240
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Regeneration and bioengineering of transplantable abdominal organs: current status and future challenges

, , , , , , , , , & , MD PhD show all
Pages 103-113 | Published online: 31 Oct 2012

Bibliography

  • Zhang Y, McNeill E, Tian H, Urine derived cells are a potential source for urological tissue reconstruction. J Urol 2008;180:2226-33
  • Orlando G, Wood KJ, De Coppi P, Regenerative medicine as applied to general surgery. Ann Surg 2012;255(5):867-80
  • Yen T, Alison M, Cook H, The cellular origin and proliferative status of regenerating renal parenchyma after mercuric chloride damage and erythropoietin treatment. Cell Prolif 2007;40:143-56
  • Yuen D, Gilbert RE, Marsden PA. Bone marrow cell therapies for endothelial repair and their relevance to kidney disease. Semin Nephrol 2012;32:215-23
  • Herrera M, Bussolati B, Bruno S, Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med 2004;14:1035-41
  • Morigi M, Introna M, Imberti B, Human bone marrow mesenchymal stem cells accelerate recovery of acute renal injury and prolong survival in mice. Stem Cells 2008;26:2075-82
  • Rosines E, Johkura K, Zhang X, Constructing kidney-like tissues from cells based on programs for organ development: towards a method of in vitro engineering of the kidney. Tissue Eng Part A 2010;16:2441-55
  • Steer D, Nigam S. Developmental approaches to kidney tissue engineering. Am J Physiol Renal Physiol 2004;286:F1
  • Rogers S, Talcott M, Hammerman M, Transplantation of pig metanephroi. ASAIO J 2003;49(1):48-52
  • Dekel B, Amariglio N, Kaminski N, Engraftment and differentiation of human metanephroi into functional mature nephrons after transplantation into mice is. accompanied by a profile of gene expression similar to normal human kidney development. J Am Soc Nephrol 2002;13:977-90
  • Dekel B, Burakova T, Arditti F, Human and porcine early kidney precursors as a new source for transplantation. Nat Med 2003;9:53-60
  • Orlando G, Baptista P, Mirchall M. Regenerative medicine as applied to solid organ transplantation: current status and future challenges. Transplant Int 2011;24:223-32
  • Orlando G, Wood KJ, Stratta RJ, Regenerative medicine and organ transplantation: past, present and future. Transplantation 2011;91:1310-17
  • Ross E, Williams M, Hamazaki T, Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol 2009;20:2338-47
  • Liu C, Liu SR, Xu AB, Preparation of whole-kidney acellular matrix in rats by perfusion. Nan Fang Yi Ke Da Xue Xue Bao 2009;29(5):979-82
  • Nakayama K, Batchelder C, Lee C, Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A 2010;16:2207-16
  • Orlando G, Farney AC, Iskandar SS, Production and implantation of renal extracellular matrix scaffolds from porcine kidneys as a platform for renal b ioengineering investigation. Ann Surg 2012;256:363-70
  • Sullivan D, Mirmalek-Sani SH, Deegan DB, Decellularization methods of procine kidneys for whole organ engineering usig a high-throughput system. Biomaterials 2012; [Epub ahead of print]
  • Ricordi C, Lacy P, Finke E, Automated method for isolation of human pancreatic islets. Diabetes 1988;37:413-20
  • Bellin M, Kandaswamy R, Parkey J, Prolonged insulin independence after islet allotransplants in recipients with type 1 diabetes. Am J Transplant 2008;8:2463-70
  • Scharp D, Lacy P, Santiago J, Results of our first nine intraportal islet allografts in type 1, sinulin-dependent diabetic patietns. Transplantation 1991;51(1):6-85
  • Bretzel R, Brandhorst D, Brandhorst H, Improved survival of intraportal pancreatic islet cell allografts in patietns with type-1 diabetes mellitus by refined peritransplant management. J Mol Med 1999;77(1):140-3
  • Socci C, Falqui L, Davalli A. Fresh human islet transplantation to replace pancreatic endocrine functionin type 1 diabetic patients: report of six cases. Acta Diabetol 1991;28(2):151-7
  • Warnock G, Kneteman N, Ryan E, Long-term follow-up after transplantation of insulin-producing pancreatic islets into patients with type 1 (insulin-dependent) diabetes mellitus. Diabetologia 1992;35(1):89-95
  • Alejandro R, Lehmann R, Ricordi C, Long-term function (6 years) of islet allografts in type 1 diabetes. Diabetes 1997;46(12):1983-9
  • Sambanis A. Encapsulated islets in diabetes treatment. Diabetes Tehcnol Ther 2003;5(4):665-8
  • Beck J, Angus R, Madsen B, Islet encapsulation: strategies to enhanve islet cell functions. Tissue Eng Part A 2007;13(3):589-99
  • de la Tour D, Halvorsen T, Demeterco C, Beta-cell differentiation from a human pancreatic cell line in vitro and in vivo. Mol Endocrinol 2001;15:476
  • Nishijima H, Yasunari T, Nakayama T, Improved applications of the tetracycline-regulated gene depletion system. Biosci Trends 2009;3(5):161-7
  • Ravassard P, Hazhouz Y, Pechberty S, A genetically engineered human pancreatic beta cell line exhibiting glucose-inducible insulin secretion. J Clin Invest 2011;121(9):3589-97
  • Efrat S, Fusco-DeMane D, Lemberg H, Conditional transformation of a pancreatic beta-cell line derived from transgenic mice expressing a tetracycline-regulated oncogene. Proc Natl Acad Sci USA 1995;11(92):8
  • Fleischer N, Chen C, Surana M, Functional analysis of a conditionally transformed pancreatic beta-cell line. Diabetes 1998;47(9):1419-25
  • Milo-Landesman D, Surana M, Berkovich I, Correction of hyperglycemia in diabetic mice transplanted with reversibly immortalized pancreatic beta cells controlled by the tet-on regulatory system. Cell Transplant 2001;10(7):645-50
  • Touchefeu Y, Harrington KJ, Galmiche JP, Vassaux G. Review article: gene therapy, recent developments and future prospects in gastrointestinal oncology. Ailment Pharmacol Ther 2010;32(8):953-68
  • Furth M, Atala A. Stem cell sources to treat diabetes. J Cell Biochem 2009;106:507-11
  • Kadam S, Bhonde R. Islet neogenesis from the constitutively nestin expressing human umbilical cord matrix derived mesechymal stem cells. Islets 2010;2:112-20
  • Le Douarin N, Creuzet S, Couly G, Neural crest cell plasticity and its limits. Development 2004;131:4637-50
  • Huang C, Pelaez D, Dominguez-Bendala J, Plasticity of stem cells derived from adult peridontal ligament. Regen Med 2009;4:809-21
  • Kang H, Kim J, Park S. Insulin-secreting cells from human eyelid-derived stem cells allegiate type 1 diabetes in immunocompetent mice. Stem Cells 2009;4:1999-2008
  • Paredes B, Santana A, Arribas M. Phenotypic differences during the osteogenic differentiation of single-cell derived clones isolated from human lipoaspirates. J Tissue Eng Regen Med 2011;5:589-99
  • Zhou Q, Brown J, Kanarek A, In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 2008;455:627-32
  • Opara E, Mirmalek-Sani S, Khanna O, Design of a bioartificial pancreas(+). J Investig Med 2010;58(7):831-7
  • Chatenoud L, You S, Okada H, 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: immune therapies of type 1 diabetes: new opportunities based on the hygiene hypothesis. Clin Exp Immunol 2010;160(1):106-12
  • Huang G, Greenspan DS. ECM roles in the function of metabolic tissues. Trends Endocrinol Metab 2012;23:16-22
  • Weber L, Hayda KN, Anseth KS. Cell-matrix interactions improve beta-cell survival and insulin secretion in three-dimensional culture. Tissue Eng Part A 2008;14:1959-68
  • Weber L, Anseth KS. Hydrogel encapsulation environments functionalized with extracellular matrix interactions increase islet insulin secretion. Matrix Biol 2008;27:667-73
  • De Carlo E, Baiguera S, Conconi M, Pancreatic acelllular matrix supports islet survival and function in a synthetic tubular device: in vitro and in vivo studies. Int J Mol Med 2010;25:195-202
  • Minuk G. Hepatic regeneration: if it ain't broke, don't fix it. Can J Gastroenterol 2003;17:418-24
  • Kay M, Fausto N. Liver regeneration: prospects for therapy based on new technologies. Mol Med Today 1997;3:108-15
  • Igarashi Y, D'hoore W, Goebbels RM, Beta-5 score to evaluate pig islet graft function in a primate pre-clinical model. Xenotransplantation 2010;17(6):449-59
  • Petersen B, Bowen W, Patrene K, Bone marrow as a potential source of hepatic oval cells. Science 1999;284:1168-70
  • Theise N, Nimmakayalu M, Gardner R, Liver from bone marrow in humans. Hepatology 2000;32:11-16
  • Alison M, Poulsom R, Jeffery R, Hepatocytes from nonhepatic adult stem cells. Nature 2000;406:257
  • Oh S, Witek RP, Bae SH, Bone marrow-derived hepatic oval cells differentiate into hepatocytes in 2-acetylaminofluorene/partial hepatectomy-induced liver regeneration. Gastroenterology 2007;132(3):1077-87
  • Terai S, Ishikawa T, Omori K, Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells 2006;24:2292-8
  • Mohamadnejad M, Alimoghaddam K, Mohyeddin-Bonab M, Phase 1 trial of autologous bone marrow mesenchymal stem cell transplantation in patients with decompensated liver cirrhosis. Arch Iran Med 2007;10:459-66
  • Mohamadnejad M, Namiri M, Bagheri M, Phase 1 human trial of autologous bone marrow-hematopoietic stem cell transplantation in patients with decompensated cirrhosis. World J Gastroenterol 2007;13:3359-63
  • Piscaglia A, Shupe T, Oh S, Granulocyte-colony stimulating factor promotes liver repair and induces oval cell migration and proliferation in rats. Gastroenterology 2007;133:619-31
  • Gaia S, Smedile A, Omede P, Feasibility and safety of G-CSF administration to induce bone marrow-derived cells mobilization in patients with end stage liver disease. J Hepatol 2006;45:13-19
  • Di Campli C, Zocco M, Saulnier N, Safety and efficacy profile of G-CSF therapy in patients with acute on chronic liver failure. Dig Liver Dis 2007;39:1071-6
  • Spahr L, Lambert J, Rubbia-Brandt L, Granulocyte-colony stimulating factor induces proliferation of hepatic progenitors in alcoholic steatohepatitis: a randomized trial. Hepatology 2008;48:221-9
  • Uygun B, Soto-Gutierrez A, Yagi H, Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 2010;16:814-20
  • Baptista P, Siddiqui M, Lozier G, The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 2011;53:604-17
  • Shupe T, Williams M, Brown A, Method for the decellularization of intact rat liver. Organogenesis 2010;6:134-6
  • Wang Y, Cui C, Yamauchi M, Lineage restriction of human hepatic stem cells to mature fates is made efficient by tissuespecific biomatrix scaffolds. Hepatology 2011;53:293-305
  • Soto-Gutierrez A, Zhang L, Medberry C, A whole-organ regenerative medicine approach for liver replacement. Tissue Eng Part C Methods 2011;17:677-86
  • Sellaro T, Ranade A, Faulk D, Maintenance of human hepatocyte function in vitro by liver-derived extracellular matrix gels. Tissue Eng Part A 2010;16:1075-82
  • Lin P, Chan W, Badylak S, Assessing porcine liver-derived biomatrix for hepatic tissue engineering. Tissue Eng Part A 2004;10:1046-53
  • Sellaro T, Ravindra A, Stolz D, Maintenance of hepatic sinusoidal endothelial cell phenotype in vitro using organ-specific extracellular matrix scaffolds. Tissue Eng Part A 2007;13:2301-10
  • De Kock J, Ceelen L, De Spiegelaere W, Simple and quick method for whole-liver decellularization: a novel in vitro three-dimensional bioengineering tool? Arch Toxicol 2011;85:607-1
  • Orlando G, Garcia-Arraras J, Soker T, Regeneration and bioengineering of the gastrointestinal tract: current status and future perspectives. Dig Liver Dis 2012; In press
  • Orlando G, Garcia-Arraras J, Soker T, Regeneration and bioengineering of the gastrointestinal tract: current status and future perspectives. Dig Liver Dis 2012;44(9):714-20
  • Chen M, Badylak S. Small bowel tissue engineering using small intestinal submucosa as a scaffold. J Surg Res 2001;99:352-8
  • Baptista P, Orlando G, Mirmalek-Sani S, Whole organ decellularization - a tool for bioscaffold fabrication and organ bioengineering. Conf Proc IEEE Eng Med Biol Soc 2009;6526-9
  • McCracken K, Howell J, Wells J, Generating human intestinal tissue from pluripotent stem cells in vitro. Nat Protoc 2011;6:1920-8
  • Grikscheit T, Siddique A, Ochoa E, Tissue-engineered small intestine improves recovery after massive small bowel resection. Ann Surg 2004;240:748-54
  • Grikscheit T, Ochoa ER, Ramsanahie A, Tissue-engineered large intestine resembles native colon with appropriate in vitro physiology and architecture. Ann Surg 2003;238:35-41
  • Medema J, Vermeulen L. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature 2011;474:318-26
  • Smith N, Anderson E, Davies P, Building blocks for engineering the intestines: Insights into intestinal stem cells and their propagation. EMBO Mol Med 2009;1(5):255-9
  • Jiang Y, Jahagirdar B, Reinhardt R, Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418:41-9
  • Hori Y, Nakamura T, Kimura D, Experimental study on tissue engineering of the small intestine by mesenchymal stem cell seeding. J Surg Res 2002;102:156-60
  • Wang Z, Watanabe Y, Toki A. Experimental assessment of small intestinal submucosa as a small bowel graft in a rat model. J Pediatr Surg 2003;38:1596-601
  • Lee M, Wu B, Stelzner M, Intestinal smooth muscle cell maintenance by basic fibroblast growth factor. Tissue Eng Part A 2008;14:1395-402
  • Folkman J, Hochberg M. Self-regulation of growth in three dimensions. J Exp Med 1973;138:745-53
  • Geneva, W. W.H.O.-. Global health risks: mortality and burden of disease attributable to selected major risks. World Health Organization, 2009. Available from: http://www.who.int/healthinfo/global_burden_disease/GlobalHealthRisks_report_full.pdf [December 2009]
  • Narayan K, Ali MK, Koplan JP. Global noncommunicable diseases–where worlds meet. N Engl J Med 2010;363:1196-8
  • Hollander A, Macchiarini P, Gordijn B, The first stem cell-based tissue engineered organ replacement: implications for regernative medicine and society. Regen Med 2009;4:147-8
  • Orlando G, Wood KJ, Soker S, Stratta RJ. How regenerative medicine may contribute to the achievement of an immunosuppression-free state. Transplantation 2011;92(8):e36-8
  • Orlando G. Transplantation as a subfield of regenerative medicine: an interview by Lauren Constable. Expert Rev Clin Immunol 2011;7:137-41
  • Orlando G, Soker S, Wood K. Clinical operational tolerance after liver transplantation. J Hepatol 2009;50:1247-57

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.