696
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Using antibodies to target cancer therapeutics

, ScD MD & , PhD
Pages 1173-1190 | Published online: 01 Jun 2012

Bibliography

  • Holstein SA, Hohl RJ. Therapeutic additions and possible deletions in oncology in 2011. Clin Pharmacol Ther 2012;91:15-17
  • Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975;256:495-7
  • Riechmann L, Clark M, Waldmann H, Winter G. Reshaping human antibodies for therapy. Nature 1988;332:323-7
  • Shuptrine CW, Surana R, Weiner LM. Monoclonal antibodies for the treatment of cancer. Semin Cancer Biol 2012;22:3-13
  • Altshuler EP, Serebryanaya DV, Katrukha AG. Generation of recombinant antibodies and means for increasing their affinity. Biochemistry (Mosc) 2010;75:1584-605
  • Carter PJ. Introduction to current and future protein therapeutics: a protein engineering perspective. Exp Cell Res 2011;317:1261-9
  • Igawa T, Tsunoda H, Kuramochi T, Engineering the variable region of therapeutic IgG antibodies. mAbs 2011;3:243-52
  • Jeong KJ, Jang SH, Velmurugan N. Recombinant antibodies: engineering and production in yeast and bacterial hosts. Biotechnol J 2011;6:16-27
  • Kaneko E, Niwa R. Optimizing therapeutic antibody function: progress with Fc domain engineering. BioDrugs 2011;25:1-11
  • Kontermann RE. Alternative antibody formats. Curr Opin Mol Ther 2010;12:176-83
  • Gebauer M, Skerra A. Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol 2009;13:245-55
  • Magliani W, Conti S, Salati A, Engineered killer mimotopes: new synthetic peptides for antimicrobial therapy. Curr Med Chem 2004;11:1793-800
  • Zhao L, Liu Z, Fan D. Overview of mimotopes and related strategies in tumor vaccine development. Expert Rev Vaccines 2008;7:1547-55
  • Feldwisch J, Tolmachev V, Lendel C, Design of an optimized scaffold for affibody molecules. J Mol Biol 2010;398:232-47
  • Lofblom J, Feldwisch J, Tolmachev V, Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett 2010;584:2670-80
  • Keizer RJ, Huitema AD, Schellens JH, Beijnen JH. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet 2010;49:493-507
  • Porter RR. A chemical study of rabbit antiovalbumin. Biochem J 1950;46:473-8
  • Nisonoff A, Wissler FC, Lipman LN, Woernley DL. Separation of univalent fragments from the bivalent rabbit antibody molecule by reduction of disulfide bonds. Arch Biochem Biophys 1960;89:230-44
  • Edelman GM, Poulik MD. Studies on structural units of the gamma-globulins. J Exp Med 1961;113:861-84
  • Yan L, Hsu K, Beckman RA. Antibody-based therapy for solid tumors. Cancer J 2008;14:178-83
  • Kontermann RE. Strategies to extend plasma half-lives of recombinant antibodies. BioDrugs 2009;23:93-109
  • Olafsen T, Wu AM. Antibody vectors for imaging. Semin Nucl Med 2010;40:167-81
  • Bird RE, Hardman KD, Jacobson JW, Single-chain antigen-binding proteins. Science 1988;242:423-6
  • Haber E. Engineered antibodies as pharmacological tools. Immunol Rev 1992;130:189-212
  • Kipriyanov SM. Generation of bispecific and tandem diabodies. Methods Mol Biol 2009;562:177-93
  • Hu S, Shively L, Raubitschek A, Minibody: a novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res 1996;56:3055-61
  • Olafsen T, Kenanova VE, Wu AM. Tunable pharmacokinetics: modifying the in vivo half-life of antibodies by directed mutagenesis of the Fc fragment. Nat Protocol 2006;1:2048-60
  • Nuttall SD, Irving RA, Hudson PJ. Immunoglobulin VH domains and beyond: design and selection of single-domain binding and targeting reagents. Curr Pharm Biotechnol 2000;1:253-63
  • Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol 2005;23:1126-36
  • Saerens D, Ghassabeh GH, Muyldermans S. Single-domain antibodies as building blocks for novel therapeutics. Curr Opin Pharmacol 2008;8:600-8
  • Goldenberg DM, Sharkey RM, Paganelli G, Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy. J Clin Oncol 2006;24:823-34
  • Sharkey RM, Goldenberg DM. Novel radioimmunopharmaceuticals for cancer imaging and therapy. Curr Opin Investig Drugs 2008;9:1302-16
  • Pressman D. The zone of localization of antibodies; the specific localization of antibodies to rat kidney. Cancer 1949;2:697-700
  • Pressman D, Korngold L. The in vivo localization of anti-Wagner-osteogenic-sarcoma antibodies. Cancer 1953;6:619-23
  • Goldenberg DM, DeLand F, Kim E, Use of radiolabeled antibodies to carcinoembryonic antigen for the detection and localization of diverse cancers by external photoscanning. N Engl J Med 1978;298:1384-6
  • Goldenberg DM, Gaffar SA, Bennett SJ, Beach JL. Experimental radioimmunotherapy of a xenografted human colonic tumor (GW-39) producing carcinoembryonic antigen. Cancer Res 1981;41:4354-60
  • Goldenberg DM, Preston DF, Primus FJ, Hansen HJ. Photoscan localization of GW-39 tumors in hamsters using radiolabeled anticarcinoembryonic antigen immunoglobulin G. Cancer Res 1974;34:1-9
  • Leichner PK, Klein JL, Garrison JB, Dosimetry of 131I-labeled anti-ferritin in hepatoma: a model for radioimmunoglobulin dosimetry. Int J Radiat Oncol Biol Phys 1981;7:323-33
  • Order SE, Klein JL, Ettinger D, Use of isotopic immunoglobulin in therapy. Cancer Res 1980;40:3001-7
  • Larson SM, Carrasquillo JA, McGuffin RW, Use of I-131 labeled, murine Fab against a high molecular weight antigen of human melanoma: preliminary experience. Radiology 1985;155:487-92
  • Adams DA, DeNardo GL, DeNardo SJ, Radioimmunotherapy of human lymphoma in athymic, nude mice as monitored by 31P nuclear magnetic resonance. Biochem Biophys Res Commun 1985;131:1020-7
  • Badger CC, Krohn KA, Shulman H, Experimental radioimmunotherapy of murine lymphoma with 131I-labeled anti-T-cell antibodies. Cancer Res 1986;46:6223-8
  • Rosen ST, Zimmer AM, Goldman-Leikin R, Radioimmunodetection and radioimmunotherapy of cutaneous T cell lymphomas using an 131I-labeled monoclonal antibody: an Illinois Cancer Council Study. J Clin Oncol 1987;5:562-73
  • DeNardo SJ, DeNardo GL, O'Grady LF, Treatment of a patient with B cell lymphoma by I-131 LYM-1 monoclonal antibodies. Int J Biol Markers 1987;2:49-53
  • Goldman-Leikin RE, Kaplan EH, Zimmer AM, Long-term persistence of human anti-murine antibody responses following radioimmunodetection and radioimmunotherapy of cutaneous T-cell lymphoma patients using 131I-T101. Exp Hematol 1988;16:861-4
  • Press OW, Eary JF, Badger CC, Treatment of refractory non-Hodgkin's lymphoma with radiolabeled MB-1 (anti-CD37) antibody. J Clin Oncol 1989;7:1027-38
  • DeNardo GL, DeNardo SJ, O'Grady LF, Fractionated radioimmunotherapy of B-cell malignancies with 131I-Lym-1. Cancer Res 1990;50:1014s-6s
  • Parker BA, Vassos AB, Halpern SE, Radioimmunotherapy of human B-cell lymphoma with 90Y-conjugated antiidiotype monoclonal antibody. Cancer Res 1990;50:1022s-8s
  • Press OW, Eary JF, Badger CC, High-dose radioimmunotherapy of B cell lymphomas. Front Radiat Ther Oncol 1990;24:204-13
  • Goldenberg DM, Horowitz JA, Sharkey RM, Targeting, dosimetry, and radioimmunotherapy of B-cell lymphomas with iodine-131-labeled LL2 monoclonal antibody. J Clin Oncol 1991;9:548-64
  • Buchsbaum DJ, Wahl RL, Glenn SD, Improved delivery of radiolabeled anti-B1 monoclonal antibody to Raji lymphoma xenografts by predosing with unlabeled anti-B1 monoclonal antibody. Cancer Res 1992;52:637-42
  • Buchsbaum DJ, Wahl RL, Normolle DP, Kaminski MS. Therapy with unlabeled and 131I-labeled pan-B-cell monoclonal antibodies in nude mice bearing Raji Burkitt's lymphoma xenografts. Cancer Res 1992;52:6476-81
  • Kaminski MS, Fig LM, Zasadny KR, Imaging, dosimetry, and radioimmunotherapy with iodine 131-labeled anti-CD37 antibody in B-cell lymphoma. J Clin Oncol 1992;10:1696-711
  • Eary JF, Press OW, Badger CC, Imaging and treatment of B-cell lymphoma. J Nucl Med 1990;31:1257-68
  • Press OW, Eary JF, Appelbaum FR, Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support. N Engl J Med 1993;329:1219-24
  • Kaminski MS, Zasadny KR, Francis IR, Radioimmunotherapy of B-cell lymphoma with [131I]anti-B1 (anti-CD20) antibody. N Engl J Med 1993;329:459-65
  • Wahl RL. Tositumomab and 131I therapy in non-Hodgkin's lymphoma. J Nucl Med 2005;46(Suppl 1):128S-40S
  • Davis TA, Kaminski MS, Leonard JP, The radioisotope contributes significantly to the activity of radioimmunotherapy. Clin Cancer Res 2004;10:7792-8
  • Knox SJ, Goris ML, Trisler K, Yttrium-90-labeled anti-CD20 monoclonal antibody therapy of recurrent B-cell lymphoma. Clin Cancer Res 1996;2:457-70
  • Witzig TE, White CA, Wiseman GA, Phase I/II trial of IDEC-Y2B8 radioimmunotherapy for treatment of relapsed or refractory CD20(+) B-cell non-Hodgkin's lymphoma. J Clin Oncol 1999;17:3793-803
  • Maloney DG, Grillo-Lopez AJ, Bodkin DJ, IDEC-C2B8: results of a phase I multiple-dose trial in patients with relapsed non-Hodgkin's lymphoma. J Clin Oncol 1997;15:3266-74
  • Maloney DG, Grillo-Lopez AJ, White CA, IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma. Blood 1997;90:2188-95
  • Witzig TE, Gordon LI, Cabanillas F, Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin's lymphoma. J Clin Oncol 2002;20:2453-63
  • Morschhauser F, Kraeber-Bodere F, Wegener WA, High rates of durable responses with anti-CD22 fractionated radioimmunotherapy: results of a multicenter, phase I/II study in non-Hodgkin's lymphoma. J Clin Oncol 2010;28:3709-16
  • Wahl RL, Zasadny KR, MacFarlane D, Iodine-131 anti-B1 antibody for B-cell lymphoma: an update on the Michigan Phase I experience. J Nucl Med 1998;39:21S-7S
  • Sharkey RM, Press OW, Goldenberg DM. A re-examination of radioimmunotherapy in the treatment of non-Hodgkin lymphoma: prospects for dual-targeted antibody/radioantibody therapy. Blood 2009;113:3891-5
  • Mattes MJ, Sharkey RM, Karacay H, Therapy of advanced B-lymphoma xenografts with a combination of 90Y-anti-CD22 IgG (epratuzumab) and unlabeled anti-CD20 IgG (veltuzumab). Clin Cancer Res 2008;14:6154-60
  • Gulec SA, Cohen SJ, Pennington KL, Treatment of advanced pancreatic carcinoma with 90Y-Clivatuzumab Tetraxetan: a phase I single-dose escalation trial. Clin Cancer Res 2011;17:4091-100
  • Ocean AJ, Guarino MJ, Pennington KL, Activity of fractionated radioimmunotherapy with clivatuzumab tetraxetan combined with low-dose gemcitabine (Gem) in advanced pancreatic cancer (APC). J Clin Oncol 2011;29:abstract 240
  • Ocean AJ, Pennington KL, Guarino MJ, Fractionated radioimmunotherapy (RAIT) with 90Y-clivatuzumab tetraxetan (90Y-hPAM4) and low-dose gemcitabine is active in advanced pancreatic cancer: a phase I trial. Cancer 2012; doi: 10.1002/cncr.27592
  • Sharkey RM, Pykett MJ, Siegel JA, Radioimmunotherapy of the GW-39 human colonic tumor xenograft with 131I-labeled murine monoclonal antibody to carcinoembryonic antigen. Cancer Res 1987;47:5672-7
  • Siegel JA, Pawlyk DA, Lee RE, Tumor, red marrow, and organ dosimetry for 131I-labeled anti-carcinoembryonic antigen monoclonal antibody. Cancer Res 1990;50:1039s-42s
  • Liersch T, Meller J, Kulle B, Phase II trial of carcinoembryonic antigen radioimmunotherapy with 131I-labetuzumab after salvage resection of colorectal metastases in the liver: five-year safety and efficacy results. J Clin Oncol 2005;23:6763-70
  • Liersch T, Meller J, Bittrich M, Update of carcinoembryonic antigen radioimmunotherapy with 131I-labetuzumab after salvage resection of colorectal liver metastases: comparison of outcome to a contemporaneous control group. Ann Surg Oncol 2007;14:2577-90
  • Reardan DT, Meares CF, Goodwin DA, Antibodies against metal chelates. Nature 1985;316:265-8
  • Axworthy DB, Reno JM, Hylarides MD, Cure of human carcinoma xenografts by a single dose of pretargeted yttrium-90 with negligible toxicity. Proc Natl Acad Sci USA 2000;97:1802-7
  • Karacay H, Brard PY, Sharkey RM, Therapeutic advantage of pretargeted radioimmunotherapy using a recombinant bispecific antibody in a human colon cancer xenograft. Clin Cancer Res 2005;11:7879-85
  • Karacay H, Sharkey RM, Gold DV, Pretargeted radioimmunotherapy of pancreatic cancer xenografts: TF10-90Y-IMP-288 alone and combined with gemcitabine. J Nucl Med 2009;50:2008-16
  • Schoffelen R, Sharkey RM, Goldenberg DM, Pretargeted immuno-positron emission tomography imaging of carcinoembryonic antigen-expressing tumors with a bispecific antibody and a 68Ga- and 18F-labeled hapten peptide in mice with human tumor xenografts. Mol Cancer Ther 2010;9:1019-27
  • Schoffelen R, van der Graaf WT, Franssen G, Pretargeted 177Lu radioimmunotherapy of carcinoembryonic antigen-expressing human colonic tumors in mice. J Nucl Med 2010;51:1780-7
  • Sharkey RM, Cardillo TM, Rossi EA, Signal amplification in molecular imaging by pretargeting a multivalent, bispecific antibody. Nat Med 2005;11:1250-5
  • Sharkey RM, Goldenberg DM. Advances in radioimmunotherapy in the age of molecular engineering and pretargeting. Cancer Invest 2006;24:82-97
  • Sharkey RM, Karacay H, Johnson CR, Pretargeted versus directly targeted radioimmunotherapy combined with anti-CD20 antibody consolidation therapy of non-Hodgkin lymphoma. J Nucl Med 2009;50:444-53
  • Sharkey RM, Karacay H, Litwin S, Improved therapeutic results by pretargeted radioimmunotherapy of non-Hodgkin's lymphoma with a new recombinant, trivalent, anti-CD20, bispecific antibody. Cancer Res 2008;68:5282-90
  • Sharkey RM, Karacay H, Vallabhajosula S, Metastatic human colonic carcinoma: molecular imaging with pretargeted SPECT and PET in a mouse model. Radiology 2008;246:497-507
  • Chatal JF, Campion L, Kraeber-Bodere F, Survival improvement in patients with medullary thyroid carcinoma who undergo pretargeted anti-carcinoembryonic-antigen radioimmunotherapy: a collaborative study with the French Endocrine Tumor Group. J Clin Oncol 2006;24:1705-11
  • Schoffelen R, van der Graaf WT, Sharkey RM, Pretargeted immuno-PET of CEA-expressing intraperitoneal human colonic tumor xenografts: a new sensitive detection method. EJNMMI Res 2012;2:5
  • Sharkey RM, Rossi EA, McBride WJ, Recombinant bispecific monoclonal antibodies prepared by the dock-and-lock strategy for pretargeted radioimmunotherapy. Semin Nucl Med 2010;40:190-203
  • Kyriakos RJ, Shih LB, Ong GL, The fate of antibodies bound to the surface of tumor cells in vitro. Cancer Res 1992;52:835-42
  • Hanna R, Ong GL, Mattes MJ. Processing of antibodies bound to B-cell lymphomas and other hematological malignancies. Cancer Res 1996;56:3062-8
  • Jain RK. Taming vessels to treat cancer. Sci Am 2008;298:56-63
  • Stylianopoulos T, Poh MZ, Insin N, Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys J 2010;99:1342-9
  • Baish JW, Stylianopoulos T, Lanning RM, Scaling rules for diffusive drug delivery in tumor and normal tissues. Proc Natl Acad Sci USA 2011;108:1799-803
  • Fujimori K, Covell DG, Fletcher JE, Weinstein JN. A modeling analysis of monoclonal antibody percolation through tumors: a binding-site barrier. J Nucl Med 1990;31:1191-8
  • Saga T, Neumann RD, Heya T, Targeting cancer micrometastases with monoclonal antibodies: a binding-site barrier. Proc Natl Acad Sci USA 1995;92:8999-9003
  • Gerber HP, Senter PD, Grewal IS. Antibody drug-conjugates targeting the tumor vasculature: current and future developments. mAbs 2009;1:247-53
  • Acchione M, Kwon H, Jochheim CM, Atkins WM. Impact of linker and conjugation chemistry on antigen binding, Fc receptor binding and thermal stability of model antibody-drug conjugates. mAbs 2012;4:349-61
  • Carter PJ, Senter PD. Antibody-drug conjugates for cancer therapy. Cancer J 2008;14:154-69
  • Kellogg BA, Garrett L, Kovtun Y, Disulfide-linked antibody-maytansinoid conjugates: optimization of in vivo activity by varying the steric hindrance at carbon atoms adjacent to the disulfide linkage. Bioconjug Chem 2011;22:717-27
  • Shen BQ, Xu K, Liu L, Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol 2012;30:184-9
  • Sun X, Widdison W, Mayo M, Design of antibody-maytansinoid conjugates allows for efficient detoxification via liver metabolism. Bioconjug Chem 2011;22:728-35
  • Zhao RY, Wilhelm SD, Audette C, Synthesis and evaluation of hydrophilic linkers for antibody-maytansinoid conjugates. J Med Chem 2011;54:3606-23
  • Govindan SV, Goldenberg DM. Designing immunoconjugates for cancer therapy. Expert Opin Biol Ther2012; In press
  • Moon SJ, Govindan SV, Cardillo TM, Antibody conjugates of 7-ethyl-10-hydroxycamptothecin (SN-38) for targeted cancer chemotherapy. J Med Chem 2008;51:6916-26
  • Moon SJ, Tat F, Sheerin A, Cross-linker evaluation in the design of antibody-SN-38 conjugates for cancer therapy [abstract 2439]. Proc Am Assoc Cancer Res 2010;51:591
  • Govindan SV, Cardillo TM, Moon SJ, CEACAM5-targeted therapy of human colonic and pancreatic cancer xenografts with potent labetuzumab-SN-38 immunoconjugates. Clin Cancer Res 2009;15:6052-61
  • Stein R, Govindan SV, Hayes M, Advantage of a residualizing iodine radiolabel in the therapy of a colon cancer xenograft targeted with an anticarcinoembryonic antigen monoclonal antibody. Clin Cancer Res 2005;11:2727-34
  • Sharkey RM, Karacay H, Govindan SV, Goldenberg DM. Combination radioimmunotherapy and chemoimmunotherapy involving different or the same targets improves therapy of human pancreatic carcinoma xenograft models. Mol Cancer Ther 2011;10:1072-81
  • Mathijssen RH, van Alphen RJ, Verweij J, Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res 2001;7:2182-94
  • Garcia-Carbonero R, Supko JG. Current perspectives on the clinical experience, pharmacology, and continued development of the camptothecins. Clin Cancer Res 2002;8:641-61
  • Shih LB, Lu HH, Xuan H, Goldenberg DM. Internalization and intracellular processing of an anti-B-cell lymphoma monoclonal antibody, LL2. Int J Cancer 1994;56:538-45
  • Afshar S, Olafsen T, Wu AM, Morrison SL. Characterization of an engineered human purine nucleoside phosphorylase fused to an anti-her2/neu single chain Fv for use in ADEPT. J Exp Clin Cancer Res 2009;28:147
  • Bagshawe KD. Targeting: the ADEPT story so far. Curr Drug Targets 2009;10:152-7
  • Schellmann N, Deckert PM, Bachran D, Targeted enzyme prodrug therapies. Mini Rev Med Chem 2010;10:887-904
  • Trowbridge IS, Domingo DL. Anti-transferrin receptor monoclonal antibody and toxin-antibody conjugates affect growth of human tumour cells. Nature 1981;294:171-3
  • Domingo DL, Trowbridge IS. Transferrin receptor as a target for antibody-drug conjugates. Methods Enzymol 1985;112:238-47
  • Friden PM, Walus LR, Musso GF, Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier. Proc Natl Acad Sci USA 1991;88:4771-5
  • Qian ZM, Li H, Sun H, Ho K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 2002;54:561-87
  • Daniels TR, Bernabeu E, Rodriguez JA, The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta 2012;1820:291-317
  • Pardridge WM, Boado RJ. Reengineering biopharmaceuticals for targeted delivery across the blood-brain barrier. Methods Enzymol 2012;503:269-92
  • Burton JD, Ely S, Reddy PK, CD74 is expressed by multiple myeloma and is a promising target for therapy. Clin Cancer Res 2004;10:6606-11
  • Beswick EJ, Reyes VE. CD74 in antigen presentation, inflammation, and cancers of the gastrointestinal tract. World J Gastroenterol 2009;15:2855-61
  • Gold DV, Stein R, Burton J, Goldenberg DM. Enhanced expression of CD74 in gastrointestinal cancers and benign tissues. Int J Clin Exp Pathol 2010;4:1-12
  • Hansen HJ, Ong GL, Diril H, Internalization and catabolism of radiolabelled antibodies to the MHC class-II invariant chain by B-cell lymphomas. Biochem J 1996;320:293-300
  • Griffiths GL, Mattes MJ, Stein R, Cure of SCID mice bearing human B-lymphoma xenografts by an anti-CD74 antibody-anthracycline drug conjugate. Clin Cancer Res 2003;9:6567-71
  • Chang CH, Sapra P, Vanama SS, Effective therapy of human lymphoma xenografts with a novel recombinant ribonuclease/anti-CD74 humanized IgG4 antibody immunotoxin. Blood 2005;106:4308-14
  • Sapra P, Stein R, Pickett J, Anti-CD74 antibody-doxorubicin conjugate, IMMU-110, in a human multiple myeloma xenograft and in monkeys. Clin Cancer Res 2005;11:5257-64
  • Stein R, Mattes MJ, Cardillo TM, CD74: a new candidate target for the immunotherapy of B-cell neoplasms. Clin Cancer Res 2007;13:5556s-63s
  • Giles FJ, Kantarjian HM, Kornblau SM, Mylotarg™ (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation. Cancer 2001;92:406-13
  • Wadleigh M, Richardson PG, Zahrieh D, Prior gemtuzumab ozogamicin exposure significantly increases the risk of veno-occlusive disease in patients who undergo myeloablative allogeneic stem cell transplantation. Blood 2003;102:1578-82
  • Rajvanshi P, Shulman HM, Sievers EL, McDonald GB. Hepatic sinusoidal obstruction after gemtuzumab ozogamicin (Mylotarg) therapy. Blood 2002;99:2310-14
  • Thomas X. Inotuzumab ozogamicin in the treatment of B-cell acute lymphoblastic leukemia. Expert Opin Investig Drugs 2012;21:871-8
  • Advani A, Coiffier B, Czuczman MS, Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-Hodgkin's lymphoma: results of a phase I study. J Clin Oncol 2010;28:2085-93
  • Kantarjian H, Thomas D, Jorgensen J, Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol 2012;13:403-11
  • Lo Coco F, Ammatuna E, Noguera N. Treatment of acute promyelocytic leukemia with gemtuzumab ozogamicin. Clin Adv Hematol Oncol 2006;4:57-62, 76-7
  • de Vries JF, Zwaan CM, De Bie M, The novel calicheamicin-conjugated CD22 antibody inotuzumab ozogamicin (CMC-544) effectively kills primary pediatric acute lymphoblastic leukemia cells. Leukemia 2012;26:255-64
  • Younes A, Bartlett NL, Leonard JP, Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 2010;363:1812-21
  • Furtado M, Rule S. Emerging pharmacotherapy for relapsed or refractory Hodgkin's lymphoma: focus on brentuximab vedotin. Clin Med Insights Oncol 2012;6:31-9
  • Gualberto A. Brentuximab Vedotin (SGN-35), an antibody-drug conjugate for the treatment of CD30-positive malignancies. Expert Opin Investig Drugs 2012;21:205-16
  • Younes A, Gopal AK, Smith SE, Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin's lymphoma. J Clin Oncol 2012; doi: 10.1200/JCO.2011.38.0410
  • Burris HA III, Rugo HS, Vukelja SJ, Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J Clin Oncol 2011;29:398-405
  • LoRusso PM, Weiss D, Guardino E, Trastuzumab emtansine: a unique antibody-drug conjugate in development for human epidermal growth factor receptor 2-positive cancer. Clin Cancer Res 2011;17:6437-47
  • Tse KF, Jeffers M, Pollack VA, CR011, a fully human monoclonal antibody-auristatin E conjugate, for the treatment of melanoma. Clin Cancer Res 2006;12:1373-82
  • Naumovski L, Junutula JR. Glembatumumab vedotin, a conjugate of an anti-glycoprotein non-metastatic melanoma protein B mAb and monomethyl auristatin E for the treatment of melanoma and breast cancer. Curr Opin Mol Ther 2010;12:248-57
  • Rose AA, Grosset AA, Dong Z, Glycoprotein nonmetastatic B is an independent prognostic indicator of recurrence and a novel therapeutic target in breast cancer. Clin Cancer Res 2010;16:2147-56
  • Keir CH, Vahdat LT. The use of an antibody drug conjugate, glembatumumab vedotin (CDX-011), for the treatment of breast cancer. Expert Opin Biol Ther 2012;12:259-63
  • Sapra P, Hooper AT, O'Donnell CJ, Gerber HP. Investigational antibody drug conjugates for solid tumors. Expert Opin Investig Drugs 2011;20:1131-49
  • Alley SC, Okeley NM, Senter PD. Antibody-drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol 2010;14:529-37
  • Alley SC, Zhang X, Okeley NM, The pharmacologic basis for antibody-auristatin conjugate activity. J Pharmacol Exp Ther 2009;330:932-8
  • Beltran PJ, Mitchell P, Cajulis E, Efficacy of AMG 479, alone and in combination with cisplatin, in ovarian carcinoma xenograft models. Mol Cancer Ther 2009;8:abstract C172
  • Derycke MS, Pambuccian SE, Gilks CB, Nectin 4 overexpression in ovarian cancer tissues and serum: potential role as a serum biomarker. Am J Clin Pathol 2010;134:835-45
  • Fabre-Lafay S, Monville F, Garrido-Urbani S, Nectin-4 is a new histological and serological tumor associated marker for breast cancer. BMC Cancer 2007;7:73
  • Golfier S, Kahnert A, Heisler I, Identification of BAY 94-9343, a mesothelin antibody-drug conjugate (ADC): characterization and anti-tumor activity in mesothelin-positive preclinical tumor models [abstract 1754]. Proc Am Assoc Cancer Res 2011;52:419
  • Gudas JM, An Z, Morrison RK, ASG-5ME: A novel antibody-drug conjugate (ADC) therapy for prostate, pancreatic, and gastric cancers [abstract 230]. Genitourinary Cancers Symposium 2010
  • Hamblett KJ, Kozlosky CJ, Liu H, AMG595, a novel antibody drug conjugate approach for targeting EGFRVIII-espressing glioblastoma. Neurol Oncol 2011;13:abstract ET-36
  • Oflazoglu E, Stone IJ, Gordon K, Potent anticarcinoma activity of the humanized anti-CD70 antibody h1F6 conjugated to the tubulin inhibitor auristatin via an uncleavable linker. Clin Cancer Res 2008;14:6171-80
  • Takano A, Ishikawa N, Nishino R, Identification of nectin-4 oncoprotein as a diagnostic and therapeutic target for lung cancer. Cancer Res 2009;69:6694-703
  • Thompson JA, Forero-Torres A, Heath EI, The effect of SGN-75, a novel antibody–drug conjugate (ADC), in treatment of patients with renal cell carcinoma (RCC) or non-Hodgkin lymphoma (NHL): a phase I study. J Clin Oncol 2011;29:abstract 3071
  • Li YM, Hall WA. Targeted toxins in brain tumor therapy. Toxins 2010;2:2645-62
  • Choudhary S, Mathew M, Verma RS. Therapeutic potential of anticancer immunotoxins. Drug Discov Today 2011;16:495-503
  • Dosio F, Brusa P, Cattel L. Immunotoxins and anticancer drug conjugate assemblies: the role of the linkage between components. Toxins 2011;3:848-83
  • FitzGerald DJ, Wayne AS, Kreitman RJ, Pastan I. Treatment of hematologic malignancies with immunotoxins and antibody-drug conjugates. Cancer Res 2011;71:6300-9
  • Kreitman RJ, Pastan I. Antibody fusion proteins: anti-CD22 recombinant immunotoxin moxetumomab pasudotox. Clin Cancer Res 2011;17:6398-405
  • Mathew J, Perez EA. Trastuzumab emtansine in human epidermal growth factor receptor 2-positive breast cancer: a review. Curr Opin Oncol 2011;23:594-600
  • Pasquetto MV, Vecchia L, Covini D, Targeted drug delivery using immunoconjugates: principles and applications. J Immunother 2011;34:611-28
  • Schindler J, Gajavelli S, Ravandi F, A phase I study of a combination of anti-CD19 and anti-CD22 immunotoxins (Combotox) in adult patients with refractory B-lineage acute lymphoblastic leukaemia. Br J Haematol 2011;154:471-6
  • Weldon JE, Pastan I. A guide to taming a toxin-recombinant immunotoxins constructed from Pseudomonas exotoxin A for the treatment of cancer. FEBS J 2011;278:4683-700
  • Zielinski R, Lyakhov I, Hassan M, HER2-affitoxin: a potent therapeutic agent for the treatment of HER2-overexpressing tumors. Clin Cancer Res 2011;17:5071-81
  • Adkins I, Holubova J, Kosova M, Sadilkova L. Bacteria and their toxins tamed for immunotherapy. Curr Pharm Biotechnol 2012
  • Lyu MA, Cao YJ, Mohamedali KA, Rosenblum MG. Cell-targeting fusion constructs containing recombinant gelonin. Methods Enzymol 2012;502:167-214
  • Onda M, Beers R, Xiang L, Recombinant immunotoxin against B-cell malignancies with no immunogenicity in mice by removal of B-cell epitopes. Proc Natl Acad Sci USA 2011;108:5742-7
  • Olsen E, Duvic M, Frankel A, Pivotal phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma. J Clin Oncol 2001;19:376-88
  • Hassan R, Bullock S, Premkumar A, Phase I study of SS1P, a recombinant anti-mesothelin immunotoxin given as a bolus I.V. infusion to patients with mesothelin-expressing mesothelioma, ovarian, and pancreatic cancers. Clin Cancer Res 2007;13:5144-9
  • Kreitman RJ, Tallman MS, Robak T, Phase I trial of anti-CD22 recombinant immunotoxin moxetumomab pasudotox (CAT-8015 or HA22) in patients with hairy cell leukemia. J Clin Oncol 2012;30:1822-28
  • Mussai F, Campana D, Bhojwani D, Cytotoxicity of the anti-CD22 immunotoxin HA22 (CAT-8015) against paediatric acute lymphoblastic leukaemia. Br J Haematol 2010;150:352-8
  • Wayne AS, Bhojwani D, Silverman LB, A Novel Anti-CD22 Immunotoxin, moxetumomab pasudotox: phase I study in pediatric Acute Lymphoblastic Leukemia (ALL). ASH Annual Meeting Abstracts 2011;118:248
  • Herrera L, Bostrom B, Gore L, A phase 1 study of Combotox in pediatric patients with refractory B-lineage acute lymphoblastic leukemia. J Pediatr Hematol Oncol 2009;31:936-41
  • Herrera L, Farah RA, Pellegrini VA, Immunotoxins against CD19 and CD22 are effective in killing precursor-B acute lymphoblastic leukemia cells in vitro. Leukemia 2000;14:853-8
  • Mohamedali KA, Ran S, Gomez-Manzano C, Cytotoxicity of VEGF(121)/rGel on vascular endothelial cells resulting in inhibition of angiogenesis is mediated via VEGFR-2. BMC Cancer 2011;11:358
  • Lyu MA, Rai D, Ahn KS, The rGel/BLyS fusion toxin inhibits diffuse large B-cell lymphoma growth in vitro and in vivo. Neoplasia 2010;12:366-75
  • Cao Y, Marks JD, Huang Q, Single-chain antibody-based immunotoxins targeting Her2/neu: design optimization and impact of affinity on antitumor efficacy and off-target toxicity. Mol Cancer Ther 2012;11:143-53
  • Porta C, Paglino C, Mutti L. Ranpirnase and its potential for the treatment of unresectable malignant mesothelioma. Biol Targets Ther 2008;2:601-9
  • Chang CH, Gupta P, Michel R, Ranpirnase (frog RNase) targeted with a humanized, internalizing, anti-Trop-2 antibody has potent cytotoxicity against diverse epithelial cancer cells. Mol Cancer Ther 2010;9:2276-86
  • Rossi EA, Goldenberg DM, Chang CH. The Dock-and-Lock method combines recombinant engineering with site-specific covalent conjugation to generate multifunctional structures. Bioconjug Chem 2012;23:309-23
  • Rossi EA, Chan E, Cardillo TM, Potent ribonuclease-based immunotoxins comprising quadruple ranpirnase (Rap) site-specifically conjugated to B-cell lymphoma-targeting antibodies [abstract 5345]. Proc Am Assoc Cancer Res 2010;51:1295
  • Cardillo TM, Rossi EA, Arrojo R, A novel immunotoxin comprising quadruple RNase tethered to an internalizing anti-TROP-2 humanized MAb shows potent cytotoxicity against diverse solid tumors in vitro [abstract 5346]. Proc Am Assoc Cancer Res 2010;51:1296
  • Lode HN, Xiang R, Becker JC, Immunocytokines: a promising approach to cancer immunotherapy. Pharmacol Ther 1998;80:277-92
  • Frey K, Zivanovic A, Schwager K, Neri D. Antibody-based targeting of interferon-alpha to the tumor neovasculature: a critical evaluation. Integr Biol (Camb) 2011;3:468-78
  • Pasche N, Neri D. Immunocytokines: a novel class of potent armed antibodies. Drug Discov Today 2012;http://dx.doi.org/10.1016/j.drudis.2012.01.007
  • Yamane BH, Hank JA, Albertini MR, Sondel PM. The development of antibody-IL-2 based immunotherapy with hu14.18-IL2 (EMD-273063) in melanoma and neuroblastoma. Expert Opin Investig Drugs 2009;18:991-1000
  • Gillies SD, Lan Y, Hettmann T, A low-toxicity IL-2-based immunocytokine retains antitumor activity despite its high degree of IL-2 receptor selectivity. Clin Cancer Res 2011;17:3673-85
  • Johannsen M, Spitaleri G, Curigliano G, The tumour-targeting human L19-IL2 immunocytokine: preclinical safety studies, phase I clinical trial in patients with solid tumours and expansion into patients with advanced renal cell carcinoma. Eur J Cancer 2010;46:2926-35
  • Eigentler TK, Weide B, de Braud F, A dose-escalation and signal-generating study of the immunocytokine L19-IL2 in combination with dacarbazine for the therapy of patients with metastatic melanoma. Clin Cancer Res 2011;17:7732-42
  • Kontermann RE. Antibody-cytokine fusion proteins. Arch Biochem Biophys 2012http://dx.doi.org/10.1016/j.abb.2012.03.001
  • Chang CH, Rossi EA, Goldenberg DM. The dock and lock method: a novel platform technology or building multivalent, multifunctional structures of defined composition with retained bioactivity. Clin Cancer Res 2007;13:5586s-91s
  • Rossi EA, Goldenberg DM, Cardillo TM, CD20-targeted tetrameric interferon-alpha, a novel and potent immunocytokine for the therapy of B-cell lymphomas. Blood 2009;114:3864-71
  • Rossi EA, Rossi DL, Cardillo TM, Preclinical studies on targeted delivery of multiple IFNalpha2b to HLA-DR in diverse hematologic cancers. Blood 2011;118:1877-84
  • Rossi EA, Rossi DL, Stein R, A bispecific antibody-IFNalpha2b immunocytokine targeting CD20 and HLA-DR is highly toxic to human lymphoma and multiple myeloma cells. Cancer Res 2010;70:7600-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.