260
Views
38
CrossRef citations to date
0
Altmetric
Reviews

Targeted approaches for gene therapy and the emergence of engineered meganucleases

, &
Pages 1289-1303 | Published online: 18 Aug 2009

Bibliography

  • Gaspar HB, Parsley KL, Howe S, et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 2004;364:2181-7
  • Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000;288:669-72
  • Aiuti A, Slavin S, Aker M, et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002;296:2410-3
  • De Luca M, Pellegrini G, Mavilio F. Gene therapy of inherited skin adhesion disorders: a critical overview. Br J Dermatol 2009;161:19-24
  • Bainbridge JW, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber's congenital amaurosis. N Engl J Med 2008;358:2231-9
  • Maguire AM, Simonelli F, Pierce EA, et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med 2008;358:2240-8
  • Hacein-Bey-Abina S, Garrigue A, Wang GP, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008;118:3132-42
  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003;302:415-9
  • Howe SJ, Mansour MR, Schwarzwaelder K, et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 2008;118:3143-50
  • Chang AH, Sadelain M. The genetic engineering of hematopoietic stem cells: the rise of lentiviral vectors, the conundrum of the LTR, and the promise of lineage-restricted vectors. Mol Ther 2007;15:445-56
  • May C, Rivella S, Callegari J, et al. Therapeutic haemoglobin synthesis in β-thalassaemic mice expressing lentivirus-encoded human β-globin. Nature 2000;406:82-6
  • Sadelain M. Recent advances in globin gene transfer for the treatment of beta-thalassemia and sickle cell anemia. Curr Opin Hematol 2006;13:142-8
  • Ellis J. Silencing and variegation of gammaretrovirus and lentivirus vectors. Hum Gene Ther 2005;16:1241-6
  • Yu SF, von Rüden T, Kantoff PW, et al. Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc Natl Acad Sci USA 1986;83:3194-8
  • Yee JK, Jolly DJ, Moores JC, et al. Gene expression from transcriptionally disabled retroviral vectors. Proc Natl Acad Sci USA 1987;84:5197-201
  • Montini E, Cesana D, Schmidt M, et al. The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 2009;119:964-75
  • Colin A, Faideau M, Dufour N, et al. Engineered lentiviral vector targeting astrocytes in vivo. Glia 2009;57:667-79
  • Brown BD, Gentner B, Cantore A, et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 2007;25:1457-67
  • Papapetrou EP, Kovalovsky D, Beloeil L, et al. Harnessing endogenous miR-181a to segregate transgenic antigen receptor expression in developing versus post-thymic T cells in murine hematopoietic chimeras. J Clin Invest 2009;119:157-68
  • Rosenecker J, Huth S, Rudolph C. Gene therapy for cystic fibrosis lung disease: current status and future perspectives. Curr Opin Mol Ther 2006;8:439-45
  • Perez C, Guyot V, Cabaniols JP, et al. Factors affecting double-strand break-induced homologous recombination in mammalian cells. Biotechniques 2005;39:109-15
  • Choulika A, Perrin A, Dujon B, Nicolas JF. The yeast I-Sce I meganuclease induces site-directed chromosomal recombination in mammalian cells. C R Acad Sci III 1994;317:1013-9
  • Humeau LM, Binder GK, Lu X, et al. Efficient lentiviral vector-mediated control of HIV-1 replication in CD4 lymphocytes from diverse HIV+ infected patients grouped according to CD4 count and viral load. Mol Ther 2004;9:902-13
  • Shimizu S, Kamata M, Kittipongdaja P, et al. Characterization of a potent non-cytotoxic shRNA directed to the HIV-1 co-receptor CCR5. Genet Vaccines Ther 2009;7:8. Published online10 June 2009, doi:10.1186/1479-0556-7-8
  • Mitsuyasu RT, Merigan TC, Carr A, et al. Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat Med 2009;15:285-92
  • Smithies O. Forty years with homologous recombination. Nat Med 2001;7:1083-6
  • Wu LC, Sun CW, Ryan TM, et al. Correction of sickle cell disease by homologous recombination in embryonic stem cells. Blood 2006;108:1183-8
  • Chang JC, Ye L, Kan YW. Correction of the sickle cell mutation in embryonic stem cells. Proc Natl Acad Sci USA 2006;103:1036-40
  • Hanna J, Wernig M, Markoulaki S, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007;318:1920-3
  • Cole-Strauss A, Gamper H, Holloman WK, et al. Targeted gene repair directed by the chimeric RNA/DNA oligonucleotide in a mammalian cell-free extract. Nucleic Acids Res 1999;27:1323-30
  • Kren BT, Cole-Strauss A, Kmiec EB, Steer CJ. Targeted nucleotide exchange in the alkaline phosphatase gene of HuH-7 cells mediated by a chimeric RNA/DNA oligonucleotide. Hepatology 1997;25:1462-8
  • Tagalakis AD, Graham IR, Riddell DR, et al. Gene correction of the apolipoprotein (Apo) E2 phenotype to wild-type ApoE3 by in situ chimeraplasty. J Biol Chem 2001;276:13226-30
  • Rando TA, Disatnik MH, Zhou LZ. Rescue of dystrophin expression in mdx mouse muscle by RNA/DNA oligonucleotides. Proc Natl Acad Sci USA 2000;97:5363-8
  • Diaz-Font A, Cormand B, Chabas A, et al. Unsuccessful chimeraplast strategy for the correction of a mutation causing Gaucher disease. Blood Cells Mol Dis 2003;31:183-6
  • de Semir D, Aran JM. Targeted gene repair: the ups and downs of a promising gene therapy approach. Curr Gene Ther 2006;6:481-504
  • De Meyer SF, Pareyn I, Baert J, et al. False positive results in chimeraplasty for von Willebrand Disease. Thromb Res 2007;119:93-104
  • Gruenert DC, Bruscia E, Novelli G, et al. Sequence-specific modification of genomic DNA by small DNA fragments. J Clin Invest 2003;112:637-41
  • Kunzelmann K, Legendre JY, Knoell DL, et al. Gene targeting of CFTR DNA in CF epithelial cells. Gene Ther 1996;3:859-67
  • Kapsa RM, Quigley AF, Vadolas J, et al. Targeted gene correction in the mdx mouse using short DNA fragments: towards application with bone marrow-derived cells for autologous remodeling of dystrophic muscle. Gene Ther 2002;9:695-9
  • Kapsa R, Quigley A, Lynch GS, et al. In vivo and in vitro correction of the mdx dystrophin gene nonsense mutation by short-fragment homologous replacement. Hum Gene Ther 2001;12:629-42
  • Goncz KK, Kunzelmann K, Xu Z, Gruenert DC. Targeted replacement of normal and mutant CFTR sequences in human airway epithelial cells using DNA fragments. Hum Mol Genet 1998;7:1913-9
  • Zayed H, McIvor RS, Wiest DL, Blazar BR. In vitro functional correction of the mutation responsible for murine severe combined immune deficiency by small fragment homologous replacement. Hum Gene Ther 2006;17:158-66
  • Kuhstoss S, Rao RN. Analysis of the integration function of the streptomycete bacteriophage ϕC31. J Mol Biol 1991;222:897-908
  • Rausch H, Lehmann M. Structural analysis of the actinophage ϕC31 attachment site. Nucleic Acids Res 1991;19:5187-9
  • Olivares EC, Hollis RP, Chalberg TW, et al. Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat Biotechnol 2002;20:1124-8
  • Calos MP. The ϕC31 integrase system for gene therapy. Curr Gene Ther 2006;6:633-45
  • Chalberg TW, Portlock JL, Olivares EC, et al. Integration specificity of phage ϕC31 integrase in the human genome. J Mol Biol 2006;357:28-48
  • Aneja MK, Imker R, Rudolph C. Phage phiC31 integrase-mediated genomic integration and long-term gene expression in the lung after nonviral gene delivery. J Gene Med 2007;9:967-75
  • Ginsburg DS, Calos MP. Site-specific integration with ϕC31 integrase for prolonged expression of therapeutic genes. Adv Genet 2005;54:179-87
  • Keravala A, Lee S, Thyagarajan B, et al. Mutational derivatives of PhiC31 integrase with increased efficiency and specificity. Mol Ther 2009;17:112-20
  • Abremski K, Hoess R, Sternberg N. Studies on the properties of P1 site-specific recombination: evidence for topologically unlinked products following recombination. Cell 1983;32:1301-11
  • Buchholz F, Stewart AF. Alteration of Cre recombinase site specificity by substrate-linked protein evolution. Nat Biotechnol 2001;19:1047-52
  • Santoro SW, Schultz PG. Directed evolution of the site specificity of Cre recombinase. Proc Natl Acad Sci USA 2002;99:4185-90
  • Choulika A, Guyot V, Nicolas JF. Transfer of single gene-containing long terminal repeats into the genome of mammalian cells by a retroviral vector carrying the cre gene and the loxP site. J Virol 1996;70:1792-8
  • Sarkar I, Hauber I, Hauber J, Buchholz F. HIV-1 proviral DNA excision using an evolved recombinase. Science 2007;316:1912-5
  • Buchholz F, Angrand PO, Stewart AF. Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat Biotechnol 1998;16:657-62
  • Voziyanov Y, Konieczka JH, Stewart AF, Jayaram M. Stepwise manipulation of DNA specificity in Flp recombinase: progressively adapting Flp to individual and combinatorial mutations in its target site. J Mol Biol 2003;326:65-76
  • Izsvak Z, Ivics Z. Sleeping beauty transposition: biology and applications for molecular therapy. Mol Ther 2004;9:147-56
  • Ivics Z, Izsvak Z. Transposons for gene therapy! Curr Gene Ther 2006;6:593-607
  • Vandendriessche T, Ivics Z, Izsvak Z, Chuah MK. Emerging potential of transposons for gene therapy and generation of induced pluripotent stem cells. Blood 2009: published online 26 May 2009; doi:10.1182/blood-2009-04-210427
  • Ivics Z, Katzer A, Stüwe EE, et al. Targeted sleeping beauty transposition in human cells. Mol Ther 2007;15:1137-44
  • Mates L, Chuah MK, Belay E, et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet 2009;41:753-61
  • Vigdal TJ, Kaufman CD, Izsvak Z, et al. Common physical properties of DNA affecting target site selection of sleeping beauty and other Tc1/mariner transposable elements. J Mol Biol 2002;323:441-52
  • Paques F, Duchateau P. Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy. Curr Gene Ther 2007;7:49-66
  • Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 1996;93:1156-60
  • Smith J, Bibikova M, Whitby FG, et al. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res 2000;28:3361-9
  • Elrod-Erickson M, Rould MA, Nekludova L, Pabo CO. Zif268 protein-DNA complex refined at 1.6Å: a model system for understanding zinc finger-DNA interactions. Structure 1996;4:1171-80
  • Pabo CO, Peisach E, Grant RA. Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 2001;70:313-40
  • Jamieson AC, Miller JC, Pabo CO. Drug discovery with engineered zinc-finger proteins. Nat Rev Drug Discov 2003;2:361-8
  • Kim JS, Pabo CO. Getting a handhold on DNA: design of poly-zinc finger proteins with femtomolar dissociation constants. Proc Natl Acad Sci USA 1998;95:2812-7
  • Choo Y, Sanchez-Garcia I, Klug A. In vivo repression by a site-specific DNA-binding protein designed against an oncogenic sequence. Nature 1994;372:642-5
  • Wah DA, Hirsch JA, Dorner LF, et al. Structure of the multimodular endonuclease FokI bound to DNA. Nature 1997;388:97-100
  • Aggarwal AK, Wah DA. Novel site-specific DNA endonucleases. Curr Opin Struct Biol 1998;8:19-25
  • Lombardo A, Genovese P, Beausejour CM, et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 2007;25:1298-306
  • Urnov FD, Miller JC, Lee YL, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005;435:646-51
  • Durai S, Mani M, Kandavelou K, et al. Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 2005;33:5978-90
  • Perez EE, Wang J, Miller JC, et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 2008;26:808-16
  • Autologous T-cells genetically modified at the CCR5 gene by zinc finger nucleases SB-728 for HIV (zinc-finger). US National Institutes of Health (NIH), Bethesda, Maryland, 2009. Available from: http://clinicaltrials.gov/ct2/show/NCT00842634 [Last accessed 5 August 2009]
  • Miller JC, Holmes MC, Wang J, et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 2007;25:778-85
  • Szczepek M, Brondani V, Büchel J, et al. Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 2007;25:786-93
  • Shimizu Y, Bhakta MS, Segal DJ. Restricted spacer tolerance of a zinc finger nuclease with a six amino acid linker. Bioorg Med Chem Lett 2009;19:3970-2
  • Minczuk M, Papworth MA, Miller JC, et al. Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res 2008;36:3926-38
  • Maeder ML, Thibodeau-Beganny S, Osiak A, et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 2008;31:294-301
  • Simon P, Cannata F, Perrouault L, et al. Sequence-specific DNA cleavage mediated by bipyridine polyamide conjugates. Nucleic Acids Res 2008;36:3531-8
  • Dervan PB, Edelson BS. Recognition of the DNA minor groove by pyrrole-imidazole polyamides. Curr Opin Struct Biol 2003;13:284-99
  • Barre FX, Ait-Si-Ali S, Giovannangeli C, et al. Unambiguous demonstration of triple-helix-directed gene modification. Proc Natl Acad Sci USA 2000;97:3084-8
  • Eisenschmidt K, Lanio T, Simoncsits A, et al. Developing a programmed restriction endonuclease for highly specific DNA cleavage. Nucleic Acids Res 2005;33:7039-47
  • Arimondo PB, Thomas CJ, Oussedik K, et al. Exploring the cellular activity of camptothecin-triple-helix-forming oligonucleotide conjugates. Mol Cell Biol 2006;26:324-33
  • Cannata F, Brunet E, Perrouault L, et al. Triplex-forming oligonucleotide-orthophenanthroline conjugates for efficient targeted genome modification. Proc Natl Acad Sci USA 2008;105:9576-81
  • Choulika A, Perrin A, Dujon B, Nicolas JF. Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol 1995;15:1968-73
  • Rouet P, Smih F, Jasin M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci USA 1994;91:6064-8
  • Rouet P, Smih F, Jasin M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 1994;14:8096-106
  • Puchta H, Dujon B, Hohn B. Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc Natl Acad Sci USA 1996;93:5055-60
  • Chevalier BS, Stoddard BL. Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res 2001;29:3757-74
  • Stoddard BL. Homing endonuclease structure and function. Q Rev Biophys 2005;38:49-95
  • Belfort M, Roberts RJ. Homing endonucleases: keeping the house in order. Nucleic Acids Res 1997;25:3379-88
  • Eskes R, Liu L, Ma H, et al. Multiple homing pathways used by yeast mitochondrial group II introns. Mol Cell Biol 2000;20:8432-46
  • Mastroianni M, Watanabe K, White TB, et al. Group II intron-based gene targeting reactions in eukaryotes. PLoS ONE 2008;3:e3121. Published online 1 September 2008, doi:10.1371/journal.pone.0003121
  • Karberg M, Guo H, Zhong J, et al. Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria. Nat Biotechnol 2001;19:1162-7
  • Guo H, Karberg M, Long M, et al. Group II introns designed to insert into therapeutically relevant DNA target sites in human cells. Science 2000;289:452-7
  • Kostriken R, Heffron F. The product of the HO gene is a nuclease: purification and characterization of the enzyme. Cold Spring Harb Symp Quant Biol 1984;49:89-96
  • Colleaux L, d'Auriol L, Betermier M, et al. Universal code equivalent of a yeast mitochondrial intron reading frame is expressed into E. coli as a specific double strand endonuclease. Cell 1986;44:521-33
  • Bell-Pedersen D, Quirk S, Clyman J, Belfort M. Intron mobility in phage T4 is dependent upon a distinctive class of endonucleases and independent of DNA sequences encoding the intron core: mechanistic and evolutionary implications. Nucleic Acids Res 1990;18:3763-70
  • Thierry A, Dujon B. Nested chromosomal fragmentation in yeast using the meganuclease I-Sce I: a new method for physical mapping of eukaryotic genomes. Nucleic Acids Res 1992;20:5625-31
  • Stephens KM, Monnat RJ Jr, Heath PJ, Stoddard BL. Crystallization and preliminary X-ray studies of I-CreI: a group I intron-encoded endonuclease from C. reinhardtii. Proteins 1997;28:137-9
  • Jurica MS, Monnat RJ Jr, Stoddard BL. DNA recognition and cleavage by the LAGLIDADG homing endonuclease I-CreI. Mol Cell 1998;2:469-76
  • Rosen LE, Morrison HA, Masri S, et al. Homing endonuclease I-CreI derivatives with novel DNA target specificities. Nucleic Acids Res 2006;34:4791-800
  • Redondo P, Prieto J, Muñoz IG, et al. Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases. Nature 2008;456:107-11
  • Chevalier BS, Kortemme T, Chadsey MS, et al. Design, activity, and structure of a highly specific artificial endonuclease. Mol Cell 2002;10:895-905
  • Li H, Pellenz S, Ulge U, et al. Generation of single-chain LAGLIDADG homing endonucleases from native homodimeric precursor proteins. Nucleic Acids Res 2009;37:1650-62
  • Ashworth J, Havranek JJ, Duarte CM, et al. Computational redesign of endonuclease DNA binding and cleavage specificity. Nature 2006;441:656-9
  • Takeuchi R, Certo M, Caprara MG, et al. Optimization of in vivo activity of a bifunctional homing endonuclease and maturase reverses evolutionary degradation. Nucleic Acids Res 2009;37:877-90
  • Epinat JC, Arnould S, Chames P, et al. A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res 2003;31:2952-62
  • Chevalier B, Sussman D, Otis C, et al. Metal-dependent DNA cleavage mechanism of the I-CreI LAGLIDADG homing endonuclease. Biochemistry 2004;43:14015-26
  • Marcaida MJ, Prieto J, Redondo P, et al. Crystal structure of I-DmoI in complex with its target DNA provides new insights into meganuclease engineering. Proc Natl Acad Sci USA 2008;105:16888-93
  • Perrin A, Buckle M, Dujon B. Asymmetrical recognition and activity of the I-SceI endonuclease on its site and on intron-exon junctions. EMBO J 1993;12:2939-47
  • Prieto J, Redondo P, Padró D, et al. The C-terminal loop of the homing endonuclease I-CreI is essential for site recognition, DNA binding and cleavage. Nucleic Acids Res 2007;35:3262-71
  • Chevalier B, Turmel M, Lemieux C, et al. Flexible DNA target site recognition by divergent homing endonuclease isoschizomers I-CreI and I-MsoI. J Mol Biol 2003;329:253-69
  • Haber JE. In vivo biochemistry: physical monitoring of recombination induced by site-specific endonucleases. Bioessays 1995;17:609-20
  • Thermes V, Grabher C, Ristoratore F, et al. I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech Dev 2002;118:91-8
  • Boothroyd CE, Dreesen O, Leonova T, et al. A yeast-endonuclease-generated DNA break induces antigenic switching in Trypanosoma brucei. Nature 2009;459:278-81
  • Arnould S, Chames P, Perez C, et al. Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets. J Mol Biol 2006;355:443-58
  • Gimble FS, Moure CM, Posey KL. Assessing the plasticity of DNA target site recognition of the PI-SceI homing endonuclease using a bacterial two-hybrid selection system. J Mol Biol 2003;334:993-1008
  • Seligman LM, Chisholm KM, Chevalier BS, et al. Mutations altering the cleavage specificity of a homing endonuclease. Nucleic Acids Res 2002;30:3870-9
  • Chames P, Epinat JC, Guillier S, et al. In vivo selection of engineered homing endonucleases using double-strand break induced homologous recombination. Nucleic Acids Res 2005;33:e178. Published online 23 November 2005, doi:10.1093/nar/gni175
  • Doyon JB, Pattanayak V, Meyer CB, Liu DR. Directed evolution and substrate specificity profile of homing endonuclease I-SceI. J Am Chem Soc 2006;128:2477-84
  • Chen Z, Wen F, Sun N, Zhao H. Directed evolution of homing endonuclease I-SceI with altered sequence specificity. Protein Eng Des Sel 2009;22:249-56
  • Chen Z, Zhao H. A highly sensitive selection method for directed evolution of homing endonucleases. Nucleic Acids Res 2005;33:e154. Published online 6 October 2005, doi:10.1093/nar/gni148
  • McConnell Smith A, Takeuchi R, Pellenz S, et al. Generation of a nicking enzyme that stimulates site-specific gene conversion from the I-AniI LAGLIDADG homing endonuclease. Proc Natl Acad Sci USA 2009;106:5099-104
  • Eklund JL, Ulge UY, Eastberg J, Monnat RJ Jr. Altered target site specificity variants of the I-PpoI His-Cys box homing endonuclease. Nucleic Acids Res 2007;35:5839-50
  • Smith J, Grizot S, Arnould S, et al. A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res 2006;34(22):e149. Published online 27 November 2006, doi:10.1093/nar/gkl720
  • Arnould S, Perez C, Cabaniols JP, et al. Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells. J Mol Biol 2007;371:49-65
  • Fajardo-Sanchez E, Stricher F, Pâques F, et al. Computer design of obligate heterodimer meganucleases allows efficient cutting of custom DNA sequences. Nucleic Acids Res 2008;36:2163-73
  • Grizot S, Smith J, Daboussi F, et al. Efficient targeting of a SCID gene by an engineered single chain meganuclease. Nucleic Acids Res 2009: published online 7 July 2009, doi:10.1093/nar/gkp548
  • Misteli T, Soutoglou E. The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat Rev Mol Cell Biol 2009;10:243-54
  • Liang F, Han M, Romanienko PJ, Jasin M. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci USA 1998;95:5172-7
  • Paques F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1999;63:349-404
  • Richardson C, Jasin M. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 2000;405:697-700
  • Brunet E, Simsek D, Tomishima M, et al. Chromosomal translocations induced at specified loci in human stem cells. Proc Natl Acad Sci USA 2009;106:10620-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.