807
Views
277
CrossRef citations to date
0
Altmetric
Reviews

The NF-κB activation pathways, emerging molecular targets for cancer prevention and therapy

, MD PhD, , MD, , PhD & , MD
Pages 45-55 | Published online: 09 Dec 2009

Bibliography

  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100(1):57-70
  • Hayden MS, Ghosh S. Signaling to NF-κB. Genes Dev 2004;18(18):2195-224
  • Devin A, Cook A, Lin Y, The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity 2000;12(4):419-29
  • Yang J, Lin Y, Guo Z, The essential role of MEKK3 in TNF-induced NF-κB activation. Nat Immunol 2001;2(7):620-4
  • Chen ZJ. Ubiquitin signalling in the NF-κB pathway. Nat Cell Biol 2005;7(8):758-65
  • Janssens S, Tinel A, Lippens S, Tschopp J. PIDD mediates NF-κB activation in response to DNA damage. Cell 2005;123(6):1079-92
  • Festjens N, Vanden Berghe T, Cornelis S, Vandenabeele P. RIP1, a kinase on the crossroads of a cell's decision to live or die. Cell Death Differ 2007;14(3):400-10
  • Wu ZH, Mabb A, Miyamoto S. PIDD: a switch hitter. Cell 2005;123(6):980-2
  • Wu CJ, Conze DB, Li T, Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-κB activation. Nat Cell Biol 2006;8(4):398-406
  • Zarnegar BJ, Wang Y, Mahoney DJ, Noncanonical NF-κB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol 2008;9(12):1371-8
  • Kato T Jr, Delhase M, Hoffmann A, Karin M. CK2 Is a C-terminal IκB kinase responsible for NF-κB activation during the UV response. Mol Cell 2003;12(4):829-39
  • Tergaonkar V, Bottero V, Ikawa M, IκB kinase-independent IκBα degradation pathway: functional NF-κB activity and implications for cancer therapy. Mol Cell Biol 2003;23(22):8070-83
  • Viatour P, Merville MP, Bours V, Chariot A. Phosphorylation of NF-κB and IκB proteins: implications in cancer and inflammation. Trends Biochem Sci 2005;30(1):43-52
  • Aggarwal BB. Nuclear factor-κB: the enemy within. Cancer Cell 2004;6(3):203-8
  • Campbell KJ, Rocha S, Perkins ND. Active repression of antiapoptotic gene expression by RelA(p65) NF-κB. Mol Cell 2004;13(6):853-65
  • Janssens S, Tschopp J. Signals from within: the DNA-damage-induced NF-κB response. Cell Death Differ 2006;13(5):773-84
  • Chen W, Wang X, Bai L, Blockage of NF-κB by IKKβ- or RelA-siRNA rather than the NF-κB super-suppressor IκBα mutant potentiates adriamycin-induced cytotoxicity in lung cancer cells. J Cell Biochem 2008;105(2):554-61
  • Hur GM, Lewis J, Yang Q, The death domain kinase RIP has an essential role in DNA damage-induced NF-κB activation. Genes Dev 2003;17(7):873-82
  • Karin M, Greten FR. NF-κB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005;5(10):749-59
  • Ea CK, Deng L, Xia ZP, Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 2006;22(2):245-57
  • Wang L, Du F, Wang X. TNF-α induces two distinct caspase-8 activation pathways. Cell 2008;133(4):693-703
  • Varfolomeev E, Goncharov T, Fedorova AV, c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor α (TNFα)-induced NF-κB activation. J Biol Chem 2008;283(36):24295-9
  • Singh NP, Nagarkatti M, Nagarkatti PS. Role of dioxin response element and nuclear factor-κB motifs in 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated regulation of Fas and Fas ligand expression. Mol Pharmacol 2007;71(1):145-57
  • Shou Y, Li N, Li L, NF-κB-mediated up-regulation of Bcl-XS and Bax contributes to cytochrome c release in cyanide-induced apoptosis. J Neurochem 2002;81(4):842-52
  • Wang P, Qiu W, Dudgeon C, PUMA is directly activated by NF-κB and contributes to TNF-α-induced apoptosis. Cell Death Differ 2009;16(9):1192-202
  • Sarkar FH, Li Y. NF-κB: a potential target for cancer chemoprevention and therapy. Front Biosci 2008;13:2950-9
  • Romieu-Mourez R, Landesman-Bollag E, Seldin DC, Sonenshein GE. Protein kinase CK2 promotes aberrant activation of nuclear factor-κB, transformed phenotype, and survival of breast cancer cells. Cancer Res 2002;62(22):6770-8
  • Mann AP, Verma A, Sethi G, Overexpression of tissue transglutaminase leads to constitutive activation of nuclear factor-κB in cancer cells: delineation of a novel pathway. Cancer Res 2006;66(17):8788-95
  • Sun SC, Yamaoka S. Activation of NF-κB by HTLV-I and implications for cell transformation. Oncogene 2005;24(39):5952-64
  • Tang H, Oishi N, Kaneko S, Murakami S. Molecular functions and biological roles of hepatitis B virus x protein. Cancer Sci 2006;97(10):977-83
  • Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 2003;3(9):745-56
  • Karin M. Nuclear factor-κB in cancer development and progression. Nature 2006;441(7092):431-6
  • Podechard N, Lecureur V, Le Ferrec E, Interleukin-8 induction by the environmental contaminant benzo(a)pyrene is aryl hydrocarbon receptor-dependent and leads to lung inflammation. Toxicol Lett 2008;177(2):130-7
  • Kuper H, Adami HO, Trichopoulos D. Infections as a major preventable cause of human cancer. J Intern Med 2000;248(3):171-83
  • Greten FR, Eckmann L, Greten TF, IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004;118(3):285-96
  • Pikarsky E, Porat RM, Stein I, NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 2004;431(7007):461-6
  • Ruland J, Duncan GS, Elia A, Bcl10 is a positive regulator of antigen receptor-induced activation of NF-κB and neural tube closure. Cell 2001;104(1):33-42
  • Perkins ND. NF-κB: tumor promoter or suppressor? Trends Cell Biol 2004;14(2):64-9
  • Chen F, Castranova V. Nuclear factor-κB, an unappreciated tumor suppressor. Cancer Res 2007;67(23):11093-8
  • Wang LC, Okitsu CY, Zandi E. Tumor necrosis factor α-dependent drug resistance to purine and pyrimidine analogues in human colon tumor cells mediated through IKK. J Biol Chem 2005;280(9):7634-44
  • Kim BY, Gaynor RB, Song K, Constitutive activation of NF-κB in Ki-ras-transformed prostate epithelial cells. Oncogene 2002;21(29):4490-7
  • Hammerman PS, Fox CJ, Cinalli RM, Lymphocyte transformation by Pim-2 is dependent on nuclear factor-κB activation. Cancer Res 2004;64(22):8341-8
  • Hanson JL, Hawke NA, Kashatus D, Baldwin AS. The nuclear factor κB subunits RelA/p65 and c-Rel potentiate but are not required for Ras-induced cellular transformation. Cancer Res 2004;64(20):7248-55
  • Anto RJ, Mukhopadhyay A, Shishodia S, Cigarette smoke condensate activates nuclear transcription factor-κB through phosphorylation and degradation of IκBα: correlation with induction of cyclooxygenase-2. Carcinogenesis 2002;23(9):1511-8
  • Rius J, Guma M, Schachtrup C, NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature 2008;453(7196):807-11
  • Yang J, Mani SA, Donaher JL, Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004;117(7):927-39
  • Huber MA, Beug H, Wirth T. Epithelial–mesenchymal transition: NF-κB takes center stage. Cell Cycle 2004;3(12):1477-80
  • Wang X, Belguise K, Kersual N, Oestrogen signalling inhibits invasive phenotype by repressing RelB and its target BCL2. Nat Cell Biol 2007;9(4):470-8
  • Kim A, Kim MJ, Yang Y, Suppression of NF-κB activity by NDRG2 expression attenuates the invasive potential of highly malignant tumor cells. Carcinogenesis 2009;30(6):927-36
  • Aggarwal BB, Vijayalekshmi RV, Sung B. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res 2009;15(2):425-30
  • Schmidt D, Textor B, Pein OT, Critical role for NF-κB-induced JunB in VEGF regulation and tumor angiogenesis. EMBO J 2007;26(3):710-9
  • Sakamoto K, Maeda S, Hikiba Y, Constitutive NF-κB activation in colorectal carcinoma plays a key role in angiogenesis, promoting tumor growth. Clin Cancer Res 2009;15(7):2248-58
  • Chu CY, Cha ST, Lin WC, Stromal cell-derived factor-1α (SDF-1α/CXCL12)-enhanced angiogenesis of human basal cell carcinoma cells involves ERK1/2-NF-κB/interleukin-6 pathway. Carcinogenesis 2009;30(2):205-13
  • Chan DA, Kawahara TL, Sutphin PD, Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment. Cancer Cell 2009;15(6):527-38
  • Kisseleva T, Song L, Vorontchikhina M, NF-κB regulation of endothelial cell function during LPS-induced toxemia and cancer. J Clin Invest 2006;116(11):2955-63
  • Zhou M, Gu L, Zhu N, Transfection of a dominant-negative mutant NF-kB inhibitor (IkBm) represses p53-dependent apoptosis in acute lymphoblastic leukemia cells: interaction of IkBm and p53. Oncogene 2003;22(50):8137-44
  • Aguilera C, Hoya-Arias R, Haegeman G, Recruitment of IκBα to the hes1 promoter is associated with transcriptional repression. Proc Natl Acad Sci USA 2004;101(47):16537-42
  • Tabruyn SP, Griffioen AW. A new role for NF-κB in angiogenesis inhibition. Cell Death Differ 2007;14(8):1393-7
  • Baud V, Karin M. Is NF-κB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 2009;8(1):33-40
  • Ahmed KM, Li JJ. ATM-NF-κB connection as a target for tumor radiosensitization. Curr Cancer Drug Targets 2007;7(4):335-42
  • Kamata H, Honda S, Maeda S, Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 2005;120(5):649-61
  • Tang G, Minemoto Y, Dibling B, Inhibition of JNK activation through NF-κB target genes. Nature 2001;414(6861):313-7
  • Tergaonkar V, Pando M, Vafa O, p53 stabilization is decreased upon NFκB activation: a role for NFκB in acquisition of resistance to chemotherapy. Cancer Cell 2002;1(5):493-503
  • Yang PM, Huang WC, Lin YC, Loss of IKKβ activity increases p53 stability and p21 expression leading to cell cycle arrest and apoptosis. J Cell Mol Med 2009: published online Feb 20 2009, doi: 10.1111/j.1582-4934.2009.00712.x
  • Cianfrocca R, Muscolini M, Marzano V, RelA/NF-κB recruitment on the bax gene promoter antagonizes p73-dependent apoptosis in costimulated T cells. Cell Death Differ 2008;15(2):354-63
  • Dey A, Verma CS, Lane DP. Updates on p53: modulation of p53 degradation as a therapeutic approach. Br J Cancer 2008;98(1):4-8
  • Ros JE, Schuetz JD, Geuken M, Induction of Mdr1b expression by tumor necrosis factor-α in rat liver cells is independent of p53 but requires NF-κB signaling. Hepatology 2001;33(6):1425-31
  • Ryan KM, Ernst MK, Rice NR, Vousden KH. Role of NF-κB in p53-mediated programmed cell death. Nature 2000;404(6780):892-7
  • Ganapathi R, Vaziri SA, Tabata M, Inhibition of NF-κB and proteasome activity in tumors: can we improve the therapeutic potential of topoisomerase I and topoisomerase II poisons. Curr Pharm Des 2002;8(22):1945-58
  • Lee CT, Seol JY, Lee SY, The effect of adenovirus-IκBα transduction on the chemosensitivity of lung cancer cell line with resistance to cis-diamminedichloroplatinum(II)(cisplatin) and doxorubicin(adriamycin). Lung Cancer 2003;41(2):199-206
  • Dreyfus DH, Nagasawa M, Gelfand EW, Ghoda LY. Modulation of p53 activity by I-κBα: evidence suggesting a common phylogeny between NF-κB and p53 transcription factors. BMC Immunol 2005;6(1):12. Published online 21 June 2005, doi:10.1186/1471-2172-6-12
  • Shen HM, Tergaonkar V. NFκB signaling in carcinogenesis and as a potential molecular target for cancer therapy. Apoptosis 2009;14(4):348-63
  • Garcia MG, Alaniz L, Lopes EC, Inhibition of NF-κB activity by BAY 11-7082 increases apoptosis in multidrug resistant leukemic T-cell lines. Leuk Res 2005;29(12):1425-34
  • Hideshima T, Chauhan D, Kiziltepe T, Biologic sequelae of IκB kinase (IKK) inhibition in multiple myeloma: therapeutic implications. Blood 2009;113(21):5228-36
  • Yang J, Amiri KI, Burke JR, BMS-345541 targets inhibitor of κB kinase and induces apoptosis in melanoma: involvement of nuclear factor κB and mitochondria pathways. Clin Cancer Res 2006;12(3 Pt 1):950-60
  • Choo MK, Sakurai H, Kim DH, Saiki I. A ginseng saponin metabolite suppresses tumor necrosis factor-α-promoted metastasis by suppressing nuclear factor-κB signaling in murine colon cancer cells. Oncol Rep 2008;19(3):595-600
  • Ravaud A, Cerny T, Terret C, Phase I study and pharmacokinetic of CHS-828, a guanidino-containing compound, administered orally as a single dose every 3 weeks in solid tumours: an ECSG/EORTC study. Eur J Cancer 2005;41(5):702-7
  • Dingli D, Rajkumar SV. Emerging therapies for multiple myeloma. Oncology (Williston Park) 2009;23(5):407-15
  • Gasparian AV, Guryanova OA, Chebotaev DV, Targeting transcription factor NFκB: comparative analysis of proteasome and IKK inhibitors. Cell Cycle 2009;8(10):1559-66
  • Cardoso F, Durbecq V, Laes JF, Bortezomib (PS-341, Velcade) increases the efficacy of trastuzumab (Herceptin) in HER-2-positive breast cancer cells in a synergistic manner. Mol Cancer Ther 2006;5(12):3042-51
  • Sloss CM, Wang F, Liu R, Proteasome inhibition activates epidermal growth factor receptor (EGFR) and EGFR-independent mitogenic kinase signaling pathways in pancreatic cancer cells. Clin Cancer Res 2008;14(16):5116-23
  • Lynch TJ, Fenton D, Hirsh V, A randomized Phase 2 study of erlotinib alone and in combination with bortezomib in previously treated advanced non-small cell lung cancer. J Thorac Oncol 2009;4(8):1002-9
  • Mabuchi S, Ohmichi M, Nishio Y, Inhibition of NFκB increases the efficacy of cisplatin in in vitro and in vivo ovarian cancer models. J Biol Chem 2004;279(22):23477-85
  • Baron JA. Aspirin and NSAIDs for the prevention of colorectal cancer. Rec Results Cancer Res 2009;181:223-9
  • Bank A, Yu J, Zhang L. NSAIDs downregulate Bcl-X(L) and dissociate BAX and Bcl-X(L) to induce apoptosis in colon cancer cells. Nutr Cancer 2008;60:(Suppl 1):98-103
  • Nandakumar V, Singh T, Katiyar SK. Multi-targeted prevention and therapy of cancer by proanthocyanidins. Cancer Lett 2008;269(2):378-87
  • Rahman I, Biswas SK, Kirkham PA. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 2006;72(11):1439-52
  • Sethi G, Sung B, Aggarwal BB. Nuclear factor-κB activation: from bench to bedside. Exp Biol Med (Maywood) 2008;233(1):21-31
  • Ju W, Wang X, Shi H, A critical role of luteolin-induced reactive oxygen species in blockage of tumor necrosis factor-activated nuclear factor-κB pathway and sensitization of apoptosis in lung cancer cells. Mol Pharmacol 2007;71(5):1381-8
  • Wang X, Lin Y. Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol Sin 2008;29(11):1275-88
  • Lin Y, Shi R, Wang X, Shen HM. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Targets 2008;8(7):634-46
  • Uetsuka H, Haisa M, Kimura M, Inhibition of inducible NF-κB activity reduces chemoresistance to 5-fluorouracil in human stomach cancer cell line. Exp Cell Res 2003;289(1):27-35
  • Neckers L, Neckers K. Heat-shock protein 90 inhibitors as novel cancer chemotherapeutics – an update. Expert Opin Emerg Drugs 2005;10(1):137-49
  • Lewis J, Devin A, Miller A, Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-κB activation. J Biol Chem 2000;275(14):10519-26
  • Wang X, Ju W, Renouard J, 17-allylamino-17-demethoxy-geldanamycin synergistically potentiates tumor necrosis factor-induced lung cancer cell death by blocking the nuclear factor-κB pathway. Cancer Res 2006;66(2):1089-95
  • Wang X, Chen W, Lin Y. Sensitization of TNF-induced cytotoxicity in lung cancer cells by concurrent suppression of the NF-κB and Akt pathways. Biochem Biophys Res Commun 2007;355(3):807-12
  • Vince JE, Wong WW, Khan N, IAP antagonists target cIAP1 to induce TNFα-dependent apoptosis. Cell 2007;131(4):682-93
  • Varfolomeev E, Blankenship JW, Wayson SM, IAP antagonists induce autoubiquitination of c-IAPs, NF-κB activation, and TNFα-dependent apoptosis. Cell 2007;131(4):669-81
  • Bai L, Chen W, Wang X, IKKβ-mediated nuclear factor-κB activation attenuates smac mimetic-induced apoptosis in cancer cells. Mol Cancer Ther 2009;8(6):1636-45
  • Bhandarkar SS, Arbiser JL. Curcumin as an inhibitor of angiogenesis. Adv Exp Med Biol 2007;595:185-95

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.