6
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Clinical Trials Report: Central & Peripheral Nervous Systems: Drugs in development for the treatment of multiple sclerosis: antigen-specific therapies

Pages 1331-1348 | Published online: 03 Mar 2008

References

  • STEINMAN L: Multiple sclerosis and its animal models: the role of the major histocompatibility complex and the T-cell receptor repertoire. Springer Senzin. Immuno-pathol. (1992) 14:79–93.
  • SWANBORG RH: Animal models of human disease: ex-perimental autoimmune encephalomyelitis in rodents as a model of human demyelinating disease. Clin. Immunopatbol. (1995) 77:4–13.
  • MARTIN R, MACFARLAND HF: Immunological aspects of experimental autoimmune encephalomyelitis and mul-tiple sclerosis. Crit. Rev. din. Lab. Sci. (1995) 32:121–182.
  • OTA K, MATSUI M, MILFORD EL et al.: T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature (1990) 346:183–187.
  • MARTIN RD, JARAQUEMADA M, FLERLAGE M et al.: Fine specificity and FHA restriction of myelin basic protein-specific cytotoxic T-cell lines from multiple sclerosis patients and healthy individuals. J. Immunol. (1990) 145:540–548.
  • PE 1 1E M, FUJITA K, WILKINSON D et al.: Myelin auto- reactivity in multiple sclerosis: recognition of myelin basic protein in the context of HLA-DR2 products by T-lymphocytes of multiple sclerosis patients and healthy donors. Proc. NatL Acad. Sci. USA (1990) 87:7968-7972. References [4-61 initiated the current interest in MBP 84–102 as an immunodorninant T-cell epitope and as the basis for several antigen-specific therapies.
  • WARREN KG, CATZ I, STEINMAN L: Fine specificity of the antibody response to myelin basic protein in the cen-tral nervous system in multiple sclerosis: the minimal B-cell epitope and a model of its features. Proc. Natl. Acad. Sci. USA (1995) 92:11061–11065.
  • MARTIN R, HOWELL MD, JARAQUEMADA D et al.: A myelin basic protein peptide is recognised by cytotoxic T-cells in the context of four HLA-DR types associated with multiple sclerosis. J. Exp. Med. (1991) 173:19–24.
  • VALLI A, SETTE A, KAPPOS L eta: Binding of myelin basic •protein peptides to human histocompatibility leuko-cyte antigen class H molecules and their recognition by T-cells from multiple sclerosis patients. J. Clin. Invest. (1993) 91:616-628. A thorough analysis of MBP peptides in MHC II interaction and T-cell recognition, demonstrating the promiscuous binding of MBP 84–103 to multiple HLA-DR alleles, the high affinity of MBP 84–103 for HLA-DR2 (especially DRB1`1501), and the dominant recognition of MBP 84–103 and MBP 144–163 by MS patient MBP-specific T-cell lines.
  • HAFLER DA, WEINER HL: Antigen-specific therapies for the treatment of autoimmune diseases. Springer Semin. Immunopathol. (1995) 17:61–76.
  • MARKOVIC-PLESE S, FUKAURA H et al.: T-cell recognition of immunodominant and cryptic proteolipid protein epitopes in humans. J. Immunol. (1995) 155:982–992.
  • JOHNS TG, ICERLERO DE, ROSBO N et at: Myelin oligoden- drocyte glycoprotein induces a demyelinating encepha-lomyelitis resembling multiple sclerosis. J. Immunol. (1995) 154:5536-5541. Induction of EAR with MOG more closely resembles MS than the EAE induced by MBP or PLP. Along with reference [14] by the same group, a warning against over-emphasis on the role of MBP in MS.
  • SUN J, LINK H, OLSSON T et al.: T- and B-cell responses to myelin-oligodendrocyte glycoprotein in multiple sclerosis. J. Immunol. (1991) 146:1490–1495.
  • ICERLERO DE ROSBO N, MILO R et al.: Reactivity to myelin antigens in multiple sclerosis: peripheral blood lym-phocytes respond predominantly to myelin oligodlen-drocyte glycoprotein. J. Clin. Invest. (1993) 92:2602–2608.
  • VAN NOORT JM, VAN SECHEL AC, BAJRAMOVIC JJ et al.: The small heat-shock protein ali-crystallin as candidate autoantigen in multiple sclerosis. Nature (1995) 375:798-801. Expression pattern and T-cell response show this protein merits further attention.
  • VAN NOORT JM: Multiple sclerosis: an altered immune response or an altered stress response? J. Mol. Med. (1996) 74:285–296.
  • LEHMANN PV, FORSTHUBER T, MILLER A, SERCARZ EE: •Spreading of T-cell autoimmunity to cryptic determi-nants of an autoantigen. Nature (1992) 358: 155–157. A key paper outlining the concept and possible consequences of epitope spreading.
  • MILLER SD, MCRAE BL, VANDERLUGT CL et al.: Evolution of the T-cell repertoire during the course of experimen-tal immune-mediated deznyelinating diseases. Immunol. Rev. (1995) 144:225-244. A thorough review of intramolecular and intermolecular epitope spreading in RAE models.
  • PERRY LL, BARZAGA-GILBERT E, TROTTER JL: T-cell sen-sitization to proteolipid protein in myelin basic pro-tein-induced relapsing experimental allergic encephalomyelitis. J. NeuroimmunoL (1991) 33:7–15.
  • CROSS AH, TUOHY VK, RAINE CS: Development of reac-tivity to new myelin antigens during chronic relapsing autoimmune demyelination. Cell. Immunol. (1993) 146:261–269.
  • SALVE= M, RISTORI G, D'AMATO M et al.: Predominant and stable T-cell responses to regions of myelin basic protein can be detected in individual patients with multiple sclerosis. Eur. J. Immunol. (1993) 23:1232–1239.
  • WUCHERPFENIG KW, ZHANG J, 'WITEK C et al.: Clonal expansion and persistence of human T-cells specific for an inununodominant myelin basic protein peptide. J. Immunol. (1994) 152:5581-5592. References [211 and 1221 are rare examples of an under-examined topic essential to the formulation of antigen-specific therapeutic strategies- the stability of T-cell responses over time and disease course.
  • EYLAR EH, JACKSON JJ, ROTHENI3ERG B, BROSTOFF SW:Suppression of the immune responsn reversal of the disease state with antigen in allergic encephalomyelitis. Nature (1972) 236:74–76.
  • HASHIM GA, SCHILLING FJ: Prevention of experimentalallergic encephalomyelitis by non-encephalitogenic basic peptides. Arch. Biochem. Biophys. (1973) 156:287–297.
  • CAMPBELL B, VOGEL PJ, FISHER E, LORENZ R: Myelin basic protein administration in multiple sclerosis. Arch. Neurol. (1973) 29:10–15.
  • GONSEI I h. RE, DELMOI1t P, DEMONTY L: Failure ofbasic protein therapy for multiple sclerosis. J. Neurol. (1977) 216:27–31.
  • SALK J, WESTFALL FC, ROMINE JS, WIEDERHOLT WC:Studies on myelin basic protein administration in mul-tiple sclerosis patients. 1. Rationale and preliminary report of immunologic observations. In: Progress in Multiple Sclerosis Research. Bauer HJ, Poser S, Ritter G (Eds.), Berlin, Heidelberg, New York, Springer-Verlag (1982):418–427. ROMINE JS, SALK J, WIEDERHOLT WC, WESTFALL FC,JABLECKI CK: Studies on myelin basic protein admini-stration in multiple sclerosis patients. 2. Preliminary report of clinical observations. In: Progress in Multiple Sclerosis Research. Bauer HJ, Poser S, Ritter G (Eds.), Berlin, Heidelberg, New York, Springer-Verlag (1982):428–433.
  • BEN-NUN A, WEICERLE H, COHEN IR: Vaccination against autoimmune encephalomyelitis with T lymphocyte line reactive against myelin basic protein. Nature (1981) 292 :60-61 . A key study inspiring a series of T-cell vaccination approaches.
  • LIDER 0, RESHEF T, BERAUD E, BEN-NUN A, COHEN IR:Anti-idiotypic network induced by T-cell vaccinates against experimental autoimmune encephalomyelitis. Science (1988) 239:181–183.
  • SUN D, QIN Y, CHLUBA J, EPPLEN JT, WEICEEtLE H: Sup-pression of experimentally induced autoimmune en-cephalomyelitis by cytolytic T-T-cell interactions. Nature (1988) 332:843–845.
  • LOHSE AW, COHEN IR: Immunoregulation: study of physiological and therapeutic autoreactivity by T-oell vaccination. Springer Semin. Irnmunopathol. (1992) 14:179–186.
  • HAFLER DA, COHEN I, BENJAMIN DS, WEINER HL: T-cellvaccination in multiple sclerosis: a preliminary report Clin. Immunol. Immunopathol. (1992) 62:307–313.
  • ZHANG J, MEDAER R, STINISSEN P, HAFLER D, RAUS JCM:MHC-restricted clonotypic depletion of human myelin basic protein-reactive T-cells by T-cell vaccination. Sci-ence (1993) 261:1451–1454.
  • ZHANG J, RAUS J: T-cell vaccination in autoimmunediseases: from laboratory to clinic. Hum. Immunol. (1993) 38:87–96.
  • ZHANG J, VANDEV'YVER C, STINISSEN P, RAUS J: In vivoclonotypic regulation of human myelin basic protein-reactive T-cells by T-cell vaccination. J. Immunol. (1995) 155:5668–5877.
  • MEDAER R, STINISSEN P, TRUYEN L, RAUS J, ZHANG J:Depletion of myelin-basic-protein autoreactive T-cells by T-cell vaccination: pilot trial in multiple sclerosis. Lancet (1995) 346:807–808.
  • ACHA-ORBEA H, MITCHELL DJ, T1MMERMANN L et al.: Limited heterogeneity of T-cell receptors from lympho-cytes mediating autoimmune encephalomyelitis allows specific immune intervention. Cell (1988) 54:263–273.
  • BURNS FR, LI XB, SHEN N et al.: Both rat and mouse T-cell receptors specific for the encephalitogenic determi-nant of myelin basic protein use similar V alpha and V beta chain genes even though the major histocompati-bility complex and encephalitogenic determinants be-ing recognised are different. J. Exp. Med . (1989) 169:27–39.
  • VANDENBARK AA, HASHIM G, OFFNER H: Immunisation with a synthetic T-cell receptor V-region peptide pro-tects against experimental autoimmune encephalo-myelitis. Nature (1989) 341:541–544.
  • HOWELL MD, WINTERS ST, OLEE T et al.: Vaccination against experimental allergic encephalomyelitis with T-cell receptor peptides. Science (1989) 246:668-670. References [40] and [41] demonstrated the TCR peptide vaccine approach in EAE, supporting the therapeutic approaches of The Immune Response Corp. and Connective Therapeutics.
  • KUMAR V, SERCARZ EE: The involvement of T-oell recep-tor peptide-specific regulatory CD4* T-cells in recovery from antigen-induced autoimmune disease. J. Exp. Med. (1993) 178:909–916.
  • KOTZ1N BL, SATYANARAYANA K, CHOU Y et aL: Prefer-ential T-cell receptor V13-chain variable gene use in myelin basic protein-reactive T-cell clones from pa-tients with multiple sclerosis. Proc. Natl. Acad. Sci. USA (1991) 88:9161–9165.
  • CHOU YK, HENDERIICX P, VAINIENE M et al.: Specificityof human T-cell clones reactive to immunodontinant epitopes of myelin basic protein. J. Neurosci. Res. (1991) 28:280–290.
  • OKSENBERG JR, PANZARA MA, BEGOVICH AB et al.. Se-lection for T-cell receptor Vf3-1313-J13 gene rearrange-ments with specificity for a myelin basic protein in brain lesions of multiple sclerosis. Nature (1993) 362:68–70.
  • LEF SJ, WUCHERPFENNIG KW, BROD SA et Common T-cell receptor V13 usage in oligoclonal T-lymphocytes derived from cerebrospinal fluid and blood of patients with multiple sclerosis. Ann. Neurol. (1991) 29:33–40.
  • WUCHERPFENNIG KW, OTA K, ENDO N et al.: Shared human T-cell receptor V13 usage to immunodominant regions of myelin basic protein. Science (1990) 248:1016–1019.
  • BEN-NUN A, LIBLAU RS, COHEN L et al.: Restricted T-cellreceptor V13 gene usage by myelin basic protein-specific T-cell clones in multiple sclerosis: predominant genes vary in individuals. Proc. Natl. Acad. Sci. USA (1991) 88:2466–2470.
  • RICHERT JR, ROBINSON ED, JOHNSON AH et aL: Hetero-geneity of the T-cell receptor II gene rearrangements generated in myelin basic protein- specific T-cell clones isolated from a patient with multiple sclerosis. Ann. Neurology (1991) 29:299–306.
  • RICHERT JR, ROBINSON ED, CAMPHAUSEN K et aL: Diver-sity of T-oell receptor Va, V13, and CDR3 expression by myelin basic protein-specific human T-cell clones. Neu-rology(1995) 45: 1919-1922.
  • MARTIN R, UTZ U, COLIGAN JE et al.: Diversity in fine specificity and T-cell receptor usage of the human CD4+ cytotoxic T-oell response specific for the immunodomi-nant myelin basic protein 87-106. J. Immunol. (1992) 148:1359–1366.
  • JOSHI N, USUKU K, HAUSER SL: The T-cell response to myelin basic protein in familial multiple sclerosis: diversity of fine specifidty, restricting elements, and T-cell receptor usage. Ann. Neurol. (1993) 34:385–393.
  • RICHERT JR, ROBINSON ED, JOHNSON AH et al.: Hetero-geneity of the T-cell receptor 13 gene rearrangements generated in myelin basic protein-specific T-cell clones Isolated from a patient with multiple sclerosis. Ann. Neurol. (1991) 29:299–306.
  • BROSTOFF S: T-cell receptor peptide vaccination as immunotherapy for multiple sclerosis. Advances in the Understanding and Treatment of Multiple Sclerosis. Interna-tional Business Communications Meeting, San Francisco, CA (June 17–18, 1996).
  • BOURDETTE DN, WHITHAM RH, CHOU YK et al.: Immu-nity to TCR peptides in multiple sclerosis. L Successful immunisation of patients with synthetic V115.2 and V136.1 CDR2 peptides. J. Immunol. (1994) 152:2510–2519.
  • CHOU YK, MORRISON WJ, \WEINBERG AD et al: Immunity to TCR peptides in multiple sclerosis. IL T-cell recogni-tion of V35.2 and Vi36.1 CDR2 peptides. J. Immunol. (1994) 152:2520–2529.
  • VANDENBARK AA, CHOU YK, WHITMAN R et al.: TCR peptide vaccination induced TH2 immune regulation in multiple sclerosis. FASEB J. (1996) 10:A1161.
  • WELLS HG: Studies on the chemistry of anaphylaxis. M. Experiments with isolated protein, especially those of hen's egg. J. Infect. Dis. (1911) 9:147–171.
  • CHASE MW: Inhibition of experimental drug allergy by prior feeding of the sensitizing agent. Proc. Soc. Exp. Biol. Med. (1946) 61:257–259.
  • NAGLER-ANDERSON C, BOBER LA, ROBINSON ME, SISKIND, THORBECKE FJ: Suppression of type II colla-gen-induced arthritis by intragastric ariministration of soluble type 11 collagen. Proc. Natl. Acad. Sci. USA (1986) 83:7443–7446.
  • BITAR DM, AVHITACRE CC: Suppression of experimental autoimmune encephalomyelitis by the oral administra-tion of myelin basic protein. Cellular Immunol. (1988) 112:364–370.
  • HIGGINS P, WEINER HL: Suppression of experimental autoimmune encephalomyelitis by administration of myelin basic protein and its fragments. J. Immunol. (1988) 140:440-445. References [61] and [62] demonstrated the feasibility of oral MBP for the treatment of EAE, the basis for a current clinical trial by Autoimmune, Inc.
  • BROD SA, AL-SABBAGH A, SOBEL RA, HAFLER DA, WEINER HL: Suppression of experimental autoinunune en-cephalomyelitis by oral administration of myelin anti-gens: IV. Suppression of chronic relapsing disease in the Lewis rat and strain 13 guinea pig. Ann. Neu ml. (1991) 29:615–622.
  • FRIEDMAN A, WEINER HL: Induction of anergy and/or active suppression in oral tolerance is determined by frequency of feeding and antigen dose. J. Immunol. (1995) 150:4A.
  • 'WHITACRE CC, GIENAPP IE, OROSZ CG, BITAR D: Oral tolerance in experimental autoimmune encephalomye-litis. 111. Evidence for clonal anergy. J. Immunol. (1991) 147:2155–2163.
  • MITI.FR A, LIDER 0, ROBERTS AB, SPORN M, WEINER HL: .Suppressor T-cells generated by oral tolerance to mye-lin basic protein suppress both in vitro and in vivo immune responses by the release of TGF-I3 following antigen specific triggering. Proc. Natl. Acad. Sci. USA (1992) 89:421–425.
  • CHIN Y, KUCHROO VJ, INOBE J, HAFLER DA, WEINER HL:Regulatory T-cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Sci-ence (1994) 265:1237–1240.
  • CHEN Y, INOBE J, MARKS R et al.: Peripheral deletion of antigen-reactive T-cells following oral tolerance. Nature (1995) 376:177–180.
  • WEINER HL, MACKIN GA, MATSUI M et at: Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science (1993) 259:1321-1324. Phase I results of oral MBP/PLP trial by Autoimmune, Inc.
  • FUKAURA H, KENT SC, PIETRUSEWICZ MJ et al: Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-Pl.-secret-ing Th3 T-cells by oral administration of myelin in multiple sclerosis patients. J Clin. Invest. (1996) 98:70–77.
  • SCHWARTZ RH: Models of T-cell anergy is there a common molecular mechanism? J. Exp. Med. (1996) 184:1-8. A good review of a popularly invoked and poorly understood form of tolerance which may have very important clinical consequences.
  • QUILL H, SCHWARTZ RH: Stimulation of normal inducer T-cell clones with antigen presented by purified la molecules in planar lipid membranes: specific induc-tion of a long-lived state of proliferative nonres ponsive-nesse j Immunol. (1987) 138:3704-3712. The classic paper demonstrating and defining anergy.
  • GIMMI CD, FREEMAN GJ, GRIBBEN JG, GRAY G, NADLER LM: Human T-cell clonal anergy is induced by antigen presentation in the absence of B7 costimulation. Proc. Natl. Acad. Sci. USA (1993) 90:6586–6590.
  • JENICINS MK, SCHWARTZ RH: Antigen presentation by chemically modified splenocytes induces antigen-spe-cific T-cell unresponsiveness in vitro and in vivo. J. Exp. Med. (1987) 165:302–319.
  • BOGGS jM, CHANG N-H, GOUNDALKAR A, HASHIM GA: Stimulation or tolerization of an anti-myelin basic pro-tein T lymphocyte line with membrane fragments from antigen presenting cells. Cell. Immunol. (1992) 143:23–40.
  • SHARMA SD, NAG B, SU X-M et at.: Antigen-specific therapy of experimental allergic encephalomyelitis by soluble class 11 major histocompatibility complex-pep-tide complexes. Proc. Natl. Acad. Sci. USA (1991) 88:11465–11469.
  • SPACK EG, MCCUTCHEON M, CORBELLETTA N et al.:Induction of tolerance In experimental autoimmune myasthenia gravis with solubilizet1 MHC class II:acetyl-choline receptor peptide complexes. J. Autoimmun. (1995) 8:787–807.
  • NICOLLE MW, NAG B, SHARMA SD et at: Specific toler- ance to an acetylcholine receptor epitope induced in vitro in myasthenia gravis CD4* lymphocytes by sol-uble major histocompatibility complex class II-peptide complexes.j Clin. Invest. (1994) 93:1361-1369. Demonstration of the therapeutic potential of soluble ME1C II:peptide complexes, the basis for upcoming clinical trials by Anergen, Inc.
  • FELTON ID: The significance of antigen in animal tissue. J. Immunol. (1949) 11:107–117.
  • MTTCHISON NA: Induction of immunological paralysis In two zones of dosage. Proc. Royal Soc. London (1964) 161:275–292.
  • MATIS LA, LONG DL, HEDRICK SM et al.: Clonal analysisof the major histocompatibility complex restriction and the fine specificity of antigen recognition in the T-cell proliferative response to cytochrome C. J. Immu-nol. (1983) 130:1527–1535.
  • LENARDO MJ: Interleukin-2 programs mouse ab T lym-phocytes for apoptosis. Nature (1991) 353:858–861.
  • BOEHME SA, LENARDO MJ: Propioddal apoptosis of mature T lymphocytes occurs at S phase of the cell cycle. Eur. J. Immunol. (1993) 23:1552–1560.
  • CRITCHFIELD JM, RACKE MK, ZIGA-PFLCKER JC et al.: T-cell deletion in high antigen dose therapy of autoim-mune encephalomyelitis. Science (1994) 263:1139-1143. An important paper defining activation induced apoptosis and demonstrating potential therapeutic applications in EAE.
  • CRITCHFIELD JM, LENARDO MJ: Antigen-induced pro-grammed T-cell death as a new approach to immune therapy. Clin. Immunol. Immunopatbol. (1995) 75:13–19.
  • RACKE MK, CRITCHFIELD JM, QUIGLEY L et al.: Intrave-nous antigen administration as a therapy for autoim-mune demyelinating disease. Ann. Neurol. (1996) 39:46–56.
  • ELLIOTT EA, MCFARLAND HI, NYE SH et al.: Treatment of experimental encephalomyelitis with a novel chimeric fusion protein of myelin basic protein and proteolipid protein. J. Clin. Invest. In press. Demonstration of the therapeutic potential of an MBP/PLP fusion protein for the induction of activation-induced apoptosis, the basis for upcoming clinical trials by Alexion, Inc.
  • TEITELBAUM D, MESHORER A, HIRSHFELD T, ARNON R, SELA M: Suppression of EAE by a synthetic polypeptide. Eur. J. Immunol. (1971) 1:242-248. Initial demonstration of synthetic copolymer 1 inhibition of EAE.
  • TEITELBAUM D, WEBB C, MESHORER A: Suppression byseveral synthetic polypeptides of experimental allergic encephalomyelitis induced in guinea-pigs and rabbits with bovine and human encephalitogen. Eur. j Immu-nol. (1973) 3:273–279.
  • TEITELBAUM D, WEBB C, BREE M etal.: Suppression ofEAE in rhesus monkeys by a synthetic basic copolymer. Clin. Immunol. Immunopatbol. (1974) 3:256–262.
  • FRIDKIS-HARELI M, TEITELBAUM D, GUREVICH E et al.:Direct binding of myelin basic protein and synthetic copolymer 1 to class II major histocompatibility com-plex molecules on living antigen presenting cells - specificity and promiscuity. Proc. Natl. Acad. Sci. USA (1994) 91:4872–4876.
  • TEITELBAUM D, MILO R, ARNON R, SELA M: Syntheticcopolymer 1 inhibits human T-cell lines specific for myelin basic protein. Proc. Natl. Acad. Sci. USA (1992) 89:137–141.
  • RACKE MK, MARTIN R, MCFARLAND H, FRITZ RB: Copoly-mer-1 induced inhibition of antigen-specific T-cell acti-vation: interference with antigen presentation. J. Neuroimmunol. (1992) 37:75–84.
  • ABRAMS1CY 0, TEITELBAUM D, ARNON R: Effect of a synthetic polypeptide (copolymer 1) on patients with multiple sclerosis and with acute disseminated en-cephalomyelitis. J. Neurol Sci. (1977) 31:433–438.
  • BORNSTEIN MB, MIT FR Al, TEITELBAUM D, ARNON R, SELA M: Multiple sclerosis: trial of a synthetic polypep-tide. Ann. Neurol. (1982) 11:317-319. References [941 and [951 report Phase I results of cop–1.
  • BORNSTEIN MB, MILLER A, SLAGLE S etal.: A pilot trial of COP-1 in exacerbating-remitting multiple sclerosis. New Engl. J. Med. (1987) 317:408–414.
  • BORNSTEIN MB, MITIFR A, SLAGLE S etal.: A placebo-con-trolled, double-blind, randomised, two-centre pilot trial of COP-1 in chronic progressive multiple sclerosis. Neurology (1991) 41:533-539. References [961 and [97] report Phase II results of cop–1.
  • JOHNSON KP, BROOKS BR, COHEN JA etal.: Copolymer 1 reduces relapse rate and improves disability in relaps-ing-remitting multiple sclerosis: results of a Phase DI multicenter, double-blind, placebo-controlled trial Neurology (1995) 45:1268–1276.
  • JOHNSON KP, BROOKS BR, COHEN JA etal.: Extended use •of Copolymer-1 improves clinical effect on multiplesclerosis relapse rate and degree of disability. Lancet. Submitted for publication. References [98] and [99] report Phase II results of cop–1.
  • SAKAI K, MITCHELL DJ. HODGKEISON SJ etal.: Prevention of experimental encephalomyelitis with peptides blocking T-cell-MI1C interaction. Proc. Natl. Acad. Sci. USA (1989) 86:9470–9474.
  • SMILEK DE, WRAITH DC, HODGKINSON S etal.: A single amino add change in a myelin basic protein peptide confers the capaety to prevent rather than induce experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA (1991) 88:9633–9637.
  • LAMONT AG, SETTE A, FUJINAM1 R et al.: Inhibition of experimental autoimmune encephalomyelitis induc- tion in SJL/J mice by using a peptide with high affinity for lAs molecules. J. Immunol. (1990) 145:1687-1693. References [1011 and [1021 are early demonstrations of the ability of altered peptide ligands to affect EAE.
  • ISHIOKA GY, ADORINI L, GUERY J-C et al.: Failure to demonstrate long-lived MHC saturation both in vitro and in vivo. J. Immunol. (1994) 152:4310-4319. A demonstration of the practical difficulties inherent in peptide competition therapies.
  • SCHERER MT, CHAN BMC, RIA F et al: Control of cellular and humoral immune responses by peptides contain-ing T-cell epitopes. Cold Spring Harb. Syrup. Quant. Biol. (1989) 54:497–504.
  • GAUR A, WIERS B, LIU A, ROTHBARD J, FATHMAN CG: Amelioration of autoimmune encephalomyelitis by myelin basic protein synthetic peptide-induced anergy. Science (1992) 258:1491–1494.
  • SAMSON MF, SMIIEK DE: Reversal of acute experimental autoimmune encephalomyelitis and prevention of re-lapses by treatment with a myelin basic protein peptide analogue modified to form long-lived peptide-MHC complexes. J. Immunol. (1995) 155:2737–2746.
  • EVAVOLD BD, ALLEN P: Separation of IL-4 production •from Th cell proliferation by an altered T-cell receptorligand. Science (1991) 252:1308-1310. An early demonstration that altered peptide ligands can alter T-cell responses.
  • SETTE A, ALEXANDER J, RUPPERT J et al.: Antigen ana-logs/MHC complexes as specific T-cell receptor antago-nists. Ann. Rev. Immunol. (1994) 12:413–431.
  • FRANCO A, SOUTHWOOD S, ARRHENIUS T et al.: T-cell receptor antagonist peptides are highly effective inhibi-tors of experimental allergic encephalomyelitis. Eur. Immunol. (1994) 24:940–946.
  • NICHOLSON LB, GREER JM, SOBEL RA, LEES MB, KUCHROO VK: An altered peptide ligand mediates im-mune deviation and prevents autoinunune encephalo-myelitis. Immunity (1995) 3:397–405.
  • WINDHAGEN A, SCHOLZ C, HOLLSBERG P et al.: Modula-tion of the cytokine repertoire of human autoreactIve T-cell clones by alterations in their peptide ligands. Immunity (1995) 2:373–380.
  • KARIN N, MITCHELL DJ, BROCKE S, LING N, STEINMAN L: Reversal of experimental autoinunune encephalomye-litis by a soluble peptide variant of a myelin basic protein epitope: T-cell receptor antagonism and reduc-tion of interferon y and tumor necrosis factor a produc-tion. J. Exp. Med. (1994) 180:2227–2237.
  • BROCICE S, GIJBELS K, ALLEGRETTA M et al.: Treatment of experimental encephalomyelitis with a peptide ana- logue of myelin basic protein. Nature (1996) 379:343-346. Demonstration of the therapeutic potential of altered peptide li-gands, the basis for upcoming clinical trials by Neurocrine Bios-ciences, Inc.
  • STEINMAN U A few autoreactive cells in an autoitnmune •infiltrate control a vast population of nonspecific cells:a tale of smart bombs and the infantry. Proc. Natl. Acad. Sci. USA (1996) 93:2253–2256.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.