383
Views
32
CrossRef citations to date
0
Altmetric
Reviews

Genotoxicity of retroviral hematopoietic stem cell gene therapy

, PhD
Pages 581-593 | Published online: 07 Mar 2011

Bibliography

  • Gaspar HB, Parsley KL, Howe S, Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 2004;364:2181-7
  • Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000;288:669-72
  • Aiuti A, Slavin S, Aker M, Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002;296:2410-3
  • Aiuti A, Vai S, Mortellaro A, Immune reconstitution in ADA-SCID after PBL gene therapy and discontinuation of enzyme replacement. Nat Med 2002;8:423-5
  • Gaspar HB, Bjorkegren E, Parsley K, Successful reconstitution of immunity in ADA-SCID by stem cell gene therapy following cessation of PEG-ADA and use of mild preconditioning. Mol Ther 2006;14:505-13
  • Aiuti A, Cattaneo F, Galimberti S, Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 2009;360:447-58
  • Ott MG, Schmidt M, Schwarzwaelder K, Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 2006;12:401-9
  • Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 2009;326:818-23
  • Boztug K, Schmidt M, Schwarzer A, Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N Engl J Med 2010;363:1918-27
  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M, LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003;302:415-9
  • Howe SJ, Mansour MR, Schwarzwaelder K, Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 2008;118:3143-50
  • Hacein-Bey-Abina S, Garrigue A, Wang GP, Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008;118:3132-42
  • Rous R. Transmission of a malignant new growth by means of a cell-free filtrate. JAMA 1911;56:198
  • Varmus HE, Weiss RA, Friis RR, Detection of avian tumor virus-specific nucleotide sequences in avian cell DNAs (reassociation kinetics-RNA tumor viruses-gas antigen-Rous sarcoma virus, chick cells). Proc Natl Acad Sci USA 1972;69:20-4
  • Miller AD, Jolly DJ, Friedmann T, Verma IM. A transmissible retrovirus expressing human hypoxanthine phosphoribosyltransferase (HPRT): gene transfer into cells obtained from humans deficient in HPRT. Proc Natl Acad Sci USA 1983;80:4709-13
  • Joyner A, Keller G, Phillips RA, Bernstein A. Retrovirus transfer of a bacterial gene into mouse haematopoietic progenitor cells. Nature 1983;305:556-8
  • Cavazzana-Calvo M, Payen E, Negre O, Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature 2010;467:318-22
  • Mooslehner K, Karls U, Harbers K. Retroviral integration sites in transgenic Mov mice frequently map in the vicinity of transcribed DNA regions. J Virol 1990;64:3056-8
  • Scherdin U, Rhodes K, Breindl M. Transcriptionally active genome regions are preferred targets for retrovirus integration. J Virol 1990;64:907-12
  • Schroder AR, Shinn P, Chen H, HIV-1 integration in the human genome favors active genes and local hotspots. Cell 2002;110:521-9
  • Gabriel R, Eckenberg R, Paruzynski A, Comprehensive genomic access to vector integration in clinical gene therapy. Nat Med 2009;15:1431-6
  • Wu X, Li Y, Crise B, Burgess SM. Transcription start regions in the human genome are favored targets for MLV integration. Science 2003;300:1749-51
  • Narezkina A, Taganov KD, Litwin S, Genome-wide analyses of avian sarcoma virus integration sites. J Virol 2004;78:11656-63
  • Mitchell RS, Beitzel BF, Schroder AR, Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2004;2:E234
  • Trobridge GD, Miller DG, Jacobs MA, Foamy virus vector integration sites in normal human cells. Proc Natl Acad Sci USA 2006;103:1498-503
  • Bird AP. CpG-rich islands and the function of DNA methylation. Nature 1986;321:209-13
  • Antequera F, Bird A. CpG islands. EXS 1993;64:169-85
  • Wang GP, Ciuffi A, Leipzig J, HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res 2007;17:1186-94
  • Cattoglio C, Pellin D, Rizzi E, High-definition mapping of retroviral integration sites identifies active regulatory elements in human multipotent hematopoietic progenitors. Blood 2010;116:5507-17
  • Barr SD, Ciuffi A, Leipzig J, HIV integration site selection: targeting in macrophages and the effects of different routes of viral entry. Mol Ther 2006;14:218-25
  • Aiken C. Pseudotyping human immunodeficiency virus type 1 (HIV-1) by the glycoprotein of vesicular stomatitis virus targets HIV-1 entry to an endocytic pathway and suppresses both the requirement for Nef and the sensitivity to cyclosporin A. J Virol 1997;71:5871-7
  • Biasco A, Ambrosi A, Pellin D, Integration profile of retroviral vector in gene therapy treated patients is cell-specific according to gene expression and chromatin conformation of target cell. EMBO Mol Med 2011;3:89-101
  • Brady T, Agosto LM, Malani N, HIV integration site distributions in resting and activated CD4+ T cells infected in culture. AIDS 2009;23:1461-71
  • Lewinski MK, Yamashita M, Emerman M, Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS pathog 2006;2:e60
  • Cherepanov P, Maertens G, Proost P, HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J Biol Chem 2003;278:372-81
  • Llano M, Delgado S, Vanegas M, Poeschla EM. Lens epithelium-derived growth factor/p75 prevents proteasomal degradation of HIV-1 integrase. J Biol Chem 2004;279:55570-7
  • Emiliani S, Mousnier A, Busschots K, Integrase mutants defective for interaction with LEDGF/p75 are impaired in chromosome tethering and HIV-1 replication. J Biol Chem 2005;280:25517-23
  • Ciuffi A, Llano M, Poeschla E, A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 2005;11:1287-9
  • Wu X, Li Y, Crise B, Weak palindromic consensus sequences are a common feature found at the integration target sites of many retroviruses. J Virol 2005;79:5211-4
  • Brass AL, Dykxhoorn DM, Benita Y, Identification of host proteins required for HIV infection through a functional genomic screen. Science 2008;319:921-6
  • Zhou H, Xu M, Huang Q, Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 2008;4:495-504
  • Stein S, Ott MG, Schultze-Strasser S, Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med 2010;16:198-204
  • Wang GP, Berry CC, Malani N, Dynamics of gene-modified progenitor cells analyzed by tracking retroviral integration sites in a human SCID-X1 gene therapy trial. Blood 2010;115:4356-66
  • Wang GP, Garrigue A, Ciuffi A, DNA bar coding and pyrosequencing to analyze adverse events in therapeutic gene transfer. Nucleic Acids Res 2008;36:e49
  • Cepko CL, Roberts BE, Mulligan RC. Construction and applications of a highly transmissible murine retrovirus shuttle vector. Cell 1984;37:1053-62
  • Sellers S, Gomes TJ, Larochelle A, Ex vivo expansion of retrovirally transduced primate CD34+ cells results in overrepresentation of clones with MDS1/EVI1 insertion sites in the myeloid lineage after transplantation. Mol Ther 2010;18:1633-9
  • Schmidt M, Carbonaro DA, Speckmann C, Clonality analysis after retroviral-mediated gene transfer to CD34+ cells from the cord blood of ADA-deficient SCID neonates. Nat Med 2003;9:463-8
  • Calmels B, Ferguson C, Laukkanen MO, Recurrent retroviral vector integration at the Mds1/Evi1 locus in nonhuman primate hematopoietic cells. Blood 2005;106:2530-3
  • Deichmann A, Hacein-Bey-Abina S, Schmidt M, Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy. J Clin Invest 2007;117:2225-32
  • Hematti P, Hong BK, Ferguson C, Distinct genomic integration of MLV and SIV vectors in primate hematopoietic stem and progenitor cells. PLoS Biol 2004;2:e423
  • Beard BC, Dickerson D, Beebe K, Comparison of HIV-derived lentiviral and MLV-based gammaretroviral vector integration sites in primate repopulating cells. Mol Ther 2007;15:1356-65
  • Beard BC, Keyser KA, Trobridge GD, Unique integration profiles in a canine model of long-term repopulating cells transduced with gammaretrovirus, lentivirus, or foamy virus. Hum Gene Ther 2007;18:423-34
  • Schwarzwaelder K, Howe SJ, Schmidt M, Gammaretrovirus-mediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo. J Clin Invest 2007;117:2241-9
  • Aiuti A, Cassani B, Andolfi G, Multilineage hematopoietic reconstitution without clonal selection in ADA-SCID patients treated with stem cell gene therapy. J Clin Invest 2007;117:2233-40
  • Kiem HP, Ironside C, Beard BC, Trobridge GD. A retroviral vector common integration site between leupaxin and zinc finger protein 91 (ZFP91) observed in baboon hematopoietic repopulating cells. Exp Hematol 2010;38:819-22
  • Harrison DE. Competitive repopulation: a new assay for long-term stem cell functional capacity. Blood 1980;55:77-81
  • Kiem HP, Heyward S, Winkler A, Gene transfer into marrow repopulating cells: comparison between amphotropic and gibbon ape leukemia virus pseudotyped retroviral vectors in a competitive repopulation assay in baboons. Blood 1997;90:4638-45
  • Kustikova OS, Geiger H, Li Z, Retroviral vector insertion sites associated with dominant hematopoietic clones mark "stemness" pathways. Blood 2007;109:1897-907
  • Akagi K, Suzuki T, Stephens RM, RTCGD: retroviral tagged cancer gene database. Nucleic Acids Res 2004;32(Database issue):D523-7
  • Kiem HP, Sellers S, Thomasson B, Long-term clinical and molecular follow-up of large animals receiving retrovirally transduced stem and progenitor cells: no progression to clonal hematopoiesis or leukemia. Mol Ther 2004;9:389-95
  • Blaese RM, Culver KW, Miller AD, T lymphocyte-directed gene therapy for ADA–SCID: initial trial results after 4 years. Science 1995;270:475-80
  • Bordignon C, Notarangelo LD, Nobili N, Gene therapy in peripheral blood lymphocytes and bone marrow for ADA- immunodeficient patients. Science 1995;270:470-5
  • Hacein-Bey-Abina S, Hauer J, Lim A, Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2010;363:355-64
  • Barata JT, Cardoso AA, Nadler LM, Boussiotis VA. Interleukin-7 promotes survival and cell cycle progression of T-cell acute lymphoblastic leukemia cells by down-regulating the cyclin-dependent kinase inhibitor p27(kip1). Blood 2001;98:1524-31
  • Barata JT, Cardoso AA, Boussiotis VA. Interleukin-7 in T-cell acute lymphoblastic leukemia: an extrinsic factor supporting leukemogenesis? Leuk Lymphoma 2005;46:483-95
  • Dave UP, Akagi K, Tripathi R, Murine leukemias with retroviral insertions at Lmo2 are predictive of the leukemias induced in SCID-X1 patients following retroviral gene therapy. PLoS Genet 2009;5:e1000491
  • Woods NB, Bottero V, Schmidt M, Gene therapy: therapeutic gene causing lymphoma. Nature 2006;440(7088):1123
  • Thrasher AJ, Gaspar HB, Baum C, Gene therapy: X-SCID transgene leukaemogenicity. Nature 2006;443:E5-6; discussion E7
  • Nienhuis AW, Dunbar CE, Sorrentino BP. Genotoxicity of retroviral integration in hematopoietic cells. Mol Ther 2006;13:1031-49
  • Trobridge GD, Kiem HP. Large animal models of hematopoietic stem cell gene therapy. Gene Ther 2010;17:939-48
  • Recchia A, Bonini C, Magnani Z, Retroviral vector integration deregulates gene expression but has no consequence on the biology and function of transplanted T cells. Proc Natl Acad Sci USA 2006;103:1457-62
  • Newrzela S, Cornils K, Li Z, Resistance of mature T cells to oncogene transformation. Blood 2008;112:2278-86
  • Montini E, Cesana D, Schmidt M, The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 2009;119:964-75
  • Modlich U, Navarro S, Zychlinski D, Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors. Mol Ther 2009;17:1919-28
  • Hendrie PC, Huo Y, Stolitenko RB, Russell DW. A rapid and quantitative assay for measuring neighboring gene activation by vector proviruses. Mol Ther 2008;16:534-40
  • Lombardo A, Genovese P, Beausejour CM, Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 2007;25:1298-306
  • Wanisch K, Yanez-Munoz RJ. Integration-deficient lentiviral vectors: a slow coming of age. Mol Ther 2009;17:1316-32
  • Handel EM, Cathomen T. Zinc-finger nuclease based genome surgery: it's all about specificity. Curr Gene Ther 2011;11:28-37
  • Bushey AM, Dorman ER, Corces VG. Chromatin insulators: regulatory mechanisms and epigenetic inheritance. Mol Cell 2008;32:1-9
  • Evans-Galea MV, Wielgosz MM, Hanawa H, Suppression of clonal dominance in cultured human lymphoid cells by addition of the cHS4 insulator to a lentiviral vector. Mol Ther 2007;15:801-9
  • Li CL, Xiong D, Stamatoyannopoulos G, Emery DW. Genomic and functional assays demonstrate reduced gammaretroviral vector genotoxicity associated with use of the cHS4 chromatin insulator. Mol Ther 2009;17:716-24
  • Li CL, Emery DW. The cHS4 chromatin insulator reduces gammaretroviral vector silencing by epigenetic modifications of integrated provirus. Gene Ther 2008;15:49-53
  • Aker M, Tubb J, Groth AC, Extended core sequences from the cHS4 insulator are necessary for protecting retroviral vectors from silencing position effects. Hum Gene Ther 2007;18:333-43
  • Arumugam PI, Scholes J, Perelman N, Improved human beta-globin expression from self-inactivating lentiviral vectors carrying the chicken hypersensitive site-4 (cHS4) insulator element. Mol Ther 2007;15:1863-71
  • Malik P, Arumugam PI, Yee JK, Puthenveetil G. Successful correction of the human Cooley's anemia beta-thalassemia major phenotype using a lentiviral vector flanked by the chicken hypersensitive site 4 chromatin insulator. Ann NY Acad Sci 2005;1054:238-49
  • Arumugam PI, Urbinati F, Velu CS, The 3′ region of the chicken hypersensitive site-4 insulator has properties similar to its core and is required for full insulator activity. PloS One 2009;4(9):e6995
  • Trobridge GD, Wu RA, Beard BC, Protection of stem cell-derived lymphocytes in a primate AIDS gene therapy model after in vivo selection. PloS One 2009;4:e7693
  • Trobridge GD, Beard BC, Gooch C, Efficient transduction of pigtailed macaque hematopoietic repopulating cells with HIV-based lentiviral vectors. Blood 2008;111:5537-43
  • Chang AH, Sadelain M. The genetic engineering of hematopoietic stem cells: the rise of lentiviral vectors, the conundrum of the LTR, and the promise of lineage-restricted vectors. Mol Ther 2007;15:445-56
  • Luo XM, Maarschalk E, O'Connell RM, Engineering human hematopoietic stem/progenitor cells to produce a broadly neutralizing anti-HIV antibody after in vitro maturation to human B lymphocytes. Blood 2009;113:1422-31
  • Sather BD, Ryu BY, Stirling BV, Development of B-lineage predominant lentiviral vectors for use in genetic therapies for B cell disorders. Mol Ther 2010: published online 7 December 2010, doi:10.1038/mt.2010.259
  • Kerns HM, Ryu BY, Stirling BV, B cell-specific lentiviral gene therapy leads to sustained B-cell functional recovery in a murine model of X-linked agammaglobulinemia. Blood 2010;115:2146-55
  • Sandmeyer S. Integration by design. Proc Natl Acad Sci USA 2003;100:5586-8
  • Bushman FD, Miller MD. Tethering human immunodeficiency virus type 1 preintegration complexes to target DNA promotes integration at nearby sites. J Virol 1997;71:458-64
  • Tan W, Zhu K, Segal DJ, Fusion proteins consisting of human immunodeficiency virus type 1 integrase and the designed polydactyl zinc finger protein E2C direct integration of viral DNA into specific sites. J Virol 2004;78:1301-13
  • Gijsbers R, Ronen K, Vets S, LEDGF hybrids efficiently retarget lentiviral integration into heterochromatin. Mol Ther 2010;18:552-60

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.