344
Views
58
CrossRef citations to date
0
Altmetric
Review

The potential of cord blood stem cells for use in regenerative medicine

, PhD, , , PhD & , PhD
Pages 1311-1322 | Published online: 29 Aug 2007

Bibliography

  • MCGUCKIN C, FORRAZ N, BARADEZ MO et al.: Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Prolif. (2005) 38:245-255.
  • KOGLER G, SENSKEN S, AIREY JA et al.: A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J. Exp. Med. (2004) 200(2):123-135.
  • WAGNER W, WEIN F, SECKINGER A: Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue and umbilical cord blood. Exp. Hematol. (2005) 22:1402-1416.
  • SARUGASSER R, LIKORISH D, BAKSH D, HOSSEINI M, DAVIES JE: Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitor cells. Stem Cells (2005) 23:220-229.
  • TONDREAU T, MEULEMAN N, DELFORGE A et al.: Mesenchymal stem cells derived from CD133-positive cells in mobilized blood and cord blood: proliferation, Oct 4 expression and plasticity. Stem Cells (2005) 23:1105-1112.
  • TRAGGAI E, CHICHA L, MAZZUCHELLI L et al.: Development of a human adaptive immune system in cord blood cell-transplanted mice. Science (2004) 304:14-107.
  • FURFARO MEK, GABALLA MA: Do adult stem cells ameliorate the damaged myocardium? Is human cord blood a potential source of stem cells? Curr. Vasc. Pharm. (2007) 5:27-44.
  • MA N, STAMM C, KAMINSKI A et al.: Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid mice. Cardiovasc. Res. (2005) 66:45-54.
  • AMADO LC, SALIARIS AP, SCHULERI KH et al.: Cardiac repair with intramyocardial injection of mesenchymal stem cells after myocardial infarction. Proc. Natl. Acad. Sci. USA (2005) 102:11474-11479.
  • SUNKOMAT JNE, GOLDMAN S, HARRIS DT et al.: Cord blood-derived MNCs delivered intracoronary contribute differently to vascularization compared to CD34+ cells in the rat model of acute ischemia. Stem Cells (2007) (In Press).
  • BOTTA R, GAO E, STASSI G et al.: Heart infarct in NOD-SCID mice: therapeutic vasculogenesis by transplantation of human CD34+ cells ad low dose CD34+KDR+ cells. FASEB J. (2004) 18:1392-1394.
  • HENNING RJ, ABU-ALI H, BALIS JU et al.: Human umbilical cord blood mononuclear cells for treatment of acute myocardial infarction. Cell Transplant. (2004) 13:729-739.
  • CHEN HK, HUNG HF, SHYU KG et al.: Combined cord blood cells and gene therapy enhances angiogenesis and improves cardiac performance in mouse after acute myocardial infarction. Eur. J. Clin. Invest. (2005) 35:677-686.
  • HIRATA Y, SATA M, MOTOMURA N et al.: Human umbilical cord blood cells improve cardiac function after myocardial infarction. Biochem. Biophys. Res. Commun. (2005) 327:609-614.
  • KIM BO, TIAN H, PRASONGSUKARN K et al.: Cell transplantation improves ventricular function after a myocardial infarction: a preclinical study of human unrestricted somatic stem cells in a porcine model. Circulation (2006) 112(9 Suppl.):196-204.
  • LEOR J, GUETTA E, FEINBERG MS et al.: Human umbilical cord blood-derived CD133+ cells enhance function and repair of the infracted myocardium. Stem Cells (2006) 24(3):772-780.
  • BONNANO G, MARIOTTI A, PROCOLI A et al.: Human cord blood CD133+ cells imunoselected by a clinical-grade apparatus differentiate in vitro into endothelial and cardiomyocyte-like cells. Transfusion (2007) 47:280-289.
  • SCHMIDT D, BREYMANN Y, WEBER A et al.: Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts. Soc. Thorac. Surg. (2004) 78:2094-2098.
  • MURGA M, YAO L, TOSATO G: Derivation of endothelial cells from CD34- umbilical cord blood. Stem Cells (2004) 22:385-395.
  • HOERSTRUP SP, KADNER A, BREYMANN CI et al.: Living, autologous pulmonary artery conduits tissue engineered from human umbilical cord cells. Ann. Thorac. Surg. (2002) 74:46-52.
  • SCHMIDT D, MOL A, NEUENSCHWANDER S et al.: Living patches engineered from human umbilical cord derived fibroblasts and endothelial progenitor cells. Eur. J. Cardiothorac. Surg. (2005) 27:795-800.
  • MUROHARA T, IKEDA H, DUAN A et al.: Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J. Clin. Invest. (2000) 105:1527-1536.
  • GOLDBERG JL, LAUGHLIN MJ: UC blood hematopoietic stem cells and therapeutic angiogenesis. Cytotherapy (2007) 9(1):4-13.
  • NIEDA M, NICOL A, DENNING-KENDALL P et al.: Endothelial cell precursors are normal components of human umbilical cord blood. Br. J. Hematol. (1997) 98:775-777.
  • MUROHARA T: Therapeutic vasculogenesis using human cord blood-derived endothelial progenitors. Trends Cardiovasc. Med. (2001) 11:303-307.
  • IKEDA Y, FUKADA N, WADA M et al.: Development of angiogenic cell and gene therapy by transplantation of umbilical cord blood with vascular endothelial growth factor gene. Hypertens. Res. (2004) 27(2):119-128.
  • CHO S-W, GWAK S-J, KANG S-W et al.: Enhancement of angiogenic efficacy of human cord blood cell transplantation. Tissue Eng. (2006) 12(6):1651-1661.
  • FINNEY MR, GRECO NJ, HAYNESWORTH SE et al.: Direct comparison of umbilical cord blood versus bone marrow-derived endothelial precursor cells in mediating neovascularization in response to vascular ischemia. Biol. Blood Marrow Transplant. (2006) 12:585-593.
  • PESCE M, ORLANDI A, IACHINIOTO MG et al.: Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissue. Circ. Res. (2003) 93:51-62.
  • SCHMIDT D, MOL A, ODERMATT B et al.: Engineering of biologically active living heart valve leaflets using human umbilical cord-derived progenitor cells. Tissue Eng. (2006) 12(11):3223-3232.
  • CANIZO MC, LOZANO F, GONZALEZ-PORRAS JR et al.: Peripheral endothelial progenitor cells (CD133+) for therapeutic vasculogenesis in a patient with critical limb ischemia. One year follow-up. Cytotherapy (2007) 9(1):99-102.
  • VOLTARELLI JC, COURI CEB, STRACIERI ABP et al.: Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed Type 1 diabetes mellitus. JAMA (2007) 297(14):1568-1576.
  • HALLER MJ, COOPER SC, BRUSCO T et al.: Autologous cord blood transfusion associated with prolonged honeymoon in a child with Type 1 diabetes. Diabetes (2005) 53(Suppl. 1):Poster A485.
  • ENDE N, CHEN R, REDDI AS: Effect of human umbilical cord blood cells on glycemia and insulinitis in Type 1 diabetic mice. Biochem. Biophys. Res. Commun. (2004) 325:665-669.
  • ENDE N, CHEN R, MACK R: NOD/LtJ Type I diabetes in mice and the effect of stem cells (Berashis) derived from human umbilical cord blood. J. Med. (2002) 33:181-187.
  • ENDE N, CHEN R, REDDI AS: Transplantation of human umbilical cord blood cells improves glycemia and glomerular hypertrophy in Type 2 diabetic mice. Biochem. Biophys. Res. Commun. (2004) 321:168-171.
  • SUN B, ROH K-H, LEE S-R, LEE Y-S, KANG K-S: Induction of human umbilical cord blood-derived stem cells with embryonic stem cell phenotypes into insulin producing islet-like structures. Biochem. Biophys. Res. Commun. (2007) 354(4):919-923.
  • MCGUCKIN CP, FORRAZ N, ALLOUARD Q, PETTENGELL R: Umbilical cord blood stem cells can expand hematopoietic and neuroglial progenitors in vitro. Exp. Cell Res. (2004) 295:350-359.
  • JANG YK, PARK JJ, LEE MC et al.: Retinoic acid-mediated induction of neurons and glial cells from human umbilical cord-derived hematopoietic stem cells. J. Neurosci. Res. (2004) 75:573-584.
  • BUZANSKA L, JURGA M, STACHOWIAK EK, STACHOWIAK MK, DOMANSKA-JANIK K: Neural stem-like cell line derived from a nonhematopoietic population of human umbilical cord blood. Stem Cells Develop. (2006) 15:391-406.
  • CHEN N, HUDSON JE, WALCZAK P et al.: Human umbilical cord blood progenitors: the potential of these hematopoietic cells to become neural. Stem Cells (2005) 23:1560-1570.
  • HARRIS DT, AHMAD N, SAXENA SK et al.: The Potential of Cord Blood Stem Cells for Use in Tissue Engineering. TESi Meeting. Shanghai, China (October 2005) (Abstract).
  • CHEN J, SANBERG PR, LI Y et al.: Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke (2001) 32:2682-2688.
  • WILLING AE, LIXIAN J, MILLIKEN M et al.: Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J. Neurosci. Res. (2003) 73(3):296-307.
  • BORLONGAN CV, HADMAN M, SANBERG CD, SANBERG PR: Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke (2004) 35:2385-2389.
  • NEWMAN MB, WILLING AE, MANRESSA JJ, SANBERG CD, SANBERG PR: Cytokines produced by cultured human umbilical cord blood (HUCB) cells: implications for brain repair. Exp. Neurol. (2006) 199(1):201-208.
  • VENDRAME M, CASSADY J. NEWCOMB J et al.: Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke (2004) 35:2390-2395.
  • XIAO J, NAN Z, MOTOOKA Y, LOW WC: Transplantation of a novel cell line population of umbilical cord blood stem cells ameliorates neurological deficits associated with ischemic brain injury. Stem Cells Dev. (2005) 14:722-733.
  • NEWCOMB JD, AJRNO CT, SANBERG CD et al.: Timing of cord blood treatment after experimental stroke determines therapeutic efficacy. Cell Transplant. (2006) 15:213-223.
  • NAN Z, GRANDE A, SANBERG CD, SANBERG PR, LOW WC: Infusion of human umbilical cord blood ameliorates neurologic deficits in rats with hemorrhagic brain injury. Ann. NY Acad. Sci. (2005) 1049(1):84-96.
  • BLISS T, GUZMAN R, DAADI M, STEINBERG GK: Cell transplantation therapy for stroke. Stroke (2007) 38:817-826.
  • SAPORTA S, KIM JJ, WILLING AE et al.: Human umbilical cord blood stem cells infusion in spinal cord injury: engraftment and beneficial influence on behavior. J. Hematother. Stem Cell Res. (2003) 12:271-278.
  • KUH SU, CHO YE, YOON DH et al.: Functional recovery after human umbilical cord blood cells transplantation with brain derived-neurotropic factor into the spinal cord injured rats. Acta Neurochir. (Wein.) (2005) 14:985-992.
  • KANG KS, KIM SW, OH YH et al.: Thirty-seven-year old spinal cord-injured female patient, transplanted of multipotent stem cells from human UC blood with improved sensory perception and mobility, both functionally and morphologically: a case study. Cytotherapy (2005) 7:368-373.
  • LU D, SANBERG PR, MAHMOOD A et al.: Intravenous administration of human umbilical cord blood reduces neurological deficit in the rat after traumatic brain injury. Cell Transplant. (2002) 11:275-281.
  • MEIER C, MIDDLEANIS J, WASIELEWSKI B et al.: Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Ped. Res. (2006) 59:244-249.
  • ENDE N, CHEN R: Parkinson's disease mice and human umbilical cord blood.J. Med. (2002) 33:173-180.
  • GAEBUZOVA-DAVIS S, WILLING AE, ZIGOVA T et al.: Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. J. Hematother. Stem Cell Res. (2003) 12:255-270.
  • LU X, LI S, CHENG J: Bone marrow mesenchymal stem cells: progress in bone/cartilage defect repair. J. Biomed. Eng. (Chinese) (2002) 19(1):135-139.
  • WANG FS, YANG KD, WANG CJ et al.: Shockwave stimulates oxygen radical-mediated osteogenesis of the mesenchymal cells from human umbilical cord blood. J. Bone Miner. Res. (2004) 19:973-982.
  • WAKITANI S, MITSUOKA T, NAKAMURA N et al.: Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell Transplant. (2004) 13(5):595-600.
  • SZIVEK JA, WILEY D, COX L, HARRIS D, MARGOLIS DS, GRANA WA: Stem cells grown in dynamic culture on micropatterned surfaces can be used to engineer cartilage-like tissue. Orthopaedic Research Society Meeting. San Diego, USA (2007) (Abstract).
  • THOMAS HS: Stem cell therapy tackles injured tendons and ligaments. Quarter. Horse News (2004)15:90-93.
  • GERMAIN L, AUGER FA, GRANDBOIS E et al.: Reconstructed human cornea produced in vitro by tissue engineering. Pathobiology (1999) 67:140-147.
  • GERMAIN L, CARRIER P, AUGER FA, SALESSE C, GUERIN SL: Can we produce a human corneal equivalent by tissue engineering? Prog. Retinal Eye Res. (2000) 19(5):497-527.
  • HARRIS DT, HE X, CAMACHO D, GONZALEZ V, NICHOLS JC: The Potential of Cord Blood Stem Cells for Use in Tissue Engineering of the Eye, Stem Cells & Regenerative Medicine. San Francisco, USA (23 – 25 January 2006) (Abstract).
  • HARRIS DT, HE X, BADOWSKI M, NICOLS JC: Regenerative Medicine of the Eye: A Short Review. Stem Cell Repair & Regeneration. Volume 3. Levicar N, Habib NA, Dimarakis I, Gordon MY (Eds), Imperial College Press, London, UK (2007) (In Press).
  • NICHOLS JC, HE X, HARRIS DT: Differentiation of cord blood stem cells into corneal epithelium. Invest. Ophthalmol. Vis. Sci. (2005) 46:E4772.
  • MA Y, XU Y, XIAO A et al.: Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells. Stem Cells (2006) 24(2):315-321.
  • KAKINUMA S, TANAKA Y, CHINZEI R et al.: Human umbilical cord blood as a source of transplantable hepatic progenitor cells. Stem Cells (2003) 21:217-227.
  • TANG XP, ZHANG M, YANG X et al.: Differentiation of human umbilical cord blood stem cells into hepatocytes in vivo and in vitro. World J. Gastroenterol. (2006) 12:4014-4019.
  • PETERS RE, MOCK M, MEIER P et al.: Differentiation of non-adherent hematopoietic stem cells from umbilical cord blood cells into adherent hepatocytic lineage. ASH Conference. Orlando, FL, USA (2006):Poster #756-II.
  • BERGER MJ, ADAMS SD, TIGGES BM et al.: Differentiation of umbilical cord blood-derived multilineage progenitor cells into respiratory epithelial cells. Cytotherapy (2006) 8:480-487.
  • BADIAVAS EV, ABEDI M, BUTMARC J, FALANGA V, QUESENBERRY P: Participation of bone marrow derived cells in cutaneous wound healing. J. Cell Physiol. (2003) 196:245-250.
  • VALBONESI M, GIANNINI G, MIGLIORI F, DALLA COSTA R, DEJANA AM: Cord blood (CB) stem cells for wound repair. Preliminary report of 2 cases. Transfus. Apher. Sci. (2004) 30(2):153-156.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.