1,409
Views
29
CrossRef citations to date
0
Altmetric
Reviews

Treatment strategies for myasthenia gravis: an update

, &
Pages 1873-1883 | Published online: 09 Jul 2012

Bibliography

  • De Feo LG, Schottlender J, Martelli NA, Use of intravenous pulsed cyclophosphamide in severe, generalized myasthenia gravis. Muscle Nerve 2002;26(1):31-6
  • Diaz-Manera J, Rojas-Garcia R, Illa I. Treatment strategies for myasthenia gravis. Expert Opin Pharmacother 2009;10(8):1329-42
  • Muscle Study Group. A trial of mycophenolate mofetil with prednisone as initial immunotherapy in myasthenia gravis. Neurology 2008;71(6):394-9
  • Nagane Y, Utsugisawa K, Obara D, Efficacy of low-dose FK506 in the treatment of Myasthenia gravis--a randomized pilot study. Eur Neurol 2005;53(3):146-50
  • Lagoumintzis G, Zisimopoulou P, Kordas G, Recent approaches to the development of antigen-specific immunotherapies for myasthenia gravis. Autoimmunity 2010;43(5-6):436-45
  • Diaz-Manera J, Martinez-Hernandez E, Querol L, Long-lasting treatment effect of rituximab in MuSK myasthenia. Neurology 2012;78(3):189-93
  • Wright CD. Management of thymomas. Crit Rev Oncol Hematol 2008;65(2):109-20
  • Kupersmith MJ, Ying G. Ocular motor dysfunction and ptosis in ocular myasthenia gravis: effects of treatment. Br J Ophthalmol 2005;89(10):1330-4
  • NCT00995722, Clinical trials.gov
  • Luchanok U, Kaminski HJ. Ocular myasthenia: diagnostic and treatment recommendations and the evidence base. Curr Opin Neurol 2008;21(1):8-15
  • Chan JW. Mycophenolate mofetil for ocular myasthenia. J Neurol 2008;255(4):510-13
  • Haines SR, Thurtell MJ. Treatment of ocular myasthenia gravis. Curr Treat Options Neurol 2012;14(1):103-12
  • NCT00294658, Clinical trials.gov
  • Romi F, Gilhus NE, Aarli JA. Myasthenia gravis: clinical, immunological, and therapeutic advances. Acta Neurol Scand 2005;111(2):134-41
  • Nieto IP, Robledo JP, Pajuelo MC, Prognostic factors for myasthenia gravis treated by thymectomy: review of 61 cases. Ann Thorac Surg 1999;67(6):1568-71
  • Leite MI, Strobel P, Jones M, Fewer thymic changes in MuSK antibody-positive than in MuSK antibody-negative MG. Ann Neurol 2005;57(3):444-8
  • Skeie GO, Apostolski S, Evoli A, Guidelines for treatment of autoimmune neuromuscular transmission disorders. Eur J neurol 2010;17(7):893-902
  • Illa I, Diaz-Manera JA, Juarez C, "Seronegative" myasthenia gravis and antiMuSK positive antibodies: description of Spanish series. Med Clin (Barc) 2005;125(3):100-2
  • Illa I, Diaz-Manera J, Rojas-Garcia R, Sustained response to Rituximab in anti-AChR and anti-MuSK positive Myasthenia Gravis patients. J Neuroimmunol 2008;201-202:90-4
  • Illa I. IVIg in myasthenia gravis, Lambert Eaton myasthenic syndrome and inflammatory myopathies: current status. J Neurol 2005;252(Suppl):1:I14-18
  • Heckmann JM, Rawoot A, Bateman K, A single-blinded trial of methotrexate versus azathioprine as steroid-sparing agents in generalized myasthenia gravis. BMC Neurol 2011;11:97
  • Yoshikawa H, Kiuchi T, Saida T, Randomised, double-blind, placebo-controlled study of tacrolimus in myasthenia gravis. J Neurol Neurosurg Psychiatry 2011;82(9):970-7
  • Pescovitz MD. Rituximab, an anti-cd20 monoclonal antibody: history and mechanism of action. Am J transpl 2006;6(5 Pt 1):859-66
  • Tedder TF, Engel P. CD20: a regulator of cell-cycle progression of B lymphocytes. Immunol Today 1994;15(9):450-4
  • Bubien JK, Zhou LJ, Bell PD, Transfection of the CD20 cell surface molecule into ectopic cell types generates a Ca2 + conductance found constitutively in B lymphocytes. J Cell Biol 1993;121(5):1121-32
  • Martin F, Chan AC. B cell immunobiology in disease: evolving concepts from the clinic. Annu Rev Immunol 2006;24:467-96
  • Gajra A, Vajpayee N, Grethlein SJ. Response of myasthenia gravis to rituximab in a patient with non-Hodgkin lymphoma. Am J Hematol 2004;77(2):196-7
  • Blum S, Gillis D, Brown H, Use and monitoring of low dose rituximab in myasthenia gravis. J Neurol Neurosurg Psychiatry 2011;82(6):659-63
  • Kosmidis ML, Dalakas MC. Practical considerations on the use of rituximab in autoimmune neurological disorders. Ther Adv Neurol Disord 2010;3(2):93-105
  • Hadjinicolaou AV, Nisar MK, Parfrey H, Non-infectious pulmonary toxicity of rituximab: a systematic review. Rheumatology (Oxford) 2012;51(4):653-62
  • Carson KR, Evens AM, Richey EA, Progressive multifocal leukoencephalopathy after rituximab therapy in HIV-negative patients: a report of 57 cases from the Research on Adverse Drug Events and Reports project. Blood 2009;113(20):4834-40
  • Available from: http://www.fda.gov/Safety
  • Stieglbauer K, Topakian R, Schaffer V, Rituximab for myasthenia gravis: three case reports and review of the literature. J Neurol Sci 2009;280(1-2):120-2
  • Zebardast N, Patwa HS, Novella SP, Rituximab in the management of refractory myasthenia gravis. Muscle Nerve 2010;41(3):375-8
  • Maddison P, McConville J, Farrugia ME, The use of rituximab in myasthenia gravis and Lambert-Eaton myasthenic syndrome. J Neurol Neurosurg Psychiatry 2011;82(6):671-3
  • Stein B, Bird SJ. Rituximab in the treatment of MuSK antibody-positive myasthenia gravis. J Clin Neuromuscul Dis 2011;12(3):163-4
  • Nowak RJ, Dicapua DB, Zebardast N, Response of patients with refractory myasthenia gravis to rituximab: a retrospective study. Ther Adv Neurol Disord 2011;4(5):259-66
  • Diaz-Manera J, Rojas-Garcia R, Gallardo E, Antibodies to AChR, MuSK and VGKC in a patient with myasthenia gravis and Morvan's syndrome. Nat Clin Pract Neurol 2007;3(7):405-10
  • Guptill JT, Sanders DB. Update on muscle-specific tyrosine kinase antibody positive myasthenia gravis. Curr Opin Neurol 2010;23(5):530-5
  • Guptill JT, Sanders DB, Evoli A. Anti-MuSK antibody myasthenia gravis: clinical findings and response to treatment in two large cohorts. Muscle Nerve 2011;44(1):36-40
  • Gajdos P, Chevret S, Toyka K. Intravenous immunoglobulin for myasthenia gravis. Cochrane Database Syst Rev 2008(1):CD002277
  • Cortese I, Chaudhry V, So YT, Evidence-based guideline update: plasmapheresis in neurologic disorders: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2011;76(3):294-300
  • Wolfe GI, Barohn RJ, Foster BM, Randomized, controlled trial of intravenous immunoglobulin in myasthenia gravis. Muscle Nerve 2002;26(4):549-52
  • Zinman L, Ng E, Bril V. IV immunoglobulin in patients with myasthenia gravis: a randomized controlled trial. Neurology 2007;68(11):837-41
  • Gajdos P, Chevret S, Toyka K. Plasma exchange for myasthenia gravis. Cochrane Database Syst Rev 2002(4):CD002275
  • Barth D, Nabavi Nouri M, Ng E, Comparison of IVIg and PLEX in patients with myasthenia gravis. Neurology 2011;76(23):2017-23
  • Mandawat A, Kaminski HJ, Cutter G, Comparative analysis of therapeutic options used for myasthenia gravis. Ann Neurol 2010;68(6):797-805
  • Liu JF, Wang WX, Xue J, Comparing the autoantibody levels and clinical efficacy of double filtration plasmapheresis, immunoadsorption, and intravenous immunoglobulin for the treatment of late-onset myasthenia gravis. Therc Apher Dial 2010;14(2):153-60
  • Kohler W, Bucka C, Klingel R. A randomized and controlled study comparing immunoadsorption and plasma exchange in myasthenic crisis. J Clin Apher 2011;26(6):347-55
  • Baggi F, Ubiali F, Nava S, Effect of IgG immunoadsorption on serum cytokines in MG and LEMS patients. J Neuroimmunol 2008;201-202:104-10
  • Takamori M, Maruta T. Immunoadsorption in myasthenia gravis based on specific ligands mimicking the immunogenic sites of the acetylcholine receptor. Ther Apher 2001;5(5):340-50
  • Zisimopoulou P, Lagoumintzis G, Poulas K, Antigen-specific apheresis of human anti-acetylcholine receptor autoantibodies from myasthenia gravis patients' sera using Escherichia coli-expressed receptor domains. J Neuroimmunol 2008;200(1-2):133-41
  • Guo CY, Li ZY, Xu MQ, Preparation of an immunoadsorbent coupled with a recombinant antigen to remove anti-acetylcholine receptor antibodies in abnormal serum. J Immunol Methods 2005;303(1-2):142-7
  • Snowden JA, Pearce RM, Lee J, Haematopoietic stem cell transplantation (HSCT) in severe autoimmune diseases: analysis of UK outcomes from the British Society of Blood and Marrow Transplantation (BSBMT) data registry 1997-2009. Br J Haematol 2012;157(6):742-6
  • Strober J, Cowan MJ, Horn BN. Allogeneic hematopoietic cell transplantation for refractory myasthenia gravis. Arch Neurol 2009;66(5):659-61
  • Bartfeld D, Fuchs S. Specific immunosuppression of experimental autoimmune myasthenia gravis by denatured acetylcholine receptor. Proc Natl Acad Sci USA 1978;75(8):4006-10
  • Wang ZY, Qiao J, Link H. Suppression of experimental autoimmune myasthenia gravis by oral administration of acetylcholine receptor. J Neuroimmunol 1993;44(2):209-14
  • Ma CG, Zhang GX, Xiao BG, Suppression of experimental autoimmune myasthenia gravis by nasal administration of acetylcholine receptor. J Neuroimmunol 1995;58(1):51-60
  • Im SH, Barchan D, Fuchs S, Suppression of ongoing experimental myasthenia by oral treatment with an acetylcholine receptor recombinant fragment. J Clin Invest 1999;104(12):1723-30
  • Yi HJ, Chae CS, So JS, Suppression of experimental myasthenia gravis by a B-cell epitope-free recombinant acetylcholine receptor. Mol Immunol 2008;46(1):192-201
  • Souroujon MC, Carmon S, Fuchs S. Modulation of anti-acetylcholine receptor antibody specificities and of experimental autoimmune myasthenia gravis by synthetic peptides. Immunol Lett 1992;34(1):19-25
  • Atassi MZ, Ruan KH, Jinnai K, Epitope-specific suppression of antibody response in experimental autoimmune myasthenia gravis by a monomethoxypolyethylene glycol conjugate of a myasthenogenic synthetic peptide. Proc Natl Acad Sci USA 1992;89(13):5852-6
  • Wu B, Deng C, Goluszko E, Tolerance to a dominant T cell epitope in the acetylcholine receptor molecule induces epitope spread and suppresses murine myasthenia gravis. J Immunol 1997;159(6):3016-23
  • Souroujon MC, Maiti PK, Feferman T, Suppression of myasthenia gravis by antigen-specific mucosal tolerance and modulation of cytokines and costimulatory factors. Ann NY Acad Sci 2003;998:533-6
  • Im SH, Barchan D, Souroujon MC, Role of tolerogen conformation in induction of oral tolerance in experimental autoimmune myasthenia gravis. J Immunol 2000;165(7):3599-605
  • Luo J, Kuryatov A, Lindstrom JM. Specific immunotherapy of experimental myasthenia gravis by a novel mechanism. Ann Neurol 2010;67(4):441-51
  • Ben-David H, Sharabi A, Dayan M, The role of CD8 + CD28 regulatory cells in suppressing myasthenia gravis-associated responses by a dual altered peptide ligand. Proc Natl Acad Sci USA 2007;104(44):17459-64
  • Aruna BV, Ben-David H, Sela M, A dual altered peptide ligand down-regulates myasthenogenic T cell responses and reverses experimental autoimmune myasthenia gravis via up-regulation of Fas-FasL-mediated apoptosis. Immunology 2006;118(3):413-24
  • Souroujon MC, Pachner AR, Fuchs S. The treatment of passively transferred experimental myasthenia with anti-idiotypic antibodies. Neurology 1986;36(5):622-5
  • Araga S, Galin FS, Kishimoto M, Prevention of experimental autoimmune myasthenia gravis by a monoclonal antibody to a complementary peptide for the main immunogenic region of the acetylcholine receptors. J Immunol 1996;157(1):386-92
  • Conti-Fine BM, Milani M, Kaminski HJ. Myasthenia gravis: past, present, and future. J Clin Invest 2006;116(11):2843-54
  • Sun Y, Qiao J, Lu CZ, Increase of circulating CD4 + CD25 + T cells in myasthenia gravis patients with stability and thymectomy. Clin Immunol 2004;112(3):284-9
  • Balandina A, Lecart S, Dartevelle P, Functional defect of regulatory CD4(+)CD25 + T cells in the thymus of patients with autoimmune myasthenia gravis. Blood 2005;105(2):735-41
  • Aricha R, Feferman T, Fuchs S, Ex vivo generated regulatory T cells modulate experimental autoimmune myasthenia gravis. J Immunol 2008;180(4):2132-9
  • Sheng JR, Li LC, Ganesh BB, Regulatory T cells induced by GM-CSF suppress ongoing experimental myasthenia gravis. Clin Immunol 2008;128(2):172-80
  • Sheng JR, Muthusamy T, Prabhakar BS, GM-CSF-induced regulatory T cells selectively inhibit anti-acetylcholine receptor-specific immune responses in experimental myasthenia gravis. Journal of neuroimmunology 2011;240-241:65-73
  • NCT01555580, Clinicaltrials.gov
  • Meriggioli MN, Sheng JR, Li L, Strategies for treating autoimmunity: novel insights from experimental myasthenia gravis. Ann NY Acad Sci 2008;1132:276-82
  • Xiao BG, Duan RS, Link H, Induction of peripheral tolerance to experimental autoimmune myasthenia gravis by acetylcholine receptor-pulsed dendritic cells. Cell Immunol 2003;223(1):63-9
  • Yarilin D, Duan R, Huang YM, Dendritic cells exposed in vitro to TGF-beta1 ameliorate experimental autoimmune myasthenia gravis. Clin Exp Immunol 2002;127(2):214-19
  • Manzi S, Sanchez-Guerrero J, Merrill JT, Effects of belimumab, a B lymphocyte stimulator-specific inhibitor, on disease activity across multiple organ domains in patients with systemic lupus erythematosus: combined results from two phase III trials. Ann Rheum Dis 2012; In Press
  • NCT01480596, Clinical trials.gov
  • Connick P, Kolappan M, Crawley C, Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 2012;11(2):150-6
  • Kong QF, Sun B, Wang GY, BM stromal cells ameliorate experimental autoimmune myasthenia gravis by altering the balance of Th cells through the secretion of IDO. Eur J Immunol 2009;39(3):800-9
  • NCT00424489, Clinicaltrials.gov
  • Engel AG, Sakakibara H, Sahashi K, Passively transferred experimental autoimmune myasthenia gravis. Sequential and quantitative study of the motor end-plate fine structure and ultrastructural localization of immune complexes (IgG and C3), and of the acetylcholine receptor. Neurology 1979;29(2):179-88
  • Tuzun E, Saini SS, Ghosh S, Predictive value of serum anti-C1q antibody levels in experimental autoimmune myasthenia gravis. Neuromuscul Disord 2006;16(2):137-43
  • Soltys J, Halperin JA, Xuebin Q. DAF/CD55 and Protectin/CD59 modulate adaptive immunity and disease outcome in experimental autoimmune myasthenia gravis. J Neuroimmunol 2012;244(1-2):63-9
  • Christadoss P, Tuzun E, Li J, Classical complement pathway in experimental autoimmune myasthenia gravis pathogenesis. Ann NY Acad Sci 2008;1132:210-19
  • Zhou Y, Gong B, Lin F, Anti-C5 antibody treatment ameliorates weakness in experimentally acquired myasthenia gravis. J Immunol 2007;179(12):8562-7
  • NCT00727194, Clinicaltrials.gov
  • Duan RS, Wang HB, Yang JS, Anti-TNF-alpha antibodies suppress the development of experimental autoimmune myasthenia gravis. J Autoimmun 2002;19(4):169-74
  • Yang H, Tuzun E, Alagappan D, IL-1 receptor antagonist-mediated therapeutic effect in murine myasthenia gravis is associated with suppressed serum proinflammatory cytokines, C3, and anti-acetylcholine receptor IgG1. J Immunol 2005;175(3):2018-25
  • Im SH, Barchan D, Maiti PK, Suppression of experimental myasthenia gravis, a B cell-mediated autoimmune disease, by blockade of IL-18. FASEB J 2001;15(12):2140-8
  • Im SH, Barchan D, Maiti PK, Blockade of CD40 ligand suppresses chronic experimental myasthenia gravis by down-regulation of Th1 differentiation and up-regulation of CTLA-4. J Immunol 2001;166(11):6893-8
  • Feferman T, Aricha R, Mizrachi K, Suppression of experimental autoimmune myasthenia gravis by inhibiting the signaling between IFN-gamma inducible protein 10 (IP-10) and its receptor CXCR3. J Neuroimmunol 2009;209(1-2):87-95
  • Aricha R, Feferman T, Souroujon MC, Overexpression of phosphodiesterases in experimental autoimmune myasthenia gravis: suppression of disease by a phosphodiesterase inhibitor. FASEB J 2006;20(2):374-6
  • Mizrachi K, Aricha R, Feferman T, Involvement of phosphodiesterases in autoimmune diseases. J Neuroimmunol 2010;220(1-2):43-51
  • Souroujon MC, Brenner T, Fuchs S. Development of novel therapies for MG: studies in animal models. Autoimmunity 2010;43(5-6):446-60
  • Brenner T, Abramsky O. Immunosuppression of experimental autoimmune myasthenia gravis by alpha-fetoprotein rich formation. Immunol Lett 1981;3(3):163-7
  • Dudich E. MM-093, a recombinant human alpha-fetoprotein for the potential treatment of rheumatoid arthritis and other autoimmune diseases. Curr Opin Mol Ther 2007;9(6):603-10
  • Ubiali F, Nava S, Nessi V, Pixantrone (BBR2778) reduces the severity of experimental autoimmune myasthenia gravis in Lewis rats. J Immunol 2008;180(4):2696-703
  • Karussis DM, Lehmann D, Brenner T, Immunomodulation of experimental autoimmune myasthenia gravis with linomide. J Neuroimmunol 1994;55(2):187-93
  • Gomez AM, Vrolix K, Martinez-Martinez P, Proteasome inhibition with bortezomib depletes plasma cells and autoantibodies in experimental autoimmune myasthenia gravis. J Immunol 2011;186(4):2503-13
  • Brenner T, Hamra-Amitay Y, Evron T, The role of readthrough acetylcholinesterase in the pathophysiology of myasthenia gravis. FASEB J 2003;17(2):214-22
  • Argov Z, McKee D, Agus S, Treatment of human myasthenia gravis with oral antisense suppression of acetylcholinesterase. Neurology 2007;69(7):699-700

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.