890
Views
45
CrossRef citations to date
0
Altmetric
Review

Therapeutic face of RNAi: in vivo challenges

(Senior Molecular Biologist) , , PhD of Molecular Medicine, , PhD of Industrial Pharmaceutics & , PhD of Molecular Genetics

Bibliography

  • Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 1990;2:279-89
  • Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391(6669):806-11
  • Dorer DR, Henikoff S. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 1994;77:993-1002
  • Grishok A. RNAi mechanisms in Caenorhabditis elegans. FEBS Lett 2005;579(26):5932-9
  • Ketting RF, Haverkamp TH, van Luenen HG, Plasterk RH. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 1999;99(2):133-41
  • Lu R, Maduro M, Li F, et al. Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature 2005;436(7053):1040-3
  • Tabara H, Sarkissian M, Kelly WG, et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 1999;99(2):123-32
  • Wassenegger M. The role of the RNAi machinery in heterochromatin formation. Cell 2005;122:13-16
  • Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005;6:376-85
  • Klenov MS, Lavrov SA, Stolyarenko AD, et al. Repeat-associated siRNAs cause chromatin silencing of retrotransposons in the Drosophila melanogaster germline. Nucleic Acids Res 2007;35(16):5430-8
  • Azimzadeh Jamalkandi S, Azadian E, Masoudi-Nejad A. Human RNAi pathway: crosstalk with organelles and cells. Funct Integr Genomics 2014;14:31-46
  • Lee RC, Hammell CM, Ambros V. Interacting endogenous and exogenous RNAi pathways in Caenorhabditis elegans. RNA 2006;12(4):589-97
  • Azimzadeh Jamalkandi S, Masoudi-Nejad A. RNAi pathway integration in Caenorhabditis elegans development. Funct Integr Genomics 2011;11(3):389-405
  • Azimzadeh Jamalkandi S, Masoudi-Nejad A. Reconstruction of Arabidopsis thaliana fully integrated small RNA pathway. Funct Integr Genomics 2009;9(4):419-32
  • Chen X, Gao C, Li H, et al. Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res 2010;20(10):1128-37
  • Ries J, Vairaktaris E, Agaimy A, et al. miR-186, miR-3651 and miR-494: potential biomarkers for oral squamous cell carcinoma extracted from whole blood. Oncol Rep 2014;31(3):1429-36
  • Mlcochova H, Hezova R, Stanik M, Slaby O. Urine microRNAs as potential noninvasive biomarkers in urologic cancers. Urol Oncol 2014;32:41. e1-9
  • Wang J, Zhang K-Y, Liu S-M, Sen S. Tumor-associated circulating MicroRNAs as biomarkers of cancer. Molecules 2014;19(2):1912-38
  • Kosik KS. The neuronal microRNA system. Nat Rev Neurosci 2006;7(12):911-20
  • Soo CY, Song Y, Zheng Y, et al. Nanoparticle tracking analysis monitors microvesicle and exosome secretion from immune cells. Immunology 2012;136(2):192-7
  • Dykxhoorn DM, Novina CD, Sharp PA. Killing the messenger: short RNAs that silence gene expression. Nat Rev 2003;4:457-67
  • Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature 2004;431:343-9
  • Lavery KS, King TH. Antisense and RNAi: powerful tools in drug target discovery and validation. Curr Opin Drug Discov Devel 2003;4:561-9
  • Lu PY, Xie FY, Woodle MC. siRNA-mediated antitumorigenesis for drug target validation and therapeutics. Curr Opin Mol Ther 2003;5:225-34
  • Cristofaro P, Ramratnam B. RNAi tackles a sexually transmitted disease. Nat Biotechnol 2006;24:48-9
  • Taylor DW, Ma E, Shigematsu H, et al. Substrate-specific structural rearrangements of human Dicer. Nat Struct Mol Biol 2013;20(6):662-70
  • Chiu Y, Rana TM. RNAi in human cells: basic structural and functional features of small interfering RNA. Mol Cell 2002;10:549-61
  • Wang X, Wang J, Huang V, et al. Induction of NANOG expression by targeting promoter sequence with small activating RNA antagonizes retinoic acid-induced differentiation. Biochem J 2012;443(3):821-8
  • Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 2012;7(3):e30679
  • Lee HY, Zhou K, Smith AM, et al. Differential roles of human Dicer-binding proteins TRBP and PACT in small RNA processing. Nucleic Acids Res 2013;41(13):6568-76
  • Chiu YL, Rana TM. RNAi in human cells: basic structural and functional features of small interfering RNA. Mol Cell 2002;10(3):549-61
  • Franks TM, Lykke-Andersen J. The control of mRNA decapping and P-body formation. Mol Cell 2008;32(5):605-15
  • Gregory RI, Yan KP, Amuthan G, et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004;432(7014):235-40
  • Sand M, Skrygan M, Georgas D, et al. Expression levels of the microRNA maturing microprocessor complex component DGCR8 and the RNA-induced silencing complex (RISC) components Argonaute-1, Argonaute-2, PACT, TARBP1, and TARBP2 in epithelial skin cancer. Mol Carcinog 2012;51(11):916-22
  • Calado A, Treichel N, Muller EC, et al. Exportin-5-mediated nuclear export of eukaryotic elongation factor 1A and tRNA. EMBO J 2002;21(22):6216-24
  • Curtis HJ, Sibley CR, Wood MJ. Mirtrons, an emerging class of atypical miRNA. Wiley Interdiscip Rev RNA 2012;3(5):617-32
  • Schopman NC, Heynen S, Haasnoot J, Berkhout B. A miRNA-tRNA mix-up: tRNA origin of proposed miRNA. RNA Biol 2010;7(5):573-6
  • Lin YT, Sullivan CS. Expanding the role of Drosha to the regulation of viral gene expression. Proc Natl Acad Sci USA 2011;108(27):11229-34
  • Stern-Ginossar N, Elefant N, Zimmermann A, et al. Host immune system gene targeting by a viral miRNA. Science 2007;317(5836):376-81
  • Sigurdsson MI, Smith AV, Bjornsson HT, Jonsson JJ. The distribution of a germline methylation marker suggests a regional mechanism of LINE-1 silencing by the piRNA-PIWI system. BMC Genet 2012;13:31
  • Czauderna F, Fechtner M, Dames S, et al. Structural variations and stabilizing modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 2003;31:2705-16
  • Broering R, Real CI, John MJ, et al. Chemical modifications on siRNAs avoid Toll-like-receptor-mediated activation of the hepatic immune system in vivo and in vitro. Int Immunol 2014;26(1):35-46
  • Deng Y, Wang CC, Choy KW, et al. Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Gene 2014;538(2):217-27
  • Fellmann C, Lowe SW. Stable RNA interference rules for silencing. Nat Cell Biol 2014;16(1):10-18
  • Kirui DK, Mai J, Palange A-L, et al. Transient Mild Hyperthermia Induces E-selectin Mediated Localization of Mesoporous Silicon Vectors in Solid Tumors. PLoS One 2014;9(2):e86489
  • Du Q, Thonberg H, Wang J, et al. A systematic analysis of the silencing effects of an active siRNA at all singlenucleotide mismatched target sites. Nucleic Acids Res 2005;33:1671-7
  • Snove OJr, Holen T. Many commonly used siRNAs risk offtarget activity. Biochem Biophys Res Commun 2004;319:256-63
  • Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference. Nat Biotechnol 2004;22:326-30
  • Jackson AL, Bartz SR, Schelter J, et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003;21:635-7
  • Nishikawa M, Huang L. Nonviral vectors in the new millennium: delivery barriers in gene transfer. Hum Gene Ther 2001;12(8):861-70
  • Naito Y, Yamada T, Ui-Tei K, et al. siDirect: highly effective, target-specific siRNA design software for mammalian RNA interference. Nucleic Acids Res 2004;32:W124-9
  • Zufferey R, Dull T, Mandel RJ, et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 1998;72(12):9873-80
  • Bantounas I. RNA interference and the use of small interfering RNA to study gene function in mammalian systems. J Mol Endocrinol 2004;33:545-57
  • Xie FY. Delivering siRNA to animal disease models for validation of novel drug targets in vivo. PharmaGenomics 2004;28-38
  • Kim B. Inhibition of ocular angiogenesis by siRNA targeting vascular endothelial growth factor pathway genes: therapeutic strategy for herpetic stromal keratitis. Am J Pathol 2004;165:2177-85
  • Song E. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 2005;23:709-17
  • Kennedy S, Wang D, Ruvkun G. A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature 2004;427(6975):645-9
  • Chiu YL, Rana TM. siRNA function in RNAi: a chemical modification analysis. RNA 2003;9(9):1034-48
  • Braasch DA, Jensen S, Liu Y, et al. RNA interference in mammalian cells by chemically-modified RNA. Biochemistry 2003;42(26):7967-75
  • Amarzguioui M, Holen T, Babaie E, Prydz H. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res 2003;31(2):589-95
  • Harborth J, Elbashir SM, Vandenburgh K, et al. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev 2003;13(2):83-105
  • Choung S, Kim YJ, Kim S, et al. Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem Biophys Res Commun 2006;342(3):919-27
  • Hall AH, Wan J, Shaughnessy EE, et al. RNA interference using boranophosphate siRNAs: structure-activity relationships. Nucleic Acids Res 2004;32(20):5991-6000
  • Sheehan D, Lunstad B, Yamada CM, et al. Biochemical properties of phosphonoacetate and thiophosphonoacetate oligodeoxyribonucleotides. Nucleic Acids Res 2003;31(14):4109-18
  • Yamada CM, Dellinger DJ, Caruthers MH. Synthesis and biological activity of phosphonocarboxylate DNA. Nucleosides Nucleotides Nucleic Acids 2007;26(6-7):539-46
  • Perreault DM, Anslyn EV. Unifying the current data on the mechanism of cleavage–transesterification of RNA. Angew Chem Int Ed Engl 1997;36(5):432-50
  • Jackson AL, Burchard J, Leake D, et al. Position-specific chemical modification of siRNAs reduces "off-target" transcript silencing. RNA 2006;12(7):1197-205
  • Odadzic D, Bramsen JB, Smicius R, et al. Synthesis of 2’-O-modified adenosine building blocks and application for RNA interference. Bioorg Med Chem 2008;16(1):518-29
  • Bramsen JB, Laursen MB, Nielsen AF, et al. A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Nucleic Acids Res 2009;37(9):2867-81
  • Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature 2009;7228):426-33
  • Judge AD, Bola G, Lee AC, MacLachlan I. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther 2006;13(3):494-505
  • Wengel J, Petersen M, Nielsen KE, et al. LNA (locked nucleic acid) and the diastereoisomeric alpha-L-LNA: conformational tuning and high-affinity recognition of DNA/RNA targets. Nucleosides Nucleotides Nucleic Acids 2001;20(4-7):389-96
  • Trang P, Medina PP, Wiggins JF, et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene 2010;29(11):1580-7
  • Glud SZ, Bramsen JB, Dagnaes-Hansen F, et al. Naked siLNA-mediated gene silencing of lung bronchoepithelium EGFP expression after intravenous administration. Oligonucleotides 2009;19(2):163-8
  • Mook OR, Baas F, de Wissel MB, Fluiter K. Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo. Mol Cancer Ther 2007;6(3):833-43
  • Elmen J, Thonberg H, Ljungberg K, et al. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res 2005;33(1):439-47
  • Laursen MB, Pakula MM, Gao S, et al. Utilization of unlocked nucleic acid (UNA) to enhance siRNA performance in vitro and in vivo. Mol Biosyst 2010;6(5):862-70
  • Vaish N, Chen F, Seth S, et al. Improved specificity of gene silencing by siRNAs containing unlocked nucleobase analogs. Nucleic Acids Res 2011;39(5):1823-32
  • Nauwelaerts K, Fisher M, Froeyen M, et al. Structural characterization and biological evaluation of small interfering RNAs containing cyclohexenyl nucleosides. J Am Chem Soc 2007;129(30):9340-8
  • Hoshika S, Minakawa N, Shionoya A, et al. Study of modification pattern-RNAi activity relationships by using siRNAs modified with 4’-thioribonucleosides. Chembiochem 2007;8(17):2133-8
  • Fisher M, Abramov M, Van Aerschot A, et al. Inhibition of MDR1 expression with altritol-modified siRNAs. Nucleic Acids Res 2007;35(4):1064-74
  • Peacock H, Kannan A, Beal PA, Burrows CJ. Chemical modification of siRNA bases to probe and enhance RNA interference. J Org Chem 2011;76(18):7295-300
  • Dowler T, Bergeron D, Tedeschi AL, et al. Improvements in siRNA properties mediated by 2’-deoxy-2’-fluoro-beta-D-arabinonucleic acid (FANA). Nucleic Acids Res 2006;34(6):1669-75
  • Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 2009;8(2):129-38
  • Lavan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol 2003;21(10):1184-91
  • Gary DJ, Puri N, Won Y-Y. Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J Control Release 2007;121(1):64-73
  • Lingor P, Michel U, Scholl U, et al. Transfection of "naked" siRNA results in endosomal uptake and metabolic impairment in cultured neurons. Biochem Biophys Res Commun 2004;315(4):1126-33
  • McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 2002;3(10):737-47
  • Pardridge WM. shRNA and siRNA delivery to the brain. Adv Drug Deliv Rev 2007;59(2-3):141-52
  • Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science 2002;296(5567):550-3
  • Patil SD, Rhodes DG, Burgess DJ. DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J 2005;7(1):E61-77
  • Zimmermann TS, Lee AC, Akinc A, et al. RNAi-mediated gene silencing in non-human primates. Nature 2006;441(7089):111-14
  • Kim SH, Jeong JH, Lee SH, et al. Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J Control Release 2008;129(2):107-16
  • Takakura Y, Nishikawa M, Yamashita F, Hashida M. Influence of physicochemical properties on pharmacokinetics of non-viral vectors for gene delivery. J Drug Target 2002;10(2):99-104
  • Shen Y. Advances in the development of siRNA-based therapeutics for cancer. IDrugs 2008;11(8):572-8
  • Shim MS, Kwon YJ. Efficient and targeted delivery of siRNA in vivo. FEBS J 2010;277(23):4814-27
  • Dykxhoorn DM, Novina CD, Sharp PA. Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 2003;4(6):457-67
  • Zhang C, Wang YS, Wu H, et al. Inhibitory efficacy of hypoxia-inducible factor 1alpha short hairpin RNA plasmid DNA-loaded poly (D, L-lactide-co-glycolide) nanoparticles on choroidal neovascularization in a laser-induced rat model. Gene Ther 2010;17(3):338-51
  • Cotrim AP, Baum BJ. Gene therapy: some history, applications, problems, and prospects. Toxicol Pathol 2008;36(1):97-103
  • Li YJ, Zhang YX, Wang PY, et al. Regression of A549 lung cancer tumors by anti-miR-150 vector. Oncol Rep 2012;27(1):129-34
  • Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev 2006;58(14):1532-55
  • Lee M, Kim SW. Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharm Res 2005;22(1):1-10
  • Park TG, Jeong JH, Kim SW. Current status of polymeric gene delivery systems. Adv Drug Deliv Rev 2006;58(4):467-86
  • Takakura Y, Hashida M. Macromolecular drug carrier systems in cancer chemotherapy: macromolecular prodrugs. Crit Rev Oncol Hematol 1995;18(3):207-31
  • Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 2008;126(3):187-204
  • Wadia JS, Dowdy SF. Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer. Adv Drug Deliv Rev 2005;57(4):579-96
  • Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 1988;55(6):1189-93
  • Elliott G, O’Hare P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 1997;88(2):223-33
  • Morris M, Vidal P, Chaloin L, et al. A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res 1997;25(14):2730-6
  • Oehlke J, Scheller A, Wiesner B, et al. Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim Biophys Acta 1998;1414(1):127-39
  • Futaki S, Suzuki T, Ohashi W, et al. Arginine-rich peptides An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 2001;276(8):5836-40
  • El-Aneed A. An overview of current delivery systems in cancer gene therapy. J Control Release 2004;94(1):1-14
  • Wang J, Lu Z, Wientjes MG, Au JL-S. Delivery of siRNA therapeutics: barriers and carriers. AAPS J 2010;12(4):492-503
  • Davidson TJ, Harel S, Arboleda VA, et al. Highly efficient small interfering RNA delivery to primary mammalian neurons induces MicroRNA-like effects before mRNA degradation. J Neurosci 2004;24(45):10040-6
  • Kumar P, Wu H, McBride JL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature 2007;448(7149):39-43
  • Panyam J, Zhou W-Z, Prabha S, et al. Rapid endo-lysosomal escape of poly (DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J 2002;16(10):1217-26
  • Samal SK, Dash M, Van Vlierberghe S, et al. Cationic polymers and their therapeutic potential. Chem Soc Rev 2012;41(21):7147-94
  • Dokka S, Rojanasakul Y. Novel non-endocytic delivery of antisense oligonucleotides. Adv Drug Deliv Rev 2000;44(1):35-49
  • Oishi M, Nagasaki Y, Itaka K, et al. Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile beta-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J Am Chem Soc 2005;127(6):1624-5
  • Liu Y, Tao J, Li Y, et al. Targeting hypoxia-inducible factor-1alpha With Tf–PEI–shRNA complex via transferrin receptor–mediated endocytosis inhibits melanoma growth. Mol Ther 2009;17(2):269-77
  • Schmaljohann D. Thermo-and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 2006;58(15):1655-70
  • Han G, You CC, Kim BJ, et al. Light-regulated release of DNA and its delivery to nuclei by means of photolabile gold nanoparticles. Angew Chem 2006;118(19):3237-41
  • Wolff JA, Rozema DB. Breaking the bonds: non-viral vectors become chemically dynamic. Mol Ther 2008;16(1):8-15
  • Tsai CJ, Zheng J, Nussinov R. Designing a nanotube using naturally occurring protein building blocks. PLoS Comput Biol 2006;2(4):e42
  • Lasic DD. Novel applications of liposomes. Trends Biotechnol 1998;16(7):307-21
  • Lavigne C, Slater K, Gajanayaka N, et al. Influence of lipoplex surface charge on siRNA delivery: application to the in vitro downregulation of CXCR4 HIV-1 co-receptor. Expert Opin Biol Ther 2013;13(7):973-85
  • Hashida M, Kawakami S, Yamashita F. Lipid carrier systems for targeted drug and gene delivery. Chem Pharm Bull(Tokyo) 2005;53(8):871-80
  • Sakurai F, Nishioka T, Saito H, et al. Interaction between DNA-cationic liposome complexes and erythrocytes is an important factor in systemic gene transfer via the intravenous route in mice: the role of the neutral helper lipid. Gene Ther 2001;8(9):677-86
  • Mahato RI, Kawabata K, Nomura T, et al. Physicochemical and pharmacokinetic characteristics of plasmid DNA/cationic liposome complexes. J Pharm Sci 1995;84(11):1267-71
  • Zhu N, Liggitt D, Liu Y, Debs R. Systemic gene expression after intravenous DNA delivery into adult mice. Science 1993;261(5118):209-11
  • Uyechi LS, Gagne L, Thurston G, Szoka FCJr. Mechanism of lipoplex gene delivery in mouse lung: binding and internalization of fluorescent lipid and DNA components. Gene Ther 2001;8(11):828-36
  • Seow Y, Wood MJ. Biological gene delivery vehicles: beyond viral vectors. Mol Ther 2009;17(5):767-77
  • Kawakami S, Sato A, Nishikawa M, et al. Mannose receptor-mediated gene transfer into macrophages using novel mannosylated cationic liposomes. Gene Ther 2000;7(4):292-9
  • Yamada M, Nishikawa M, Kawakami S, et al. Tissue and intrahepatic distribution and subcellular localization of a mannosylated lipoplex after intravenous administration in mice. J Control Release 2004;98(1):157-67
  • Kawakami S, Fumoto S, Nishikawa M, et al. In vivo gene delivery to the liver using novel galactosylated cationic liposomes. Pharm Res 2000;17(3):306-13
  • Cardoso A, Simoes S, De Almeida L, et al. siRNA delivery by a transferrin-associated lipid-based vector: a non-viral strategy to mediate gene silencing. J Gene Med 2007;9(3):170-83
  • Lee CC, MacKay JA, Fréchet JM, Szoka FC. Designing dendrimers for biological applications. Nat Biotechnol 2005;23(12):1517-26
  • Liu M, Fréchet JM. Designing dendrimers for drug delivery. Pharm Sci Technol Today 1999;2(10):393-401
  • Kobayashi H, Brechbiel MW. Dendrimer-based nanosized MRI contrast agents. Curr Pharm Biotechnol 2004;5(6):539-49
  • Kang H, DeLong R, Fisher MH, Juliano RL. Tat-conjugated PAMAM dendrimers as delivery agents for antisense and siRNA oligonucleotides. Pharm Res 2005;22(12):2099-106
  • Li S, Huang L. Gene therapy progress and prospects: non-viral gene therapy by systemic delivery. Gene Ther 2006;13(18):1313-19
  • Braun CS, Vetro JA, Tomalia DA, et al. Structure/function relationships of polyamidoamine/DNA dendrimers as gene delivery vehicles. J Pharm Sci 2005;94(2):423-36
  • Tomalia D, Reyna L, Svenson S. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans 2007;35(1):61
  • Fox ME, Guillaudeu S, Fréchet JM, et al. Synthesis and in vivo antitumor efficacy of PEGylated poly(l-lysine) dendrimer−camptothecin conjugates. Mol Pharm 2009;6(5):1562-72
  • Kaminskas LM, Kelly BD, McLeod VM, et al. Capping methotrexate alpha-carboxyl groups enhances systemic exposure and retains the cytotoxicity of drug conjugated PEGylated polylysine dendrimers. Mol Pharm 2011;8(2):338-49
  • Kaminskas LM, McLeod VM, Kelly BD, et al. A comparison of changes to doxorubicin pharmacokinetics, antitumor activity, and toxicity mediated by PEGylated dendrimer and PEGylated liposome drug delivery systems. Nanomedicine 2012;8(1):103-11
  • Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov 2005;4(7):581-93
  • Gao S, Dagnaes-Hansen F, Nielsen EJ, et al. The effect of chemical modification and nanoparticle formulation on stability and biodistribution of siRNA in mice. Mol Ther 2009;17(7):1225-33
  • Schiffelers RM, Ansari A, Xu J, et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 2004;32(19):e149
  • Feng Y, Hu J, Ma J, et al. RNAi-mediated silencing of VEGF-C inhibits non-small cell lung cancer progression by simultaneously down-regulating the CXCR4, CCR7, VEGFR-2 and VEGFR-3-dependent axes-induced ERK, p38 and AKT signalling pathways. Eur J Cancer 2011;47(15):2353-63
  • Lee SH, Kim SH, Park TG. Intracellular siRNA delivery system using polyelectrolyte complex micelles prepared from VEGF siRNA-PEG conjugate and cationic fusogenic peptide. Biochem Biophys Res Commun 2007;357(2):511-16
  • Merdan T, Callahan J, Petersen H, et al. Pegylated polyethylenimine-Fab’antibody fragment conjugates for targeted gene delivery to human ovarian carcinoma cells. Bioconjug Chem 2003;14(5):989-96
  • Patil ML, Zhang M, Minko T. Multifunctional triblock nanocarrier (PAMAM-PEG-PLL) for the efficient intracellular siRNA delivery and gene silencing. ACS Nano 2011;5(3):1877-87
  • Jeong JH, Mok H, Oh Y-K, Park TG. siRNA conjugate delivery systems. Bioconjug Chem 2008;20(1):5-14
  • Lee H, Lytton-Jean AK, Chen Y, et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol 2012;7(6):389-93
  • Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 2009;61(2):158-71
  • Suk JS, Lai SK, Boylan NJ, et al. Rapid transport of muco-inert nanoparticles in cystic fibrosis sputum treated with N-acetyl cysteine. Nanomedicine 2011;6(2):365-75
  • Ming X. Cellular delivery of siRNA and antisense oligonucleotides via receptor-mediated endocytosis. Expert Opin Drug Deliv 2011;8(4):435-49
  • McNamara JOII, Andrechek ER, Wang Y, et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 2006;24(8):1005-15
  • Kelly C, Jefferies C, Cryan S-A. Targeted liposomal drug delivery to monocytes and macrophages. J Drug Deliv 2011;2011:727241
  • Wang Z, Chui W-K, Ho PC. Integrin targeted drug and gene delivery. Expert Opin Drug Deliv 2010;7(2):159-71
  • Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004;432(7014):173-8
  • Chiu S-J, Ueno NT, Lee RJ. Tumor-targeted gene delivery via anti-HER2 antibody (trastuzumab, Herceptin®) conjugated polyethylenimine. J Control Release 2004;97(2):357-69
  • Trubetskoy VS, Torchilin VP, Kennel SJ, Huang L. Use of N-terminal modified poly (L-lysine)-antibody conjugate as a carrier for targeted gene delivery in mouse lung endothelial cells. Bioconjug Chem 1992;3(4):323-7
  • Meade BR, Dowdy SF. Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Adv Drug Deliv Rev 2007;59(2):134-40
  • Zhuo RX, Du B, Lu ZR. In vitro release of 5-fluorouracil with cyclic core dendritic polymer. J Control Release 1999;57(3):249-57
  • Qiu LY, Bae YH. Polymer architecture and drug delivery. Pharm Res 2006;23(1):1-30
  • Rider TH, Zook CE, Boettcher TL, et al. Broad-spectrum antiviral therapeutics. PLoS One 2011;6(7):e22572
  • Aigner A. Transkingdom RNA interference (tkRNAi) as a new delivery tool for therapeutic RNA. Expert Opin Biol Ther 2009;9(12):1533-42
  • Zender L, Hutker S, Liedtke C, et al. Caspase 8 small interfering RNA prevents acute liver failure in mice. Proc Natl Acad Sci USA 2003;100:7797-802
  • Song E, Lee S, Wang J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 2003;9:347-51
  • McCaffrey AP, Meuse L, Pham TT, et al. RNA interference in adult mice. Nature 2002;418:38-9
  • Tompkins SM, Lo C, Tumpey TM, Epstein SL. Protection against lethal influenza virus challenge by RNA interference in vivo. Proc Natl Acad Sci USA 2004;101:8682-6
  • Ge Q, Filip L, Bai A, et al. Inhibition of influenza virus production in virus infected mice by RNA interference. Proc Natl Acad Sci USA 2004;101:8676-81
  • Bitko V, Musiyenko A, Shulyayeva O, Barik S. Inhibition of respiratory viruses by nasally administered siRNA. Nat Med 2005;11:50-5
  • Palliser D, Chowdhury D, Wang Q, et al. An siRNA-based microbicide protects mice from lethal Herpes simplex virus 2 infection. Nature 2006;439:89-94
  • Li BJ, Tang Q, Cheng D, et al. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat Med 2005;11(9):944-51
  • Haussecker D, Kay MA. miR-122 continues to blaze the trail for microRNA therapeutics. Mol Ther 2010;18(2):240-2
  • Bitko V, Musiyenko A, Shulyayeva O, Barik S. Inhibition of respiratory viruses by nasally administered siRNA. Nat Med 2005;11(1):50-5
  • Cohen H, Levy RJ, Gao J, et al. Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther 2000;7(22):1896-905
  • Wang JC, Lai S, Guo X, et al. Attenuation of fibrosis in vitro and in vivo with SPARC siRNA. Arthritis Res Ther 2010;12(2):R60
  • Rosas-Taraco AG, Higgins DM, Sanchez-Campillo J, et al. Local pulmonary immunotherapy with siRNA targeting TGFbeta1 enhances antimicrobial capacity in Mycobacterium tuberculosis infected mice. Tuberculosis 2011;91(1):98-106
  • Rosas-Taraco AG, Higgins DM, Sanchez-Campillo J, et al. Intrapulmonary delivery of XCL1-targeting small interfering RNA in mice chronically infected with Mycobacterium tuberculosis. Am J Respir Cell Mol Biol 2009;41(2):136-45
  • Moschos SA, Jones SW, Perry MM, et al. Lung delivery studies using siRNA conjugated to TAT (48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug Chem 2007;18(5):1450-9
  • Gutbier B, Kube SM, Reppe K, et al. RNAi-mediated suppression of constitutive pulmonary gene expression by small interfering RNA in mice. Pulm Pharmacol Ther 2010;23(4):334-44
  • Merkel OM, Beyerle A, Librizzi D, et al. Nonviral siRNA delivery to the lung: Investigation of PEG − PEI polyplexes and their in vivo performance. Mol Pharm 2009;6(4):1246-60
  • Garbuzenko OB, Saad M, Betigeri S, et al. Intratracheal versus intravenous liposomal delivery of siRNA, antisense oligonucleotides and anticancer drug. Pharm Res 2009;26(2):382-94
  • Beyerle A, Braun A, Merkel O, et al. Comparative in vivo study of poly (ethylene imine)/siRNA complexes for pulmonary delivery in mice. J Control Release 2011;151(1):51-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.