HDAC interplay regulates protein acetylation balance. J Biomed Biotechnol 2011;3:718-32
  • Turner BM. Histone acetylation and an epigenetic code. Bioessays 2000;22:836-45
  • Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000;403:41-5
  • Imhof A. Epigenetic regulators and histone modification. Brief Fun Geno Proteom 2006;5:222-7
  • Roperto S, Esteller M. Role histone deacetylases in human cancer. Mol Oncol 2007;1:19-25
  • Warrell RP Jr, He LZ, Richon V, et al. Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J Natl Cancer Inst 1998;90:1621-5
  • Ververis K, Karagiannis TC. Potential non-oncological applications of histone deacetylase inhibitors. Am J Transl Res 2011;3(5):454-67
  • Kim HJ, Bae SCH. Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Trans Res 2011;3:166-79
  • Finnin MS, Donigian JR, Cohen A, et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 1999;401:188-93
  • Vannini A, Volpari C, Filocamo G, et al. Crystal structure of eukaryotic histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. PNAS 2004;101:15064-9
  • Witt O, Deubzer HE, Milde T, Oehme I. HDAC family: what are the cancer relevant targets? Cancer Lett 2009;277:8-21
  • Yao YL, Yang WM. Beyond histone and deacetylase: an overview of cytoplasmic histone deacetylases and their non-histone substrates. J Biomed Biotechnol 2011;2011:146-93
  • Glozak MA, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. J Gene 2005;363:15-23
  • Prince HM, Bishton MJ, Harrison SM. Clinical studies of histone deacetylase inhibitors. Clin Can Res 2009;15:3958-69
  • Khan N, Jeffers M, Kumar S. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J 2008;409:581-9
  • Dokmanovic M, Clarke C, Marks PA. Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 2009;5:981-9
  • Gurvich N, Tsygankova OM, Meinkoth JI, Klein PS. Histone deacetylase is a target of valproic acid-mediated cellular defferentiation. Cancer Res 2004;64:1079-86
  • Krämer OH, Zhu P, Ostendriff HP, et al. The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO 2003;22:3411-20
  • Guardiola AR, Yao TP. Molecular cloning and characterization of a novel histone deacetylase HDAC10. J Biol Chem 2002;277:3350-6
  • Zhang Y, Gilquin B, Khochbin S, Mattias P. Two catalytic domains are required for protein deacetylation. J Biol Chem 2006;281:2401-4
  • Van Lint C, Emiliani S, Verdin E. Expression of small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr 1996;5:245-53
  • Gotfryd K, Skladchinkova G, Lepekhin EA, et al. Cell type-specific anti-cancer properties of valproic acid: independent effects on HDAC activity and Erk1/2 phosphorylation. BMC Cancer 2010;10:383-95
  • Fujiki R, Sato A, Fujitani M, Yamashita T. A proapoptotic effect of valproic acid on progenitots of embryoic stem cell-derived glutamatergic neurons. Cell Death Dis 2013;4:2041-4889
  • Li XN, Sshu Q, Su JMF. Valproic acid induces growth arrest, apoptosis, and senescence in medulloblastomas by increasing histone hyperacetylation and regulating expression of p21Cip1, CDK4, and CMYC. Mol Cancer Ther 2005;4(12):1912-22
  • Marks PA, Richon VM, Rifkindifkind RA. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. Natl Cancer Inst 2000;92:1210-16
  • Tsai C, Leslie JS, Franco-Tobin LG, et al. Valproic acid suppresses cervical cancer tumor progression posibly via activating Notch1 singanling and enhances receptor-targeted cancer chemotherapeutic via activating somatostatin receptor type II. Arch Gynecol Obstet 2013;288:393-400
  • Zanoteli Maximino JR, Conti Reed U, et al. Spinal muscular atrophy: from animal model to clinical trial. Funct Neurol 2010;25(2):73-9
  • Lefebvre S, Bürglen L, Reboullet S, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995;80:155-65
  • Brichta L, Hofmann Y, Hahnen E, et al. Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Hum Mol Genet 2003;12:2481-9
  • Beurel E, Jope RS. Paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol 2006;79(4):173-89
  • Sumner CJ, Huynh TN, Markowitz JA, et al. Valproic acid increases SMN levels in spinal muscular atrophy patient cells. Ann Neurol 2003;54:647-54
  • Andreassi C, Angelozzi C, Tiziano FD, et al. Phenylbutyrate increases SMN expression in vitro: relevance for treatment of spinal muscular atrophy. Eur J Hum Genet 2004;12:59-65
  • Vondracek P, Zapletalova E, Oslejskova H, et al. Regulation of mRNA expression of the SMN2 gene by histone deacetylase inhibitors and their influence on the phenotype of type I and II spinal muscular atrophy. Ceska A Slovenska Neurologie A Neurochirurgie 2007;4:413-8
  • Tsai LK, Tsai MS, Ting CH, Li H. Multiple therapeutic effects of valproic acid in spinal muscular atrophy model mice. J Mol Med 2008;86:1243-54
  • Falchook GS, Fu S, Naing A, et al. Methylation and histone deacetylase inhibition in combination with platinum treatment in patients with advanced malignancies. Invest New Drugs 2013;31:1192-200
  • Diyabalanage H K, Granda ML, Hooker JM. Combination therapy: histone deacetylase inhibitors and platinum-based chemotherapeutics for cancer. Cancer Lett 2013;329:1-8
  • Liu H, Fu RY, Liao QK, et al.Valproic acid induced intracellular GSH-redox imbalance and apoptosis of leukemic cells resistant to dexamethasone and doxorubicin. J Sichuan University (Medical Science Edition) 2009;40:133-7
  • Poljakova J, Hrebeckova J, Dvorakova M, et al. Anticancer agent ellipticine combined with histone deacetylase inhibitors, valproic acid and trichostatin A, is an effective DNA damage strategy in human neuroblastoma. Neuro Lett 2011;32:101-16
  • Marchion DC, Bicaku E, Daud AI, et al. Valproic acid alters chromatin structure by regulation of chromatin modulation proteins. Cancer Res 2005;65:3815-22
  • Shabbeer S, Kortenhosrst MSQ, Kachhap S, et al. Multiple molecular pathways explain the anti-proliferative effect of valproic acid on prostate cancer cells in vitro and in vivo. Prostate 2007;67:1099-110
  • Leclerc GJ, Mou C, Leclerc GM, et al. Histone deacetylase inhibitors induce FPGS mRNA expression and intracellular accumulation of long-chain methotrexate polyglutamates in childhood acute lymphoblastic leukemia: implications for combination therapy. Leukemia 2010;24:552-62
  • Bastien L, Einsiedel HG, Henze G, et al. The sequence of application of methotrexate and histone deacetylase inhibitors determines either a synergistic or en antagonistic response in childhood acite lymphoblastic leukemia cells. Leukemia 2011;25:359-84
  • Kano Y, Akutsu M, Tsunoda S, et al. Cytotoxic effects of histone deacetylase inhibitor FK228 (depsipeptide, formally named FR01228) in combination with conventional anti-leukemia/lymphoma agents against human leukemia/lymphoma cell lines. Invest New Drugs 2007;25:31-40
  • Prasad P, Vasquez H, Das CM, et al. Histone acetylation resulting in resistance to methotrexate in choroid plexus cells. J Neurooncol 2009;91:279-86
  • Bauerschmitz GJ, Barker SD, Hemminki A. Adenoviral gene therapy for cancer: from vectors to targeted and replication component agent. Int J Oncol 2002;21:1161-74
  • Cohen CJ, Shieh JT, Pickles RJ, et al. The coxsackievirus and adenovirus receptor is a transmembrane component of the junction. Proc Natl Acad Sci USA 2001;98:15191-6
  • Okegawa T, Pong RC, Li Y, et al. The mechanism of the growth-inhibitory effect of coxsackie and adenovirus receptor (CAR) in human bladder cancer: a functional analysis of CAR protein structure. Cancer Res 2001;61:6592-600
  • Segura-Pacheco B, Avalos B, Rangel E, et al. HDAC inhibitor valproic acid upregulates CAR in vitro and in vivo. GVT J 2007;5:10
  • Kitizano M, Goldsmith ME, Aikou T, et al. Enhanced adenovirus transgene expression in malignant cells treated with the histone deacetylase inhibitor FR901228. Cancer Res 2001;61:6328-30
  • Okegawa T, Li Y, Pong RC, et al. The dual impact of coxsackie and adenovirus receptor expression on human prostate cancer gene therapy. Cancer Res 2000;15:5031-56
  • Hoti N, Chowdhury W, Hsieh JT. Valproic acid, a histone deacetylase inhibitor, is an antagonist for oncolytic adenoviral gene therapy. Mol Ther 2006;14:1525-600
  • de Jonge J, Brghauser LM, Idema S, et al. Therapeutic concentrations of anti-epileptic drugs do not inhibit the activity of the oncolytic adenovirus Delta24-RGD in malignant glioma. J Gene Med 2013;15:134-41
  • Cretney E, Takeda K, Yakita H, et al.Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing deficient mice. J Immunol 2002;168:1356-61
  • Iacomino G, Medici MC, Russo GL. Valproic acid sensitizes K562 Erythroleukemia cells to TRAIL/Apo2L-induced apoptosis. Anticancer Res 2008;28:855-64
  • Roose WP, Jost E, Belohlavek C, et al. Intrinsic anticancer resistance of malignant melanoma cells is abrogated by INF-β and valproic acid. Cancer Res 2011;71:4150-60
  • Kaminskyy VO, Surova OV, Vaculova A. Combined inhibition of DNA methyltransferase and histone deacetylase restores caspase-8 expression and sensitizes SCLC cells to TRAIL. Carcinogenesis 2011;32:1450-8
  • Munshi A, Kurland JF, Nishikawa T. Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin Can Res 2005;11:4912-22
  • Kim IA, Shin JH, Kim IH, et al. Histone deacetylase inhibitor – mediated radiosensitization of human cacner cell: class differences and the potential influence of p53. Clin Can Res 2006;12:940-9
  • Zhang Y, Adachi M, Zhao X, et al. Histone deacetylase inhibitors FK228, N-(2-aminophenyl)-4-N-(pyridin-3-yl-methoxycarbonyl)amino-methyl]benzamide and m-carboxycinnamic acid bis-hzdroxamide augment radiation-induced cell death in gastrointestinal adenocarcinoma cells. Int J Cancer 2004;110:301-8
  • Kim JH, Shin JH, Kim IH. Susceptibility and radiosensitization of human glioblastoma cells to trichostatin A, a histone deacetylase inhibitor. Int J Radiat Oncol Biol Phys 2004;59:1174-80
  • Adhikari D, Feroz F, Liegshitz A. Pretreatment of endometrial carcinoma cell lines with butyrate results in upregulation of Bax and correlates with potentiation of radiation induced cell kill. In vivo 2000;14:603-9
  • Chung YL, Lee YH, Yen SH, Chi KH. A novel approach for nasopharyngeal carcinoma treatment uses phenylbutyrate as a protein kinase C modulator: implications for radiosensitization and EBV-targeted therapy. Clin Cancer Res 2000;6:1452-8
  • Zhang Y, Jung M, Dritschilo A. Enhancement of radiation sensitivity of human squamous carcinoma cells by histone deacetylase inhibitors. Radiat Res 2004;161:667-74
  • Shoji M, Ninomiya I, Makino I. Valproic acid, a histone deacetylase inhibitor, enhances radiosensitivity in esophageal squamous cell carcinoma. Int J Oncol 2012;40:2140-6
  • Camphausen K, Burgan W, Cerra M. Enhanced radiation-induced cell killing and prolongation of γ-H2AX foci expression by the histone deacetylase inhibitor MS-275. Cancer Res 2004;64:316-21
  • Camphausen K, Cerna D, Scott T, et al. Enhancement of in vitro and in vivo tumor cell radiosensitivity by valproic acid. Int J Cancer 2005;114:380-6
  • Koprinarova M, Botev P, Russev G. Histone deacetylase inhibitor sodium butyrate inhances cellular radiosensitivity by inhibiting both DNA nonhomologous end joining and homologous recombination. DNA Repair (Amst) 2011;10(9):970-7
  • Olive PL. The role of DNA single- and double-strand breaks in cell killing by ionizing radiation. Radiat Res 1998;150:45-51
  • Chen X, Wong P, Radany E, et al. HDAC inhibitor, Valproic acid, induced p53-dependent radiosensitization of colon cancer cells. Cancer Biother Radiopharm 2009;24:689-99
  • Nifterik KA, Berg JV, Slotman BJ, et al. Valproic acid sensitizes human glioma cells for temozolomide and gamma-radiation. J Neurol 2012;107:61-7
  • Shabason JE, Tofilon PJ, Camaphausen K. HDAC inhibitors as radiation modifiers, from bench to clinic. J Cell Mol Med 2011;15:2735-44
  • FDA Drug safety Communication: children born to mothers who took Valproate products while pregnant may have impaired cognitive development: FDA/Drugs/Drugs Safety and Availability. Available from: http://www.fda.gov/drugs/drugsafety/ucm261543.htm [Last Accessed 20 September 2013]
  • Antiepileptic drug pregnancy registry, Massachusetts General Hospital. Available from: http://www2.massgeneral.org/aed/links.htm [Last Accessed 20 September 2013]
  • MotherToBaby, a service of the Organization of teratology Information Specialists (OTIS). Available from: www.mothertobaby.org [Last Accessed 20 September 2013]
  • MOTHERISK, treating the mother-protecting the unborn. Available from: www.motherisk.org [Last Accessed 20 September 2013]
  • EURAP: an International Registry of Antiepileptic Drugs and Pregnancy. Available from: www.eurapinternational.org [Last Accessed 20 September 2013]
  • Gotfryd K, Hansen M, Kawa A, et al. The teratogenic potencies of valproic acid derivatives and their effects on biological end-points are related to changes in histone deacetylase and Erk1/2 activities. Basic Clin Pharm Toxicol 2011;109:164-74
  • Kawaoge R, Kawagoe H, Sano K. Valproic acid induces apoptosis in human leukemia cells by stimulating both caspase-dependent and -independent apoptotic signaling pathways. Leuk Res 2002;26:495-502
  • Kuendgen A, Gatterman N. Valproic Acid for the treamnent of myeloid malignancies Cancer. 2007;110:943-54
  • Deunas-Gonzales A, Candelaria M, Perez-Plascencia C, et al. Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Anti Tum Treat 2007;34:206-22
  • Kuendgen A, Bug G, Ottmann OG, et al. Treatment of poor-risk myelodysplastic syndromes and acute myeloid leukemia with a combination of 5-azacytidine and valproic acid. Clin Epigene 2011;2:389-99
  • Candelaria M, Herrera A, Labardini J, et al. Hydralazine and magnesium valproate as epigenetic treatment for myelodysplastic syndrome. Preliminary results of a phase-II trial. Ann Hematol 2011;90:379-87
  • Dowdell CK, Pesnicak L, Hoffmann V, et al. Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, diminishes lymphoproliferation in the Fas-deficient MRL/lpr(-/-) murine model of autoimmune lymphoproliferative syndrome (ALPS). Exp Hematol 2009;37:487-94

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.