369
Views
14
CrossRef citations to date
0
Altmetric
Review

Development of a novel AIDS vaccine: the HIV-1 transactivator of transcription protein vaccine

, , , , , , , , , , & show all

Bibliography

  • Boyer S, March L, Kouanfack C, et al. Monitoring of HIV viral load, CD4 cell count, and clinical assessment versus clinical monitoring alone for antiretroviral therapy in low-resource settings (Stratall ANRS 12110/ESTHER): a cost-effectiveness analysis. Lancet Infect Dis 2013;13:577-86
  • UN Secretary-General. Uniting for universal access: towards zero new HIV infections, zero discrimination and zero AIDS-related deaths. United Nations; 2011 http://www.unaids.org/sites/default/files/en/media/unaids/contentassets/documents/document/2011/20110331_SG_report_en.pdf
  • Esparza J. A brief history of the global effort to develop a preventive HIV vaccine. Vaccine 2013;31:3502-18
  • Lema D, Garcia A, De Sanctis JB. HIV vaccines: a brief overview. Scand J Immunol 2014;80:1-11
  • Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 2009;361:2209-20
  • Barouch DH, Michael NL. Accelerating HIV-1 vaccine efficacy trials. Cell 2014;159:969-72
  • Kovacs JM, Nkolola JP, Peng H, et al. HIV-1 envelope trimer elicits more potent neutralizing antibody responses than monomeric gp120. Proc Natl Acad Sci USA 2012;109:12111-16
  • Blattner C, Lee JH, Sliepen K, et al. Structural delineation of a quaternary, cleavage-dependent epitope at the gp41-gp120 interface on intact HIV-1 Env trimers. Immunity 2014;40:669-80
  • Hansen SG, Piatak MJr, Ventura AB, et al. Immune clearance of highly pathogenic SIV virus infection. Nature 2013;502:100-4
  • Fischer W, Perkins S, Theiler J, et al. Polyvalent vaccines for optimal coverage of potential T-cell epitopes in global HIV-1 variants. Nat Med 2007;13:100-6
  • Létourneau S, Im EJ, Mashishi T, et al. Design and pre-clinical evaluation of a universal HIV-1 vaccine. PLoS One 2007;2:e984
  • Stephenson KE, San Miguel A, Simmons NL, et al. Full-length HIV-1 immunogens induce greater magnitude and comparable breadth of T lymphocyte responses to conserved HIV-1 regions compared with conserved-region-only HIV-1 immunogens in rhesus monkeys. J Virol 2012;86:11434-40
  • Chun TW, Murray D, Justement JS, et al. Relationship between residual plasma viremia and the size of HIV proviral DNA reservoirs in infected individuals receiving effective antiretroviral therapy. J Infect Dis 2011;204:135-8
  • García F, León A, Gatell JM, et al. Therapeutic vaccines against HIV infection. Hum Vaccin Immunother 2012;8:569-81
  • Research Toward a Cure and Immune-Based and Gene Therapies. Available from: http://www.pipelinereport.org/sites/g/files/g575521/f/201407/Cure%20Immune%20Based%20and%20Gene%20Therapies.pdf
  • García F, Climent N, Guardo AC, et al. A dendritic cell-based vaccine elicits T cell responses associated with control of HIV-1 replication. Sci Transl Med 2013;5:166ra2
  • Dayton AI, Sodroski JG, Rosen CA, et al. The transactivator gene of the human T cell lymphotropic virus type III is required for replication. Cell 1986;44:941-7
  • Jordan A, Defechereux P, Verdin E. The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. EMBO J 2001;20:1726-38
  • Weinberger LS, Burnett JC, Toettcher JE, et al. Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell 2005;122:169-82
  • Wu Y, Marsh JW. Selective transcription and modulation of resting T cell activity by preintegrated HIV DNA. Science 2001;293:1503-6
  • Ensoli B, Barillari G, Salahuddin SZ, et al. Tat protein of HIV-1 stimulates growth of cells derived from Kaposi’s sarcoma lesions of AIDS patients. Nature 1990;345:84-6
  • Chang HC, Samaniego F, Nair BC, et al. HIV-1 Tat protein exits from cells via a leaderless secretory pathway and binds to extracellular matrix-associated heparan sulfate proteoglycans through its basic region. AIDS 1997;11:1421-31
  • Rayne F, Debaisieux S, Yezid H, et al. Phosphatidylinositol-(4,5)-bisphosphate enables efficient secretion of HIV-1 Tat by infected T-cells. EMBO J 2010;29:1348-62
  • Westendorp MO, Frank R, Ochsenbauer C, et al. Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 1995;375:497-500
  • Marchiò S, Alfano M, Primo L, et al. Cell surface-associated Tat modulates HIV-1 infection and spreading through a specific interaction with gp120 viral envelope protein. Blood 2005;105:2802-11
  • Ensoli B, Gendelman R, Markham P, et al. Synergy between basic fibroblast growth factor and HIV-1 Tat protein in induction of Kaposi’s sarcoma. Nature 1994;371:674-80
  • Poggi A, Zocchi MR. HIV-1 Tat triggers TGF-beta production and NK cell apoptosis that is prevented by pertussis toxin B. Clin Dev Immunol 2006;13:369-72
  • Ensoli B, Buonaguro L, Barillari G, et al. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol 1993;67:277-87
  • Buonaguro L, Buonaguro FM, Giraldo G, et al. The human immunodeficiency virus type 1 Tat protein transactivates tumor necrosis factor beta gene expression through a TAR-like structure. J Virol 1994;68:2677-82
  • Nappi F, Chiozzini C, Bordignon V, et al. Immobilized HIV-1 Tat protein promotes gene transfer via a transactivation independent mechanism which requires binding of Tat to viral particles. J Gene Med 2009;11:955-65
  • Zauli G, Gibellini D, Celeghini C, et al. Pleiotropic effects of immobilized versus soluble recombinant HIV-1 Tat protein on CD3- mediated activation, induction of apoptosis, and HIV-1 long terminal repeat transactivation in purified CD4+ T lymphocytes. J Immunol 1996;157:2216-24
  • Ott M, Emiliani S, Van LC, et al. Immune hyperactivation of HIV-1-infected T cells mediated by Tat and the CD28 pathway. Science 1997;275:1481-5
  • Li CJ, Ueda Y, Shi B, et al. Tat protein induces self-perpetuating permissivity for productive HIV-1 infection. Proc Natl Acad Sci USA 1997;94:8116-20
  • Gavioli R, Gallerani E, Fortini C, et al. HIV-1 tat protein modulates the generation of cytotoxic T cell epitopes by modifying proteasome composition and enzymatic activity. J Immunol 2004;173:3838-43
  • Campbell GR, Loret EP. What does the structure-function relationship of the HIV-1 Tat protein teach us about developing an AIDS vaccine? Retrovirology 2009;6:50
  • Fanales-Belasio E, Moretti S, Fiorelli V, et al. HIV-1 Tat addresses dendritic cells to induce a predominant Th1-type adaptive immune response that appears prevalent in the asymptomatic stage of infection. J Immunol 2009;182:2888-97
  • Li JC, Yim HC, Lau AS. Role of HIV-1 Tat in AIDS pathogenesis: its effects on cytokine dysregulation and contributions to the pathogenesis of opportunistic infection. AIDS 2010;24:1609-23
  • Fanales-Belasio E, Moretti S, Nappi F, et al. Native HIV-1 Tat protein targets monocyte-derived dendritic cells and enhances their maturation, function, and antigen-specific T cell responses. J Immunol 2002;168:197-206
  • Remoli AL, Marsili G, Perrotti E, et al. Intracellular HIV-1 Tat protein represses constitutive LMP2 transcription increasing proteasome activity by interfering with the binding of IRF-1 to STAT1. Biochem J 2006;396:371-80
  • Gavioli R, Cellini S, Castaldello A, et al. The Tat protein broadens T cell responses directed to the HIV-1 antigens Gag and Env: implications for the design of new vaccination strategies against AIDS. Vaccine 2008;26:727-37
  • Nicoli F, Finessi V, Sicurella M, et al. The HIV-1 Tat protein induces the activation of CD8+ T cells and affects in vivo the magnitude and kinetics of antiviral responses. PLoS One 2013;8:e77746
  • Sforza F, Nicoli F, Gallerani E, et al. HIV-1 Tat affects the programming and functionality of human CD8+ T cells by modulating the expression of T-box transcription factors. AIDS 2014;28:1729-38
  • Chiozzini C, Collacchi B, Nappi F, et al. Surface-bound Tat inhibits antigen-specific CD8+ T cell activation in an integrin-dependent manner. AIDS 2014;28:2189-200
  • Planès R, Bahraoui E. HIV-1 Tat protein induces the production of IDO in human monocyte derived-dendritic cells through a direct mechanism: effect on T cells proliferation. PLoS One 2013;8:e74551
  • Serrano-Villar S, Sainz T, Lee SA, et al. HIV-infected individuals with low CD4/CD8 ratio despite effective antiretroviral therapy exhibit altered T cell subsets, heightened CD8+ T cell activation, and increased risk of non-AIDS morbidity and mortality. PLoS Pathog 2014;10:e1004078
  • Sastry KJ, Reddy HR, Pandita R, et al. HIV-1 tat gene induces tumor necrosis factor-beta (lymphotoxin) in a human Blymphoblastoid cell line. J Biol Chem 1990;265:20091-3
  • Barillari G, Buonaguro L, Fiorelli V, et al. Effects of cytokines from activated immune cells on vascular cell growth and HIV-1 gene expression. Implications for AIDS-Kaposi’s sarcoma pathogenesis. J Immunol 1992;149:3727-34
  • Puri RK, Aggarwal BB. Human immunodeficiency virus type 1 tat gene up-regulates interleukin 4 receptors on a human B-lymphoblastoid cell line. Cancer Res 1992;52:3787-90
  • Buonaguro L, Barillari G, Chang HK, et al. Effects of the human immunodeficiency virus type 1 Tat protein on the expression of inflammatory cytokines. J Virol 1992;66:7159-67
  • Scala G, Ruocco MR, Ambrosino C, et al. The expression of the interleukin 6 gene is induced by the human immunodeficiency virus 1 TAT protein. J Exp Med 1994;179:961-71
  • Lafrenie RM, Wahl LM, Epstein JS, et al. Activation of monocytes by HIV-Tat treatment is mediated by cytokine expression. J Immunol 1997;159:4077-83
  • Albini A, Ferrini S, Benelli R, et al. HIV-1 Tat protein mimicry of chemokines. Proc Natl Acad Sci USA 1998;95:13153-8
  • Huang L, Bosch I, Hofmann W, et al. Tat protein induces human immunodeficiency virus type 1 (HIV-1) coreceptors and promotes infection with both macrophage-tropic and T-lymphotropic HIV-1 strains. J Virol 1998;72:8952-60
  • Secchiero P, Zella D, Capitani S, et al. Extracellular HIV-1 tat protein up-regulates the expression of surface CXC-chemokine receptor 4 in resting CD4+ T cells. J Immunol 1999;162:2427-31
  • Ghezzi S, Noonan DM, Aluigi MG, et al. Inhibition of CXCR4-dependent HIV-1 infection by extracellular HIV-1 Tat. Biochem Biophys Res Commun 2000;270:992-6
  • Johnson TP, Patel K, Johnson KR, et al. Induction of IL-17 and nonclassical T-cell activation by HIV-Tat protein. Proc Natl Acad Sci USA 2013;110:13588-93
  • Chertova E, Chertov O, Coren LV, et al. Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol 2006;80:9039-52
  • Monini P, Cafaro A, Srivastava IK, et al. HIV-1 tat promotes integrin-mediated HIV transmission to dendritic cells by binding Env spikes and competes neutralization by anti-HIV antibodies. PLoS One 2012;7:e48781
  • Medina-Ramírez M, Sánchez-Merino V, Sánchez-Palomino S, et al. Broadly cross-neutralizing antibodies in HIV-1 patients with undetectable viremia. J Virol 2011;85:5804-1
  • Ensoli B, Cafaro A, Monini P, et al. Challenges in HIV vaccine research for treatment and prevention. Front Immunol 2014;5:417
  • Fischer M, Joos B, Wong JK, et al. Attenuated and nonproductive viral transcription in the lymphatic tissue of HIV-1-infected patients receiving potent antiretroviral therapy. J Infect Dis 2004;189:273-85
  • Kelly J, Beddall MH, Yu D, et al. Human macrophages support persistent transcription from unintegrated HIV-1 DNA. Virology 2008;372:300-12
  • Pasternak AO, Jurriaans S, Bakker M, et al. Cellular levels of HIV unspliced RNA from patients on combination antiretroviral therapy with undetectable plasma viremia predict the therapy outcome. PLoS One 2009;4:e8490
  • Mediouni S, Darque A, Baillat G, et al. Antiretroviral therapy does not block the secretion of the human immunodeficiency virus tat protein. Infect Disord Drug Targets 2012;12:81-6
  • van Baalen CA, Pontesilli O, Huisman RC, et al. Human immunodeficiency virus type 1 Rev- and Tat-specific cytotoxicT lymphocyte frequencies inversely correlate with rapid progression to AIDS. J Gen Virol 1997;78:1913-18
  • Allen TM, O’Connor DH, Jing P, et al. Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia. Nature 2000;407:386-90
  • O’Connor DH, Allen TM, Vogel TU, et al. Acute phase cytotoxic T lymphocyte escape is a hallmark of simian immunodeficiency virus infection. Nat Med 2002;8:493-9
  • Cao J, McNevin J, Malhotra U, et al. Evolution of CD8+ T cell immunity and viral escape following acute HIV-1 infection. J Immunol 2003;171:3837-46
  • Rezza G, Fiorelli V, Dorrucci M, et al. The presence of anti-Tat antibodies is predictive of long-term nonprogression to AIDS or severe immunodeficiency: findings in a cohort of HIV-1 seroconverters. J Infect Dis 2005;191:1321-4
  • Ensoli B, Fiorelli V, Ensoli F, et al. Candidate HIV-1 Tat vaccine development: from basic science to clinical trials. AIDS 2006;20:2245-61
  • Zagury JF, Sill A, Blattner W, et al. Antibodies to the HIV-1 Tat protein correlated with nonprogression to AIDS: a rationale for the use of Tat toxoid as an HIV-1 vaccine. J Hum Virol 1998;1:282-92
  • Re MC, Vignoli M, Furlini G, et al. Antibodies against full-length Tat protein and some low-molecular-weight Tat-peptides correlate with low or undetectable viral load in HIV-1 seropositive patients. J Clin Virol 2001;21:81-9
  • Richardson MW, Mirchandani J, Duong J, et al. Antibodies to Tat and Vpr in the GRIV cohort: differential association with maintenance of long-term non-progression status in HIV-1 infection. Biomed Pharmacother 2003;57:4-14
  • Reiss P, de Wolf F, Kuiken CL, et al. Contribution of antibody response to recombinant HIV-1 gene-encoded products nef, rev, tat, and protease in predicting development of AIDS in HIV-1-infected individuals. J Acquir Immune Defic Syndr 1991;4:165-72
  • Binley JM, Klasse PJ, Cao Y, et al. Differential regulation of the antibody responses to Gag and Env proteins of human immunodeficiency virus type 1. J Virol 1997;71:2799-809
  • Buttò S, Fiorelli V, Tripiciano A, et al. Sequence conservation and antibody cross-recognition of clade B human immunodeficiency virus (HIV) type 1 Tat protein in HIV-1-infected Italians, Ugandans, and South Africans. J Infect Dis 2003;188:1171-80
  • Cafaro A, Caputo A, Fracasso C, et al. Control of SHIV-89.6P-infection of cynomolgus monkeys by HIV-1 Tat protein vaccine. Nat Med 1999;5:643-50
  • Cafaro A, Caputo A, Maggiorella MT, et al. SHIV89.6P pathogenicity in cynomolgus monkeys and control of viral replication and disease onset by human immunodeficiency virus type 1 Tat vaccine. J Med Primatol 2000;29:193-208
  • Cafaro A, Titti F, Fracasso C, et al. Vaccination with DNA containing tat coding sequences and unmethylated CpG motifs protects cynomolgus monkeys upon infection with simian/human immunodeficiency virus (SHIV89.6P). Vaccine 2001;19:2862-77
  • Maggiorella MT, Baroncelli S, Michelini Z, et al. Long-term protection against SHIV89.6P replication in HIV-1 Tat vaccinated cynomolgus monkeys. Vaccine 2004;22:3258-69
  • Borsetti A, Baroncelli S, Maggiorella MT, et al. Containment of infection in tat vaccinated monkeys after rechallenge with a higher dose of SHIV89.6P(cy243). Viral Immunol 2009;22:117-24
  • Cafaro A, Bellino S, Titti F, et al. Impact of viral dose and major histocompatibility complex class IB haplotype on viral outcome in Tat-vaccinated mauritian cynomolgus monkeys upon challenge with SHIV89.6P. J Virol 2010;84:8953-8
  • Demberg T, Florese RH, Heath MJ, et al. A replication-competent adenovirus-human immunodeficiency virus (Ad-HIV) tat and Ad-HIV env priming/Tat and envelope protein boosting regimen elicits enhanced protective efficacy against simian/human immunodeficiency virus SHIV89.6P challenge in rhesus macaques. J Virol 2007;81:3414-27
  • Bachler BC, Humbert M, Palikuqi B, et al. Novel biopanning strategy to identify epitopes associated with vaccine protection. J Virol 2013;87:4403-16
  • Titti F, Maggiorella MT, Ferrantelli F, et al. Biocompatible anionic polymeric microspheres as priming delivery system for effective HIV/AIDS Tat-based vaccines. PLoS One 2014;9:e111360
  • Bellino S, Tripiciano A, Picconi O, et al. The presence of anti-Tat antibodies in HIV-infected individuals is associated with containment of CD4+ T-cell decay and viral load, and with delay of disease progression: results of a 3-year cohort study. Retrovirology 2014;11:49
  • Ensoli B, Fiorelli V, Ensoli F, et al. The therapeutic phase I trial of the recombinant native HIV-1 Tat protein. AIDS 2008;22:2207-9
  • Bellino S, Francavilla V, Longo O, et al. Parallel conduction of the phase I preventive and therapeutic trials based on the Tat vaccine candidate. Rev Recent Clin Trials 2009;4:195-204
  • Ensoli B, Fiorelli V, Ensoli F, et al. The preventive phase I trial with the HIV-1 Tat-based vaccine. Vaccine 2009;28:371-8
  • Longo O, Tripiciano A, Fiorelli V, et al. Phase I therapeutic trial of the HIV-1 Tat protein and long term follow-up. Vaccine 2009;27:3306-12
  • The Tat vaccine. Available from: http://www.hiv1tat-vaccines.info/
  • Ensoli B, Bellino S, Tripiciano A, et al. Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART. PLoS One 2010;5:e13540
  • Ensoli F, Cafaro A, Casabianca A, et al. HIV-1 Tat immunization restores immune homeostasis and attacks the HAART-resistant blood HIV DNA: results of a randomized phase II exploratory clinical trial. Retrovirol 2015. In press
  • Luft BJ, Remington JS. Toxoplasmic encephalitis in AIDS. Clin Infect Dis;15:211-22
  • Ho YC, Shan L, Hosmane NN, et al. Replication-Competent Noninduced Proviruses in the Latent Reservoir Increase Barrier to HIV-1 Cure. Cell 2013;155:540-51
  • Vrisekoop N, den Braber I, de Boer AB, et al. Sparse production but preferential incorporation of recently produced naive T cells in the human peripheral pool. Proc Natl Acad Sci USA 2008;105:6115-20
  • Procopio FA, Fromentin R, Kulpa D, et al. A novel assay that precisely measures the size of the latent HIV reservoir reveals that ART-naïve individuals harbour a large pool of latently infected CD4+ T cells. IAS Towards a Cure Symposium, 20th International AIDS conference; 20 – 25 July 2014; Melbourne
  • Allard SD, De Keersmaecker B, de Goede AL, et al. A phase I/IIa immunotherapy trial of HIV-1-infected patients with Tat, Rev and Nef expressing dendritic cells followed by treatment interruption. Clin Immunol 2012;142:252-68
  • Goldstein G, Damiano E, Donikyan M, et al. HIV-1 Tat B-cell epitope vaccination was ineffectual in preventing viral rebound after ART cessation: HIV rebound with current ART appears to be due to infection with new endogenous founder virus and not to resurgence of pre-existing Tat-dependent viremia. Hum Vaccin Immunother 2012;8:1425-30
  • Dey SS, Xue Y, Joachimiak MP, et al. Mutual information analysis reveals coevolving residues in Tat that compensate for two distinct functions in HIV-1 gene expression. J Biol Chem 2012;287:7945-55
  • Tahirov TH, Babayeva ND, Varzavand K, et al. Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature 2010;465:747-51
  • D’Orso I, Frankel AD. HIV-1 Tat: its dependence on host factors is crystal clear. Viruses 2010;2:2226-34
  • Fu W, Sanders-Beer BE, Katz KS, et al. Human immunodeficiency virus type 1, human protein interaction database at NCBI. Nucleic Acids Res 2009;37(Database issue):D417-22
  • Manrique A, Adams E, Barouch DH, et al. The immune space: a concept and template for rationalizing vaccine development. AIDS Res Hum Retroviruses 2014;30:1017-22

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.