147
Views
15
CrossRef citations to date
0
Altmetric
Review

Dendritic cell immunotherapy for breast cancer

, &
Pages 591-604 | Published online: 17 May 2006

Bibliography

  • LEWISON EF: The surgical treatment of breast cancer: an historical and collective review. Surgery (1953) 34(5):904-953.
  • FISHER B, RAVDIN RG, AUSMAN RK et al.: Surgical adjuvant chemotherapy in cancer of the breast: results of a decade of cooperative investigation. Ann. Surg. (1968) 168(3):337-356.
  • FLETCHER GH: Local results of irradiation in the primary management of localized breast cancer. Cancer (1972) 29(3):545-551.
  • THERASSE P, PICCART M, VAN DE VELDE CJ, JASSEM J: The EORTC Breast Cancer Group: 40 years of research contributing to improve breast cancer management. Eur. J. Cancer (2002) 38(Suppl. 4):S39-S43.
  • LESPAGNARD L, GANCBERG D, ROUAS G et al.: Tumor-infiltrating dendritic cells in adenocarcinomas of the breast: a study of 143 neoplasms with a correlation to usual prognostic factors and to clinical outcome. Int. J. Cancer (1999) 84(3):309-314.
  • IWAMOTO M, SHINOHARA H, MIYAMOTO A et al.: Prognostic value of tumor-infiltrating dendritic cells expressing CD83 in human breast carcinomas. Int. J. Cancer (2003) 104(1):92-97.
  • BELL D, CHOMARAT P, BROYLES D et al.: In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J. Exp. Med. (1999) 190(10):1417-1426.
  • GABRILOVICH DI, CORAK J, CIERNIK IF, KAVANAUGH D, CARBONE DP: Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin. Cancer Res. (1997) 3(3):483-490.
  • DELLA BELLA S, GENNARO M, VACCARI M et al.: Altered maturation of peripheral blood dendritic cells in patients with breast cancer. Br. J. Cancer (2003) 89(8):1463-1472.
  • PINZON-CHARRY A, MAXWELL T, MCGUCKIN MA et al.: Spontaneous apoptosis of blood dendritic cells in patients with breast cancer. Breast Cancer Res. (2006) 8:R5.
  • PEDERSEN AE, THORN M, GAD M et al.: Phenotypic and functional characterization of clinical grade dendritic cells generated from patients with advanced breast cancer for therapeutic vaccination. Scand. J. Immunol. (2005) 61(2):147-156.
  • SCANLAN MJ, JAGER D: Challenges to the development of antigen-specific breast cancer vaccines. Breast Cancer Res. (2001) 3(2):95-98.
  • HADDEN JW: The immunology and immunotherapy of breast cancer: an update. Int. J. Immunopharmacol. (1999) 21(2):79-101.
  • FISHER B: Laboratory and clinical research in breast cancer-a personal adventure: the David A. Karnofsky memorial lecture. Cancer Res. (1980) 40(11):3863-3874.
  • FISHER ER, GREGORIO R, REDMOND C, DEKKER A, FISHER B: Pathologic findings from the national surgical adjuvant breast project (protocol no. 4). II. The significance of regional node histology other than sinus histiocytosis in invasive mammary cancer. Am. J. Clin. Pathol. (1976) 65(1):21-30.
  • MENARD S, TOMASIC G, CASALINI P et al.: Lymphoid infiltration as a prognostic variable for early-onset breast carcinomas. Clin. Cancer Res. (1997) 3(5):817-819.
  • BAXEVANIS CN, DEDOUSSIS GV, PAPADOPOULOS NG et al.: Tumor specific cytolysis by tumor infiltrating lymphocytes in breast cancer. Cancer (1994) 74(4):1275-1282.
  • DISIS ML, CALENOFF E, MCLAUGHLIN G et al.: Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer. Cancer Res. (1994) 54(1):16-20.
  • JEROME KR, BARND DL, BENDT KM et al.: Cytotoxic T-lymphocytes derived from patients with breast adenocarcinoma recognize an epitope present on the protein core of a mucin molecule preferentially expressed by malignant cells. Cancer Res. (1991) 51(11):2908-2916.
  • TUTTLE TM, ANDERSON BW, THOMPSON WE et al.: Proliferative and cytokine responses to class II HER-2/neu-associated peptides in breast cancer patients. Clin. Cancer Res. (1998) 4(8):2015-2024.
  • SOTIROPOULOU PA, PEREZ SA, VOELTER V et al.: Natural CD8+ T-cell responses against MHC class I epitopes of the HER-2/neu oncoprotein in patients with epithelial tumors. Cancer Immunol. Immunother. (2003) 52(12):771-779.
  • FEUERER M, ROCHA M, BAI L et al.: Enrichment of memory T cells and other profound immunological changes in the bone marrow from untreated breast cancer patients. Int. J. Cancer (2001) 92(1):96-105.
  • VON MENSDORFF-POUILLY S, VERSTRAETEN AA, KENEMANS P et al.: Survival in early breast cancer patients is favorably influenced by a natural humoral immune response to polymorphic epithelial mucin. J. Clin. Oncol. (2000) 18(3):574-583.
  • NISTICO P, MOTTOLESE M, CASCIOLI S et al.: Host immunosurveillance contributes to the control of erbB-2 overexpression in HLA-A2-breast-cancer patients. Int. J. Cancer (1999) 84(6):598-603.
  • CAMP BJ, DYHRMAN ST, MEMOLI VA, MOTT LA, BARTH RJ JR: in situ cytokine production by breast cancer tumor-infiltrating lymphocytes. Ann. Surg. Oncol. (1996) 3(2):176-184.
  • VENETSANAKOS E, BECKMAN I, BRADLEY J, SKINNER JM: High incidence of interleukin 10 mRNA but not interleukin 2 mRNA detected in human breast tumours. Br. J. Cancer (1997) 75(12):1826-1830.
  • LIYANAGE UK, MOORE TT, JOO HG et al.: Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J. Immunol. (2002) 169(5):2756-2761.
  • WOLF AM, WOLF D, STEURER M et al.: Increase of regulatory T cells in the peripheral blood of cancer patients. Clin. Cancer Res. (2003) 9(2):606-612.
  • LEONG PP, MOHAMMAD R, IBRAHIM N et al.: Phenotyping of lymphocytes expressing regulatory and effector markers in infiltrating ductal carcinoma of the breast. Immunol. Lett. (2006) 102(2):229-236.
  • GUTIERREZ LS, ELIZA M, NIVEN-FAIRCHILD T, NAFTOLIN F, MOR G: The Fas/Fas-ligand system: a mechanism for immune evasion in human breast carcinomas. Breast Cancer Res. Treat. (1999) 54(3):245-253.
  • SHEEN-CHEN SM, CHEN HS, ENG HL, CHEN WJ: Circulating soluble Fas in patients with breast cancer. World J. Surg. (2003) 27(1):10-13.
  • PINZON-CHARRY A, MAXWELL T, LOPEZ JA: Dendritic cell dysfunction in cancer: A mechanism for immunosuppression. Immunol. Cell Biol. (2005) 83(5):451-461.
  • LISSONI P, VIGORE L, FERRANTI R et al.: Circulating dendritic cells in early and advanced cancer patients: diminished percent in the metastatic disease. J. Biol. Regul. Homeost. Agents (1999) 13(4):216-219.
  • SATTHAPORN S, ROBINS A, VASSANASIRI W et al.: Dendritic cells are dysfunctional in patients with operable breast cancer. Cancer Immunol. Immunother. (2004) 53(6):510-518.
  • PINZON-CHARRY A, HO C, LAHERTY R et al.: A population of HLA-DR+ immature cells accumulate in the blood dendritic cell compartment of patients with different types of cancer. Neoplasia (2005) 7(12):1123-1132.
  • PINZON-CHARRY A, MAXWELL T, PRATO S et al.: HLA-DR+ immature cells exhibit reduced antigen presenting cell function but respond to CD40 stimulation. Neoplasia (2005) 7(12):1112-1122.
  • BARRATT-BOYES SM: Making the most of mucin: a novel target for tumor immunotherapy. Cancer Immunol. Immunother. (1996) 43(3):142-151.
  • BALDUS SE, WIENAND JR, WERNER JP et al.: Expression of MUC1, MUC2 and oligosaccharide epitopes in breast cancer: prognostic significance of a sialylated MUC1 epitope. Int. J. Oncol. (2005) 27(5):1289-1297.
  • KOTERA Y, FONTENOT JD, PECHER G, METZGAR RS, FINN OJ: Humoral immunity against a tandem repeat epitope of human mucin MUC-1 in sera from breast, pancreatic, and colon cancer patients. Cancer Res. (1994) 54(11):2856-2860.
  • FEUERER M, BECKHOVE P, BAI L et al.: Therapy of human tumors in NOD/SCID mice with patient-derived reactivated memory T cells from bone marrow. Nat. Med. (2001) 7(4):452-458.
  • BECKHOVE P, FEUERER M, DOLENC M et al.: Specifically activated memory T cell subsets from cancer patients recognize and reject xenotransplanted autologous tumors. J. Clin. Invest. (2004) 114(1):67-76.
  • SLAMON DJ, LEYLAND-JONES B, SHAK S et al.: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. (2001) 344(11):783-792.
  • SLAMON DJ, CLARK GM, WONG SG et al.: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science (1987) 235(4785):177-182.
  • KNUTSON KL, SCHIFFMAN K, DISIS ML: Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients. J. Clin. Invest. (2001) 107(4):477-484.
  • KIRKPATRICK KL, CLARK G, GHILCHICK M, NEWBOLD RF, MOKBEL K: hTERT mRNA expression correlates with telomerase activity in human breast cancer. Eur. J. Surg. Oncol. (2003) 29(4):321-326.
  • POREMBA C, HEINE B, DIALLO R et al.: Telomerase as a prognostic marker in breast cancer: high-throughput tissue microarray analysis of hTERT and hTR. J. Pathol. (2002) 198(2):181-189.
  • AMARNATH SM, DYER CE, RAMESH A et al.: In vitro quantification of the cytotoxic T lymphocyte response against human telomerase reverse transcriptase in breast cancer. Int. J. Oncol. (2004) 25(1):211-217.
  • RUNNEBAUM IB, NAGARAJAN M, BOWMAN M, SOTO D, SUKUMAR S: Mutations in p53 as potential molecular markers for human breast cancer. Proc. Natl. Acad. Sci. USA (1991) 88(23):10657-10661.
  • NIKITINA EY, CLARK JI, VAN BEYNEN J et al.: Dendritic cells transduced with full-length wild-type p53 generate antitumor cytotoxic T lymphocytes from peripheral blood of cancer patients. Clin. Cancer Res. (2001) 7(1):127-135.
  • NASU S, YAGIHASHI A, IZAWA A et al.: Survivin mRNA expression in patients with breast cancer. Anticancer Res. (2002) 22(3):1839-1843.
  • ANDERSEN MH, PEDERSEN LO, CAPELLER B et al.: Spontaneous cytotoxic T-cell responses against survivin-derived MHC class I-restricted T-cell epitopes in situ as well as ex vivo in cancer patients. Cancer Res. (2001) 61(16):5964-5968.
  • LIU Y, CHIRIVA-INTERNATI M, YOU C et al.: Use and specificity of breast cancer antigen/milk protein BA46 for generating anti-self-cytotoxic T lymphocytes by recombinant adeno-associated virus-based gene loading of dendritic cells. Cancer Gene Ther. (2005) 12(3):304-312.
  • KIM DK, LEE TV, CASTILLEJA A et al.: Folate binding protein peptide 191-199 presented on dendritic cells can stimulate CTL from ovarian and breast cancer patients. Anticancer Res. (1999) 19(4B):2907-2916.
  • FIGDOR CG, DE VRIES IJ, LESTERHUIS WJ, MELIEF CJ: Dendritic cell immunotherapy: mapping the way. Nat. Med. (2004) 10(5):475-480.
  • LOPEZ JA, HART DN: Current issues in dendritic cell cancer immunotherapy. Curr. Opin. Mol. Ther. (2002) 4(1):54-63.
  • EDGHILL-SMITH Y, GOLDING H, MANISCHEWITZ J et al.: Smallpox vaccine-induced antibodies are necessary and sufficient for protection against monkeypox virus. Nat. Med. (2005) 11(7):740-747.
  • OVERWIJK WW, THEORET MR, FINKELSTEIN SE et al.: Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J. Exp. Med. (2003) 198(4):569-580.
  • YU P, ROWLEY DA, FU YX, SCHREIBER H: The role of stroma in immune recognition and destruction of well-established solid tumors. Curr. Opin. Immunol. (2006) 18(2):226-231.
  • RIDGWAY D: The first 1000 dendritic cell vaccinees. Cancer Invest. (2003) 21(6):873-886.
  • YU P, LEE Y, LIU W et al.: Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J. Exp. Med. (2005) 201(5):779-791.
  • MULLER AJ, DUHADAWAY JB, DONOVER PS, SUTANTO-WARD E, PRENDERGAST GC: Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat. Med. (2005) 11(3):312-319.
  • DANNULL J, SU Z, RIZZIERI D et al.: Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest. (2005) 115(12):3623-3633.
  • PHAN GQ, YANG JC, SHERRY RM et al.: Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl. Acad. Sci. USA (2003) 100(14):8372-8377.
  • KICHLER-LAKOMY C, BUDINSKY AC, WOLFRAM R et al.: Deficiences in phenotype expression and function of dentritic cells from patients with early breast cancer. Eur. J. Med. Res. (2006) 11(1):7-12.
  • MATTES J, HULETT M, XIE W et al.: Immunotherapy of cytotoxic T cell-resistant tumors by T helper 2 cells: an eotaxin and STAT6-dependent process. J. Exp. Med. (2003) 197(3):387-393.
  • GILBOA E: The promise of cancer vaccines. Nat. Rev. Cancer (2004) 4(5):401-411.
  • ELLIOTT SL, PYE S, LE T et al.: Peptide based cytotoxic T-cell vaccines; delivery of multiple epitopes, help, memory and problems. Vaccine (1999) 17(15-16):2009-2019.
  • FUCHS EJ, MATZINGER P: Is cancer dangerous to the immune system? Semin. Immunol. (1996) 8(5):271-280.
  • YANG J, HUCK SP, MCHUGH RS, HERMANS IF, RONCHESE F: Perforin-dependent elimination of dendritic cells regulates the expansion of antigen-specific CD8+ T cells in vivo. Proc. Natl. Acad. Sci. USA (2006) 103(1):147-152.
  • FAY JW, PALUCKA AK, PACZESNY S et al.: Long-term outcomes in patients with metastatic melanoma vaccinated with melanoma peptide-pulsed CD34(+) progenitor-derived dendritic cells. Cancer Immunol. Immunother. (2005):1-10.
  • NESTLE FO, ALIJAGIC S, GILLIET M et al.: Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat. Med. (1998) 4(3):328-332.
  • O’ROURKE MG, JOHNSON M, LANAGAN C et al.: Durable complete clinical responses in a Phase I/II trial using an autologous melanoma cell/dendritic cell vaccine. Cancer Immunol. Immunother. (2003) 52(6):387-395.
  • BROSSART P, WIRTHS S, STUHLER G et al.: Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood (2000) 96(9):3102-3108.
  • GERMEAU C, MA W, SCHIAVETTI F et al.: High frequency of antitumor T cells in the blood of melanoma patients before and after vaccination with tumor antigens. J. Exp. Med. (2005) 201(2):241-248.
  • SCHREIBER H, WU TH, NACHMAN J, KAST WM: Immunodominance and tumor escape. Semin. Cancer Biol. (2002) 12(1):25-31.
  • THURNER B, HAENDLE I, RODER C et al.: Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med. (1999) 190(11):1669-1678.
  • VAN DER BRUGGEN P, TRAVERSARI C, CHOMEZ P et al.: A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science (1991) 254:1643.
  • WOLFEL T, HAUER M, SCHNEIDER J et al.: A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science (1995) 269(5228):1281-1284.
  • KHONG HT, RESTIFO NP: Natural selection of tumor variants in the generation of ‘tumor escape’ phenotypes. Nat. Immun. (2002) 3(11):999-1005.
  • DONTU G, ABDALLAH WM, FOLEY JM et al.: In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. (2003) 17(10):1253-1270.
  • REYNOLDS BA, WEISS S: Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science (1992) 255(5052):1707-1710.
  • GILBOA E: The risk of autoimmunity associated with tumor immunotherapy. Nat. Immun. (2001) 2(9):789-792.
  • DEES EC, MCKINNON KP, KUHNS JJ et al.: Dendritic cells can be rapidly expanded ex vivo and safely administered in patients with metastatic breast cancer. Cancer Immunol. Immunother. (2004) 53(9):777-785.
  • GONG J, AVIGAN D, CHEN D et al.: Activation of antitumor cytotoxic T lymphocytes by fusions of human dendritic cells and breast carcinoma cells. Proc. Natl. Acad. Sci. USA (2000) 97(6):2715-2718.
  • NEIDHARDT-BERARD EM, BERARD F, BANCHEREAU J, PALUCKA AK: Dendritic cells loaded with killed breast cancer cells induce differentiation of tumor-specific cytotoxic T lymphocytes. Breast Cancer Res. (2004) 6(4):R322-R328.
  • TRIOZZI PL, KHURRAM R, ALDRICH WA et al.: Intratumoral injection of dendritic cells derived in vitro in patients with metastatic cancer. Cancer (2000) 89(12):2646-2654.
  • SVANE IM, PEDERSEN AE, JOHNSEN HE et al.: Vaccination with p53-peptide-pulsed dendritic cells, of patients with advanced breast cancer: report from a Phase I study. Cancer Immunol. Immunother. (2004) 53(7):633-641.
  • DHODAPKAR MV, STEINMAN RM, KRASOVSKY J, MUNZ C, BHARDWAJ N: Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med. (2001) 193(2):233-238.
  • PECHER G, HARING A, KAISER L, THIEL E: Mucin gene (MUC1) transfected dendritic cells as vaccine: results of a Phase I/II clinical trial. Cancer Immunol. Immunother. (2002) 51(11-12):669-673.
  • LOVELAND BE, ZHAO A, WHITE S et al.: Mannan-MUC1-pulsed dendritic cell immunotherapy: a Phase I trial in patients with adenocarcinoma. Clin. Cancer Res. (2006) 12(3 Pt 1):869-877.
  • MEYER ZUM BUSCHENFELDE C, METZGER J, HERMANN C et al.: The generation of both t killer and th cell clones specific for the tumor-associated antigen her2 using retrovirally transduced dendritic cells. J. Immunol. (2001) 167(3):1712-1719.
  • SAKAI Y, MORRISON BJ, BURKE JD et al.: Vaccination by genetically modified dendritic cells expressing a truncated neu oncogene prevents development of breast cancer in transgenic mice. Cancer Res. (2004) 64(21):8022-8028.
  • KOBAYASHI T, SHINOHARA H, TOYODA M, IWAMOTO S, TANIGAWA N: Regression of lymph node metastases by immunotherapy using autologous breast tumor-lysate pulsed dendritic cells: report of a case. Surg. Today (2001) 31(6):513-516.
  • AVIGAN D, VASIR B, GONG J et al.: Fusion cell vaccination of patients with metastatic breast and renal cancer induces immunological and clinical responses. Clin. Cancer Res. (2004) 10(14):4699-4708.
  • SU Z, DANNULL J, HEISER A et al.: Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res. (2003) 63(9):2127-2133.
  • LAKE RA, ROBINSON BW: Immunotherapy and chemotherapy-a practical partnership. Nat. Rev. Cancer (2005) 5(5):397-405.
  • EMENS LA, REILLY RT, JAFFEE EM: Augmenting the potency of breast cancer vaccines: combined modality immunotherapy. Breast Dis. (2004) 20:13-24.
  • YU B, KUSMARTSEV S, CHENG F et al.: Effective combination of chemotherapy and dendritic cell administration for the treatment of advanced-stage experimental breast cancer. Clin. Cancer Res. (2003) 9(1):285-294.
  • EMENS LA, JAFFEE EM: Leveraging the activity of tumor vaccines with cytotoxic chemotherapy. Cancer Res. (2005) 65(18):8059-8064.
  • WHEELER CJ, DAS A, LIU G, YU JS, BLACK KL: Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination. Clin. Cancer Res. (2004) 10(16):5316-5326.
  • GRUNEBACH F, MULLER MR, BROSSART P: New developments in dendritic cell-based vaccinations: RNA translated into clinics. Cancer Immunol. Immunother. (2005) 54(6):517-525.
  • HEISER A, MAURICE MA, YANCEY DR et al.: Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected with amplified tumor RNA. J. Immunol. (2001) 166(5):2953-2960.
  • AL-HAJJ M, CLARKE MF: Self-renewal and solid tumor stem cells. Oncogene (2004) 23(43):7274-7282.
  • STINGL J, EIREW P, RICKETSON I et al.: Purification and unique properties of mammary epithelial stem cells. Nature (2006) 439(7079):993-997.
  • PONTI D, COSTA A, ZAFFARONI N et al.: Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. (2005) 65(13):5506-5511.
  • SMALLEY M, ASHWORTH A: Stem cells and breast cancer: a field in transit. Nat. Rev. Cancer (2003) 3(11):832-844.
  • HODGE JW: Carcinoembryonic antigen as a target for cancer vaccines. Cancer Immunol. Immunother. (1996) 43(3):127-134.
  • JAGER D, STOCKERT E, GURE AO et al.: Identification of a tissue-specific putative transcription factor in breast tissue by serological screening of a breast cancer library. Cancer Res. (2001) 61(5):2055-2061.
  • SAHIN U, TURECI O, CHEN YT et al.: Expression of multiple cancer/testis (CT) antigens in breast cancer and melanoma: basis for polyvalent CT vaccine strategies. Int. J. Cancer (1998) 78(3):387-389.
  • CHEN YT, GURE AO, TSANG S et al.: Identification of multiple cancer/testis antigens by allogeneic antibody screening of a melanoma cell line library. Proc. Natl. Acad. Sci. USA (1998) 95(12):6919-6923.
  • SCANLAN MJ, GOUT I, GORDON CM et al.: Humoral immunity to human breast cancer: antigen definition and quantitative analysis of mRNA expression. Cancer Immun. (2001) 1:4.
  • WATSON MA, FLEMING TP: Mammaglobin, a mammary-specific member of the uteroglobin gene family, is overexpressed in human breast cancer. Cancer Res. (1996) 56(4):860-865.
  • LAROCCA D, PETERSON JA, URREA R et al.: A Mr 46,000 human milk fat globule protein that is highly expressed in human breast tumors contains Factor VIII-like domains. Cancer Res. (1991) 51(18):4994-4998.
  • VONDERHEIDE RH, DOMCHEK SM, SCHULTZE JL et al.: Vaccination of cancer patients against telomerase induces functional antitumor CD8+ T lymphocytes. Clin. Cancer Res. (2004) 10(3):828-839.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.