430
Views
35
CrossRef citations to date
0
Altmetric
Reviews

microRNA regulation of cell viability and drug sensitivity in lung cancer

, PhD & , PhD
Pages 1221-1239 | Published online: 26 Jun 2012

Bibliography

  • Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005;65:6029-33
  • Ribas J, Ni X, Haffner M, miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res 2009;69:7165-9
  • Seike M, Goto A, Okano T, MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci USA 2009;106:12085-90
  • Lu Z, Liu M, Stribinskis V, MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 2008;27:4373-9
  • Zhang JG, Wang JJ, Zhao F, MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin Chim Acta 2010;411:846-52
  • Zhu S, Wu H, Wu F, MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 2008;18:350-9
  • Gabriely G, Wurdinger T, Kesari S, MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 2008;28:5369-80
  • Frankel LB, Christoffersen NR, Jacobsen A, Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 2008;283:1026-33
  • Markou A, Tsaroucha EG, Kaklamanis L, Prognostic value of mature microRNA-21 and microRNA-205 over-expression in non-small cell lung cancer by quantitative real-time RT-PCR. Clin Chem 2008;54:1696-704
  • Hatley ME, Patrick DM, Garcia MR, Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell 2010;18:282-93
  • He L, Thomson JM, Hemann MT, A microRNA polycistron as a potential human oncogene. Nature 2005;435:828-33
  • Hayashita Y, Osada H, Tatematsu Y, A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 2005;65:9628-32
  • Ebi H, Sato T, Sugito N, Counterbalance between RB inactivation and miR-17-92 overexpression in reactive oxygen species and DNA damage induction in lung cancers. Oncogene 2009;28:3371-9
  • Dews M, Homayouni A, Yu D, Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 2006;38:1060-5
  • O'Donnell KA, Wentzel EA, Zeller KI, c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005;435:839-43
  • Novotny GW, Sonne SB, Nielsen JE, Translational repression of E2F1 mRNA in carcinoma in situ and normal testis correlates with expression of the miR-17-92 cluster. Cell Death Differ 2007;14:879-82
  • Sylvestre Y, De Guire V, Querido E, An E2F/miR-20a autoregulatory feedback loop. J Biol Chem 2007;282:2135-43
  • Taguchi A, Yanagisawa K, Tanaka M, Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster. Cancer Res 2008;68:5540-5
  • Hossain A, Kuo MT, Saunders GF. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol 2006;26:8191-201
  • Lewis BP, Shih IH, Jones-Rhoades MW, Prediction of mammalian microRNA targets. Cell 2003;115:787-98
  • Wang Q, Li YC, Wang J, miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc Natl Acad Sci USA 2008;105:2889-94
  • Yeung ML, Yasunaga J, Bennasser Y, Roles for microRNAs, miR-93 and miR-130b, and tumor protein 53-induced nuclear protein 1 tumor suppressor in cell growth dysregulation by human T-cell lymphotrophic virus 1. Cancer Res 2008;68:8976-85
  • Liu X, Sempere LF, Ouyang H, MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest 2010;120:1298-309
  • Du L, Schageman JJ, Subauste MC, miR-93, miR-98, and miR-197 regulate expression of tumor suppressor gene FUS1. Mol Cancer Res 2009;7:1234-43
  • Habbe N, Koorstra JB, Mendell JT, MicroRNA miR-155 is a biomarker of early pancreatic neoplasia. Cancer Biol Ther 2009;8:340-6
  • Valeri N, Gasparini P, Fabbri M, Modulation of mismatch repair and genomic stability by miR-155. Proc Natl Acad Sci USA 2010;107:6982-7
  • Qin A, Zhou Y, Sheng M, Effects of microRNA-155 on the growth of human lung cancer cell line 95D in vitro. Zhongguo Fei Ai Za Zhi 2011;14:575-80
  • Zhang C, Zhang J, Zhang A, PUMA is a novel target of miR-221/222 in human epithelial cancers. Int J Oncol 2010;37:1621-6
  • Lee KH, Goan YG, Hsiao M, MicroRNA-373 (miR-373) post-transcriptionally regulates large tumor suppressor, homolog 2 (LATS2) and stimulates proliferation in human esophageal cancer. Exp Cell Res 2009;315:2529-38
  • Tanaka T, Arai M, Wu S, Epigenetic silencing of microRNA-373 plays an important role in regulating cell proliferation in colon cancer. Oncol Rep 2011;26:1329-35
  • Yan GR, Xu SH, Tan ZL, Global identification of miR-373-regulated genes in breast cancer by quantitative proteomics. Proteomics 2011;11:912-20
  • Johnson SM, Grosshans H, Shingara J, RAS is regulated by the let-7 microRNA family. Cell 2005;120:635-47
  • Kumar MS, Lu J, Mercer KL, Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 2007;39:673-7
  • Lee YS, Dutta A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 2007;21:1025-30
  • Johnson CD, Esquela-Kerscher A, Stefani G, The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 2007;67:7713-22
  • He X, Duan C, Chen J, Let-7a elevates p21(WAF1) levels by targeting of NIRF and suppresses the growth of A549 lung cancer cells. FEBS Lett 2009;583:3501-7
  • Kumar MS, Erkeland SJ, Pester RE, Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci USA 2008;105:3903-8
  • He XY, Chen JX, Zhang Z, The let-7a microRNA protects from growth of lung carcinoma by suppression of k-Ras and c-Myc in nude mice. J Cancer Res Clin Oncol 2010;136:1023-8
  • Trang P, Medina PP, Wiggins JF, Regression of murine lung tumors by the let-7 microRNA. Oncogene 2010;29:1580-7
  • Esquela-Kerscher A, Trang P, Wiggins JF, The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell cycle 2008;7:759-64
  • Takamizawa J, Konishi H, Yanagisawa K, Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004;64:3753-6
  • Yanaihara N, Caplen N, Bowman E, Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006;9:189-98
  • Chin LJ, Ratner E, Leng S, A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res 2008;68:8535-40
  • Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ 2010;17:193-9
  • Wong MY, Yu Y, Walsh WR, Yang JL. MicroRNA-34 family and treatment of cancers with mutant or wild-type p53 (Review). Int J Oncol 2011;38:1189-95
  • Chang TC, Wentzel EA, Kent OA, Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007;26:745-52
  • Wiggins JF, Ruffino L, Kelnar K, Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res 2010;70:5923-30
  • Mudduluru G, Ceppi P, Kumarswamy R, Regulation of Axl receptor tyrosine kinase expression by miR-34a and miR-199a/b in solid cancer. Oncogene 2011;30:2888-99
  • Raver-Shapira N, Marciano E, Meiri E, Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 2007;26:731-43
  • Bommer GT, Gerin I, Feng Y, p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 2007;17:1298-307
  • Fujita Y, Kojima K, Hamada N, Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem Biophys Res Commun 2008;377:114-19
  • Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA 2008;105:13421-6
  • Chen LP, Lai YD, Li DC, alpha4 is highly expressed in carcinogen-transformed human cells and primary human cancers. Oncogene 2011;30:2943-53
  • Lize M, Pilarski S, Dobbelstein M. E2F1-inducible microRNA 449a/b suppresses cell proliferation and promotes apoptosis. Cell Death Differ 2010;17:452-8
  • Bou Kheir T, Futoma-Kazmierczak E, Jacobsen A, miR-449 inhibits cell proliferation and is down-regulated in gastric cancer. Mol Cancer 2011;10:29
  • Lize M, Klimke A, Dobbelstein M. MicroRNA-449 in cell fate determination. Cell cycle 2011;10:2874-82
  • Webster RJ, Giles KM, Price KJ, Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. J Biol Chem 2009;284:5731-41
  • Kefas B, Godlewski J, Comeau L, MicroRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 2008;68:3566-72
  • Xiong S, Zheng Y, Jiang P, MicroRNA-7 inhibits the growth of human non-small cell lung cancer A549 cells through targeting BCL-2. Int J Biol Sci 2011;7:805-14
  • Rai K, Takigawa N, Ito S, Liposomal delivery of MicroRNA-7-expressing plasmid overcomes epidermal growth factor receptor tyrosine kinase inhibitor-resistance in lung cancer cells. Mol Cancer Ther 2011;10:1720-7
  • Cho WC, Chow AS, Au JS. Restoration of tumour suppressor hsa-miR-145 inhibits cancer cell growth in lung adenocarcinoma patients with epidermal growth factor receptor mutation. Eur J Cancer 2009;45:2197-206
  • Zhang S, Wu Y, Feng D, miR-145 inhibits lung adenocarcinoma stem cells proliferation by targeting OCT4 gene. Zhongguo Fei Ai Za Zhi 2011;14:317-22
  • Tanaka N, Toyooka S, Soh J, Frequent methylation and oncogenic role of microRNA-34b/c in small-cell lung cancer. Lung Cancer 2012;76:32-8
  • Nishikawa E, Osada H, Okazaki Y, miR-375 is activated by ASH1 and inhibits YAP1 in a lineage-dependent manner in lung cancer. Cancer Res 2011;71:6165-73
  • Feng S, Cong S, Zhang X, MicroRNA-192 targeting retinoblastoma 1 inhibits cell proliferation and induces cell apoptosis in lung cancer cells. Nucleic Acids Res 2011;39:6669-78
  • Han Z, Yang Q, Liu B, MicroRNA-622 functions as a tumor suppressor by targeting K-Ras and enhancing the anticarcinogenic effect of resveratrol. Carcinogenesis 2012;33:131-9
  • Wang R, Wang ZX, Yang JS, MicroRNA-451 functions as a tumor suppressor in human non-small cell lung cancer by targeting ras-related protein 14 (RAB14). Oncogene 2011;30:2644-58
  • Zhang L, Liu T, Huang Y, Liu J. MicroRNA-182 inhibits the proliferation and invasion of human lung adenocarcinoma cells through its effect on human cortical actin-associated protein. Int J Mol Med 2011;28:381-8
  • Wang H, Bian S, Yang CS. Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1alpha. Carcinogenesis 2011;32:1881-9
  • Puissegur MP, Mazure NM, Bertero T, miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ 2011;18:465-78
  • Liu B, Peng XC, Zheng XL, MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer 2009;66:169-75
  • Zhang JG, Guo JF, Liu DL, MicroRNA-101 exerts tumor-suppressive functions in non-small cell lung cancer through directly targeting enhancer of zeste homolog 2. J Thorac Oncol 2011;6:671-8
  • Oneyama C, Ikeda J, Okuzaki D, MicroRNA-mediated downregulation of mTOR/FGFR3 controls tumor growth induced by Src-related oncogenic pathways. Oncogene 2011;30:3489-501
  • Jiang L, Huang Q, Chang J, MicroRNA HSA-miR-125a-5p induces apoptosis by activating p53 in lung cancer cells. Exp Lung Res 2011;37:387-98
  • Blower PE, Chung JH, Verducci JS, MicroRNAs modulate the chemosensitivity of tumor cells. Mol Cancer Ther 2008;7:1-9
  • Holleman A, Chung I, Olsen RR, miR-135a contributes to paclitaxel resistance in tumor cells both in vitro and in vivo. Oncogene 2011;30:4386-98
  • Zhou M, Liu Z, Zhao Y, MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem 2010;285:21496-507
  • Li J, Chen Y, Zhao J, miR-203 reverses chemoresistance in p53-mutated colon cancer cells through downregulation of Akt2 expression. Cancer Lett 2011;304:52-9
  • Kojima K, Fujita Y, Nozawa Y, MiR-34a attenuates paclitaxel-resistance of hormone-refractory prostate cancer PC3 cells through direct and indirect mechanisms. Prostate 2010;70:1501-12
  • Li Z, Hu S, Wang J, MiR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells. Gynecol Oncol 2010;119:125-30
  • Salter KH, Acharya CR, Walters KS, An integrated approach to the prediction of chemotherapeutic response in patients with breast cancer. PLoS ONE 2008;3:e1908
  • Kong F, Sun C, Wang Z, miR-125b confers resistance of ovarian cancer cells to cisplatin by targeting pro-apoptotic Bcl-2 antagonist killer 1. J Huazhong Univ Sci Technolog Med Sci 2011;31:543-9
  • Seki N. A commentary on MicroRNA-141 confers resistance to cisplatin-induced apoptosis by targeting YAP1 in human esophageal squamous cell carcinoma. J Hum Genet 2011;56:339-40
  • Weeraratne SD, Amani V, Neiss A, miR-34a confers chemosensitivity through modulation of MAGE-A and p53 in medulloblastoma. Neuro Oncol 2011;13:165-75
  • Zhang S, Zhang C, Li Y, miR-98 regulates cisplatin-induced A549 cell death by inhibiting TP53 pathway. Biomed Pharmacother 2011;65:436-42
  • Zhu W, Zhu D, Lu S, miR-497 modulates multidrug resistance of human cancer cell lines by targeting BCL2. Med Oncol 2012;29:384-91
  • Ceppi P, Mudduluru G, Kumarswamy R, Loss of miR-200c expression induces an aggressive, invasive, and chemoresistant phenotype in non-small cell lung cancer. Mol Cancer Res 2010;8:1207-16
  • Zhu W, Xu H, Zhu D, miR-200bc/429 cluster modulates multidrug resistance of human cancer cell lines by targeting BCL2 and XIAP. Cancer Chemother Pharmacol 2012;69:723-31
  • Bian HB, Pan X, Yang JS, Upregulation of microRNA-451 increases cisplatin sensitivity of non-small cell lung cancer cell line (A549). J Exp Clin Cancer Res 2011;30:20
  • Galluzzi L, Morselli E, Vitale I, miR-181a and miR-630 regulate cisplatin-induced cancer cell death. Cancer Res 2010;70:1793-803
  • Wang Q, Zhong M, Liu W, Alterations of microRNAs in cisplatin-resistant human non-small cell lung cancer cells (A549/DDP). Exp Lung Res 2011;37:427-34
  • Guo L, Liu Y, Bai Y, Gene expression profiling of drug-resistant small cell lung cancer cells by combining microRNA and cDNA expression analysis. Eur J Cancer 2010;46:1692-702
  • Kovalchuk O, Filkowski J, Meservy J, Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther 2008;7:2152-9
  • Tao J, Lu Q, Wu D, MicroRNA-21 modulates cell proliferation and sensitivity to doxorubicin in bladder cancer cells. Oncol Rep 2011;25:1721-9
  • Fornari F, Milazzo M, Chieco P, MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res 2010;70:5184-93
  • Donzelli S, Fontemaggi G, Fazi F, MicroRNA-128-2 targets the transcriptional repressor E2F5 enhancing mutant p53 gain of function. Cell Death Differ 2012;19:1038-1048
  • Nasser MW, Datta J, Nuovo G, Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. J Biol Chem 2008;283:33394-405
  • Crawford M, Batte K, Yu L, MicroRNA 133B targets pro-survival molecules MCL-1 and BCL2L2 in lung cancer. Biochem Biophys Res Commun 2009;388:483-9
  • Heyn H, Schreek S, Buurman R, MicroRNA miR-548d is a superior regulator in pancreatic cancer. Pancreas 2012;41:218-21
  • Giovannetti E, Funel N, Peters GJ, MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res 2010;70:4528-38
  • Park JK, Lee EJ, Esau C, Schmittgen TD. Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas 2009;38:e190-9
  • Frankel LB, Wen J, Lees M, MicroRNA-101 is a potent inhibitor of autophagy. EMBO J 2011;30:4628-41
  • Wu CD, Kuo YS, Wu HC, Lin CT. MicroRNA-1 induces apoptosis by targeting prothymosin alpha in nasopharyngeal carcinoma cells. J Biomed Sci 2011;18:80
  • Chen CF, He X, Arslan AD, Novel regulation of nuclear factor-YB by miR-485-3p affects the expression of DNA topoisomerase IIalpha and drug responsiveness. Mol Pharmacol 2011;79:735-41
  • Gmeiner WH, Reinhold WC, Pommier Y. Genome-wide mRNA and microRNA profiling of the NCI 60 cell-line screen and comparison of FdUMP[10] with fluorouracil, floxuridine, and topoisomerase 1 poisons. Mol Cancer Ther 2010;9:3105-14
  • Bitarte N, Bandres E, Boni V, MicroRNA-451 is involved in the self-renewal, tumorigenicity, and chemoresistance of colorectal cancer stem cells. Stem Cells 2011;29:1661-71
  • Zhong M, Ma X, Sun C, Chen L. MicroRNAs reduce tumor growth and contribute to enhance cytotoxicity induced by gefitinib in non-small cell lung cancer. Chem Biol Interact 2010;184:431-8
  • Weiss GJ, Bemis LT, Nakajima E, EGFR regulation by microRNA in lung cancer: correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. Ann Oncol 2008;19:1053-9
  • Garofalo M, Romano G, Di Leva G, EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med 2012;18:74-82
  • Dai B, Meng J, Peyton M, STAT3 mediates resistance to MEK inhibitor through microRNA miR-17. Cancer Res 2011;71:3658-68
  • Ragusa M, Majorana A, Statello L, Specific alterations of microRNA transcriptome and global network structure in colorectal carcinoma after cetuximab treatment. Mol Cancer Ther 2010;9:3396-409
  • Hatakeyama H, Cheng H, Wirth P, Regulation of heparin-binding EGF-like growth factor by miR-212 and acquired cetuximab-resistance in head and neck squamous cell carcinoma. PLoS ONE 2010;5:e12702
  • Rodig SJ, Shapiro GI. Crizotinib, a small-molecule dual inhibitor of the c-Met and ALK receptor tyrosine kinases. Curr Opin Investig Drugs 2010;11:1477-90
  • Ou SH. Crizotinib: a drug that crystallizes a unique molecular subset of non-small-cell lung cancer. Expert Rev Anticancer Ther 2012;12:151-62
  • Katayama R, Shaw AT, Khan TM, Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci Transl Med 2012;4:120ra17
  • Gal H, Pandi G, Kanner AA, MIR-451 and Imatinib mesylate inhibit tumor growth of glioblastoma stem cells. Biochem Biophys Res Commun 2008;376:86-90
  • Gong C, Yao Y, Wang Y, Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. J Biol Chem 2011;286:19127-37
  • Bryant JL, Britson J, Balko JM, A microRNA gene expression signature predicts response to erlotinib in epithelial cancer cell lines and targets EMT. Br J Cancer 2012;106:148-56
  • Schaefer U, Voloshanenko O, Willen D, Walczak H. TRAIL: a multifunctional cytokine. Front Biosci 2007;12:3813-24
  • Falschlehner C, Emmerich CH, Gerlach B, Walczak H. TRAIL signalling: decisions between life and death. Int J Biochem Cell Biol 2007;39:1462-75
  • Acunzo M, Visone R, Romano G, miR-130a targets MET and induces TRAIL-sensitivity in NSCLC by downregulating miR-221 and 222. Oncogene 2012;31:634-42
  • Garofalo M, Quintavalle C, Di Leva G, MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene 2008;27:3845-55
  • Garofalo M, Di Leva G, Romano G, miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 2009;16:498-509
  • Wander SA, Hennessy BT, Slingerland JM. Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J Clin Invest 2011;121:1231-41
  • Uesugi A, Kozaki K, Tsuruta T, The tumor suppressive microRNA miR-218 targets the mTOR component Rictor and inhibits AKT phosphorylation in oral cancer. Cancer Res 2011;71:5765-78
  • Pineau P, Volinia S, McJunkin K, miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci USA 2010;107:264-9
  • Lima RT, Busacca S, Almeida GM, MicroRNA regulation of core apoptosis pathways in cancer. Eur J Cancer 2011;47:163-74
  • Cimmino A, Calin GA, Fabbri M, miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005;102:13944-9
  • Zhu W, Shan X, Wang T, miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int J Cancer 2010;127:2520-9
  • Aqeilan RI, Calin GA, Croce CM. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ 2010;17:215-20
  • Ovcharenko D, Kelnar K, Johnson C, Genome-scale microRNA and small interfering RNA screens identify small RNA modulators of TRAIL-induced apoptosis pathway. Cancer Res 2007;67:10782-8
  • Zhang J, Du Y, Wu C, Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186* signaling pathway. Oncol Rep 2010;24:1217-23
  • Incoronato M, Garofalo M, Urso L, miR-212 increases tumor necrosis factor-related apoptosis-inducing ligand sensitivity in non-small cell lung cancer by targeting the antiapoptotic protein PED. Cancer Res 2010;70:3638-46
  • Landi MT, Zhao Y, Rotunno M, MicroRNA expression differentiates histology and predicts survival of lung cancer. Clin Cancer Res 2010;16:430-41
  • Bishop JA, Benjamin H, Cholakh H, Accurate classification of non-small cell lung carcinoma using a novel microRNA-based approach. Clin Cancer Res 2010;16:610-19
  • Raponi M, Dossey L, Jatkoe T, MicroRNA classifiers for predicting prognosis of squamous cell lung cancer. Cancer Res 2009;69:5776-83
  • Yu SL, Chen HY, Chang GC, MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 2008;13:48-57
  • Lee JH, Voortman J, Dingemans AM, MicroRNA expression and clinical outcome of small cell lung cancer. PLoS ONE 2011;6:e21300
  • Woods K, Thomson JM, Hammond SM. Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors. J Biol Chem 2007;282:2130-4
  • Tian T, Shu Y, Chen J, A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. Cancer Epidemiol Biomarkers Prev 2009;18:1183-7
  • Duan S, Mi S, Zhang W, Dolan ME. Comprehensive analysis of the impact of SNPs and CNVs on human microRNAs and their regulatory genes. RNA Biol 2009;6:412-25
  • Mishra PJ, Humeniuk R, Mishra PJ, A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc Natl Acad Sci USA 2007;104:13513-18
  • Hu Z, Chen J, Tian T, Genetic variants of miRNA sequences and non-small cell lung cancer survival. J Clin Invest 2008;118:2600-8
  • Mandola MV, Stoehlmacher J, Zhang W, A 6 bp polymorphism in the thymidylate synthase gene causes message instability and is associated with decreased intratumoral TS mRNA levels. Pharmacogenetics 2004;14:319-27
  • Lu JW, Gao CM, Wu JZ, Polymorphism in the 3'-untranslated region of the thymidylate synthase gene and sensitivity of stomach cancer to fluoropyrimidine-based chemotherapy. J Hum Genet 2006;51:155-60
  • Lujambio A, Ropero S, Ballestar E, Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 2007;67:1424-9
  • Saito Y, Liang G, Egger G, Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 2006;9:435-43
  • Formosa A, Lena AM, Markert EK, DNA methylation silences miR-132 in prostate cancer. Oncogene advance online publication 6 February 2012; doi: 10.1038/onc.2012.14
  • Brueckner B, Stresemann C, Kuner R, The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 2007;67:1419-23
  • Lujambio A, Calin GA, Villanueva A, A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA 2008;105:13556-61
  • Wang Z, Chen Z, Gao Y, DNA hypermethylation of microRNA-34b/c has prognostic value for stage non-small cell lung cancer. Cancer Biol Ther 2011;11:490-6
  • Benetti R, Gonzalo S, Jaco I, A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol 2008;15:268-79
  • Braconi C, Huang N, Patel T. MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology 2010;51:881-90
  • Stumpel DJ, Schotte D, Lange-Turenhout EA, Hypermethylation of specific microRNA genes in MLL-rearranged infant acute lymphoblastic leukemia: major matters at a micro scale. Leukemia 2011;25:429-39
  • Fabbri M, Garzon R, Cimmino A, MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 2007;104:15805-10
  • Garzon R, Liu S, Fabbri M, MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 2009;113:6411-18
  • Braconi C, Kogure T, Valeri N, MicroRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene 2011;30:4750-6
  • Kota J, Chivukula RR, O'Donnell KA, Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009;137:1005-17
  • Krutzfeldt J, Rajewsky N, Braich R, Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005;438:685-9
  • Trang P, Wiggins JF, Daige CL, Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther 2011;19:1116-22
  • Davis S, Lollo B, Freier S, Esau C. Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res 2006;34:2294-304
  • Stenvang J, Silahtaroglu AN, Lindow M, The utility of LNA in microRNA-based cancer diagnostics and therapeutics. Semin Cancer Biol 2008;18:89-102
  • Li W, Szoka FC Jr. Lipid-based nanoparticles for nucleic acid delivery. Pharm Res 2007;24:438-49
  • Yang YY, Wang Y, Powell R, Chan P. Polymeric core-shell nanoparticles for therapeutics. Clin Exp Pharmacol Physiol 2006;33:557-62
  • Cekaite L, Furset G, Hovig E, Sioud M. Gene expression analysis in blood cells in response to unmodified and 2'-modified siRNAs reveals TLR-dependent and independent effects. J Mol Biol 2007;365:90-108
  • Judge AD, Bola G, Lee AC, MacLachlan I. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther 2006;13:494-505
  • Hornung V, Guenthner-Biller M, Bourquin C, Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 2005;11:263-70
  • Fei J, Lan F, Guo M, Inhibitory effects of anti-miRNA oligonucleotides (AMOs) on A549 cell growth. J Drug Target 2008;16:688-93
  • Lebanony D, Benjamin H, Gilad S, Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma. J Clin Oncol 2009;27:2030-7
  • Navarro A, Diaz T, Gallardo E, Prognostic implications of miR-16 expression levels in resected non-small-cell lung cancer. J Surg Oncol 2011;103:411-15
  • Gao W, Yu Y, Cao H, Deregulated expression of miR-21, miR-143 and miR-181a in non small cell lung cancer is related to clinicopathologic characteristics or patient prognosis. Biomed Pharmacother 2010;64:399-408
  • Patnaik SK, Kannisto E, Knudsen S, Yendamuri S. Evaluation of microRNA expression profiles that may predict recurrence of localized stage I non-small cell lung cancer after surgical resection. Cancer Res 2010;70:36-45
  • Rui W, Bing F, Hai-Zhu S, Identification of microRNA profiles in docetaxel-resistant human non-small cell lung carcinoma cells (SPC-A1). J Cell Mol Med 2010;14:206-14
  • Ranade AR, Cherba D, Sridhar S, MicroRNA 92a-2*: a biomarker predictive for chemoresistance and prognostic for survival in patients with small cell lung cancer. J Thorac Oncol 2010;5:1273-8
  • Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 2008;110:13-21
  • Mitchell PS, Parkin RK, Kroh EM, Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008;105:10513-18
  • Chen X, Ba Y, Ma L, Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008;18:997-1006
  • Xie L, Chen X, Wang L, Cell-free miRNAs may indicate diagnosis and docetaxel sensitivity of tumor cells in malignant effusions. BMC Cancer 2010;10:591
  • Wei J, Gao W, Zhu CJ, Identification of plasma microRNA-21 as a biomarker for early detection and chemosensitivity of non-small cell lung cancer. Chin J Cancer 2011;30:407-14
  • Chen X, Hu Z, Wang W, Identification of ten serum microRNAs from a genome-wide serum microRNA expression profile as novel noninvasive biomarkers for nonsmall cell lung cancer diagnosis. Int J Cancer 2012;130:1620-8
  • Hu Z, Chen X, Zhao Y, Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol 2010;28:1721-6
  • Heegaard NH, Schetter AJ, Welsh JA, Circulating micro-RNA expression profiles in early stage nonsmall cell lung cancer. Int J Cancer 2012;130:1378-86
  • Silva J, Garcia V, Zaballos A, Vesicle-related microRNAs in plasma of nonsmall cell lung cancer patients and correlation with survival. Eur Respir J 2011;37:617-23
  • Yu L, Todd NW, Xing L, Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers. Int J Cancer 2010;127:2870-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.