476
Views
104
CrossRef citations to date
0
Altmetric
Review

Targeting matrix metalloproteases to improve cutaneous wound healing

, &
Pages 143-155 | Published online: 27 Jan 2006

Bibliography

  • BENNETT NT, SCHULTZ GS: Growth factors and wound healing: Part II. Role in normal and chronic wound healing. Am. J. Surg. (1993) 166:74-81.
  • NWOMEH BC, YAGER DR, COHEN IK: Physiology of the chronic wound. Clin. Plast. Surg. (1998) 25:341-356.
  • WERNER S, GROSE R: Regulation of wound healing by growth factors and cytokines. Physiol. Rev. (2003) 83:835-870.
  • SMITH JA: Neutrophils, host defense, and inflammation: a double-edged sword. J. Leukoc. Biol. (1994) 56:672-686.
  • MOLLINEDO F, BORREGAARD N, BOXER LA: Novel trends in neutrophil structure, function and development. Immunol. Today (1999) 20:535-537.
  • GARNER WL, RODRIGUEZ JL, MILLER CG et al.: Acute skin injury releases neutrophil chemoattractants. Surgery (1994) 116:42-48.
  • BAUM CL, ARPEY CJ: Normal cutaneous wound healing: clinical correlation with cellular and molecular events. Dermatol. Surg. (2005) 31:674-686.
  • PULL SL, DOHERTY JM, MILLS JC, GORDON JI, STAPPENBECK TS: Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. PNAS (2005) 102:99-104.
  • DIPIETRO LA: Wound healing: the role of the macrophage and other immune cells. Shock (1995) 4:233-240.
  • MORASSO MI, TOMIC-CANIC M: Epidermal stem cells: the cradle of epidermal determination, differentiation and wound healing. Biol. Cell (2005) 97:173-183.
  • SANTORO MM, GAUDINO G: Cellular and molecular facets of keratinocyte reepithelization during wound healing. Exp. Cell Res. (2005) 304:274-286.
  • COULOMBE PA: Towards a molecular definition of keratinocyte activation after acute injury to stratified epithelia. Biochem. Biophy. Res. Commun. (1997) 236:231-238.
  • NWOMEH BC, LIANG HX, DIEGELMANN RF, COHEN IK, YAGER DR: Dynamics of the matrix metalloproteinases MMP-1 and MMP-8 in acute open human dermal wounds. Wound Repair Regen. (1998) 6:127-134.
  • MOTT JD, WERB Z: Regulation of matrix biology by matrix metalloproteinases. Curr. Opin. Cell Biol. (2004) 16:558-564.
  • DIEGELMANN RF, EVANS MC: Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci. (2004) 9:283-289.
  • YAMAUCHI M, YOUNG DR, CHANDLER GS, MECHANIC GL: Cross-linking and new bone collagen synthesis in immobilized and recovering primate osteoporosis. Bone (1988) 9:415-418.
  • LEVIN ME: Diabetic foot ulcers: pathogenesis and management. J. ET Nurs. (1993) 20:191-198.
  • LEWIS M, PEARSON A, WARD C: Pressure ulcer prevention and treatment: transforming research findings into consensus based clinical guidelines. Int. J. Nurs. Pract. (2003) 9:92-102.
  • TRENT JT, FALABELLA A, EAGLSTEIN WH, KIRSNER RS: Venous ulcers: pathophysiology and treatment options. Ostomy. Wound Manage. (2005) 51:38-54.
  • MASSOVA I, KOTRA LP, FRIDMAN R, MOBASHERY S: Matrix metalloproteinases: structures, evolution, and diversification. FASEB J. (1998) 12:1075-1095.
  • PILCHER BK, WANG MIN, QIN XJ, PARKS WC, SENIOR RM, WELGUS HG: Role of matrix metalloproteinases and their inhibition in cutaneous wound healing and allergic contact hypersensitivity. Ann. NY Acad. Sci. (1999) 878:12-24.
  • STERNLICHT MD, WERB Z: How matrix metalloproteinases regulate cells behavior. Ann.l. Rev. Cell Dev. Biol. (2001) 17:463-516.
  • VISSE R, NAGASE H: Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. (2003) 92:827-839.
  • RAVANTI L, KAHARI VM: Matrix metalloproteinases in wound repair (review). Int. J. Mol. Med. (2000) 6:391-407.
  • MCQUIBBAN GA, GONG JH, WONG JP, WALLACE JL, CLARK-LEWIS I, OVERALL CM: Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood (2002) 100:1160-1167.
  • MCQUIBBAN GA, GONG JH, TAM EM, MCCULLOCH CAG, CLARK-LEWIS I, OVERALL CM: Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science (2000) 289:1202-1206.
  • VAN DEN STEEN PE, PROOST P, WUYTS A, VAN DAMME J, OPDENAKKER G: Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-alpha and leaves RANTES and MCP-2 intact. Blood (2000) 96:2673-2681.
  • MARTIGNETTI JA, AQEEL AA, SEWAIRI WA et al.: Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome. Nat. Genet. (2001) 28:261-265.
  • KENNEDY AM, INADA M, KRANE SM et al.: MMP13 mutation causes spondyloepimetaphyseal dysplasia, Missouri type (SEMDMO). J. Clin. Invest. (2005) 115:2832-2842.
  • FINI C, COLI M, FLORIDI A et al.: Temperature effects on the structural and functional properties of GPI-anchored and anchor-less bull seminal plasma ecto-5’-nucleotidase. J. Biochem. (1998) 123:269-274.
  • STRONGIN AY, COLLIER I, BANNIKOV G, MARMER BL, GRANT GA, GOLDBERG GI: Mechanism of cell surface activation of 72-kDa Type IV collagenase. J. Biol. Chem. (1995) 270:5331-5338.
  • OVERALL CM, WRANA JL, SODEK J: Transcriptional and post-transcriptional regulation of 72-kDa gelatinase/type IV collagenase by transforming growth factor-beta 1 in human fibroblasts. Comparisons with collagenase and tissue inhibitor of matrix metalloproteinase gene expression. J. Biol. Chem. (1991) 266:14064-14071.
  • HASTY KA, POURMOTABBED TF, GOLDBERG GI et al.: Human neutrophil collagenase. A distinct gene product with homology to other matrix metalloproteinases. J. Biol. Chem. (1990) 265:11421-11424.
  • NGUYEN M, ARKELL J, JACKSON CJ: Active and tissue inhibitor of matrix metalloproteinase-free gelatinase B accumulates within human microvascular endothelial vesicles. J. Biol. Chem. (1998) 273:5400-5404.
  • RAZA SL, NEHRING LC, SHAPIRO SD, CORNELIUS LA: Proteinase-activated receptor-1 regulation of macrophage elastase (MMP-12) secretion by serine proteinases. J. Biol. Chem. (2000) 275:41243-41250.
  • WART HEV, BIRKEDAL-HANSEN H: The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. PNAS (1990) 87:5578-5582.
  • KANG T, NAGASE H, PEI D: Activation of membrane-type matrix metalloproteinase 3 zymogen by the proprotein convertase furin in the trans-golgi network. Cancer Res. (2002) 62:675-681.
  • NGUYEN M, ARKELL J, JACKSON CJ: Activated protein C directly activates human endothelial gelatinase A. J. Biol. Chem. (2000) 275:9095-9098.
  • LAMBERT E, DASSE E, HAYE B, PETITFRERE E: TIMPs as multifacial proteins. Crit. Rev. Oncol. Hematol. (2004) 49:187-198.
  • WILL H, ATKINSON SJ, BUTLER GS, SMITH B, MURPHY G: The soluble catalytic domain of membrane Type 1matrix metalloproteinase cleaves the propeptide of progelatinase a and initiates autoproteolytic activation. Regulation by TIMP-2 and TIMP-3. J. Biol. Chem. (1996) 271:17119-17123.
  • YU WH, YU SS, MENG Q, BREW K, WOESSNER JF Jr: TIMP-3 Binds to Sulfated Glycosaminoglycans of the Extracellular Matrix. J. Biol. Chem. (2000) 275:31226-31232.
  • HUSSAIN S, ASSENDER JW, BOND M, WONG LF, MURPHY D, NEWBY AC: Activation of protein kinase czeta is essential for cytokine-induced metalloproteinase-1, -3, and -9 secretion from rabbit smooth muscle cells and inhibits proliferation. J. Biol. Chem. (2002) 277:27345-27352.
  • HARPEL PC, BROWER MS: Alpha 2-macroglobulin: an introduction. Ann. NY Acad. Sci. (1983) 421:1-9.
  • HERMAN MP, SUKHOVA GK, KISIEL W et al.: Tissue factor pathway inhibitor-2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis. J. Clin. Invest. (2001) 107:1117-1126.
  • MOTT JD, THOMAS CL, ROSENBACH MT, TAKAHARA K, GREENSPAN DS, BANDA MJ: Post-translational proteolytic processing of procollagen C-terminal proteinase enhancer releases a metalloproteinase inhibitor. J. Biol. Chem. (2000) 275:1384-1390.
  • MIYAZAKI K, HASEGAWA M, FUNAHASHI K, UMEDA M: A metalloproteinase inhibitor domain in Alzheimer amyloid protein precursor. Nature (1993) 362:839-841.
  • GALARDY RE, GROBELNY D, KORTYLEWICZ ZP, PONCZ L: Inhibition of human skin fibroblast collagenase by phosphorus-containing peptides. Matrix Suppl. (1992) 1:259-262.
  • FRAY MJ, DICKINSON RP, HUGGINS JP, OCCLESTON NL: A potent, selective inhibitor of matrix metalloproteinase-3 for the topical treatment of chronic dermal ulcers. J. Med. Chem. (2003) 46:3514-3525.
  • AGREN MS: Matrix metalloproteinases (MMPs) are required for re-epithelialization of cutaneous wounds. Arch. Dermatol. Res. (1999) 291:583-590.
  • PELED ZM, PHELPS ED, UPDIKE DL et al.: Matrix metalloproteinases and the ontogeny of scarless repair: the other side of the wound healing balance. Plast. Reconstr. Surg. (2002) 110:801-811.
  • SOO C, SHAW WW, ZHANG X, LONGAKER MT, HOWARD EW, TING K: Differential expression of matrix metalloproteinases and their tissue-derived inhibitors in cutaneous wound repair. Plast. Reconstr. Surg. (2000) 105:638-647.
  • ROMAN E, WILHELMI I, COLOMINA J et al.: Acute viral gastroenteritis: proportion and clinical relevance of multiple infections in Spanish children. J. Med. Microbiol. (2003) 52:435-440.
  • VAN DEN STEEN PE, WUYTS A, HUSSON SJ, PROOST P, VAN DAMME J, OPDENAKKER G: Gelatinase B/MMP-9 and neutrophil collagenase/MMP-8 process the chemokines human GCP-2/CXCL6, ENA-78/CXCL5 and mouse GCP-2/LIX and modulate their physiological activities. Eur. J. Biochem. (2003) 270:3739-3749.
  • GEARING AJ, BECKETT P, CHRISTODOULOU M et al.: Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature (1994) 370:555-557.
  • D’HAESE A, WUYTS A, DILLEN C et al.: In vivo neutrophil recruitment by granulocyte chemotactic protein-2 is assisted by gelatinase B/MMP-9 in the mouse. J. Interferon Cytokine Res. (2000) 20:667-674.
  • DUBOIS B, MASURE S, HURTENBACH U et al.: Resistance of young gelatinase B-deficient mice to experimental autoimmune encephalomyelitis and necrotizing tail lesions. J. Clin. Invest. (1999) 104:1507-1515.
  • LIU Z, SHIPLEY JM, VU TH et al.: Gelatinase B-deficient mice are resistant to experimental bullous pemphigoid. J. Exp. Med. (1998) 188:475-482.
  • GUEDERS MM, BALBIN M, ROCKS N et al.: Matrix metalloproteinase-8 deficiency promotes granulocytic allergen-induced airway inflammation. J. Immunol. (2005) 175:2589-2597.
  • SAARIALHO-KERE UK: Patterns of matrix metalloproteinase and TIMP expression in chronic ulcers. Arch. Dermatol. Res (1998) 290:S47-S54.
  • DI CT, WANG L, WILLE J, D’ARMIENTO J, CHADA KK: Epidermal expression of collagenase delays wound-healing in transgenic mice. J. Invest. Dermatol. (1998) 111:1029-1033.
  • PILCHER BK, DUMIN JA, SUDBECK BD, KRANE SM, WELGUS HG, PARKS WC: The activity of collagenase-1 is required for keratinocyte migration on a Type I collagen matrix. J. Cell Biol. (1997) 137:1445-1457.
  • LOHI J, WILSON CL, ROBY JD, PARKS WC: Epilysin, a novel human matrix metalloproteinase (MMP-28) expressed in testis and keratinocytes and in response to injury. J. Biol. Chem. (2001) 276:10134-10144.
  • FISHER C, GILBERTSON-BEADLING S, POWERS EA, PETZOLD G, POORMAN R, MITCHELL MA: Interstitial collagenase is required for angiogenesis in vitro. Dev. Biol. (1994) 162:499-510.
  • STAMENKOVIC I: Extracellular matrix remodelling: the role of matrix metalloproteinases. J. Pathol. (2003) 200:448-464.
  • ZHOU Z, APTE SS, SOININEN R et al.: Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc. Natl. Acad. Sci. USA (2000) 97:4052-4057.
  • OHNO-MATSUI K, UETAMA T, YOSHIDA T et al.: Reduced retinal angiogenesis in MMP-2-deficient mice. Invest. Ophthalmol. Vis. Sci. (2003) 44:5370-5375.
  • SCOTT KA, WOOD EJ, KARRAN EH: A matrix metalloproteinase inhibitor which prevents fibroblast-mediated collagen lattice contraction. FEBS Lett. (1998) 441:137-140.
  • GALIS ZS, JOHNSON C, GODIN D et al.: Targeted disruption of the matrix metalloproteinase-9 gene impairs smooth muscle cell migration and geometrical arterial remodeling. Circ. Res. (2002) 91:852-859.
  • LADWIG GP, ROBSON MC, LIU R, KUHN MA, MUIR DF, SCHULTZ GS: Ratios of activated matrix metalloproteinase-9 to tissue inhibitor of matrix metalloproteinase-1 in wound fluids are inversely correlated with healing of pressure ulcers. Wound Repair Regen. (2002) 10:26-37.
  • LOBMANN R, AMBROSCH A, SCHULTZ G, WALDMANN K, SCHIWECK S, LEHNERT H: Expression of matrix-metalloproteinases and their inhibitors in the wounds of diabetic and non-diabetic patients. Diabetologia (2002) 45:1011-1016.
  • TRENGOVE NJ, STACEY MC, MACAULEY S et al.: Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Repair Regen. (1999) 7:442-452.
  • WATELET JB, DEMETTER P, CLAEYS C, VAN CP, CUVELIER C, BACHERT C: Neutrophil-derived metalloproteinase-9 predicts healing quality after sinus surgery. Laryngoscope (2005) 115:56-61.
  • WECKROTH M, VAHERI A, LAUHARANTA J, SORSA T, KONTTINEN YT: Matrix metalloproteinases, gelatinase and collagenase, in chronic leg ulcers. J. Invest. Dermatol. (1996) 106:1119-1124.
  • YAGER DR, ZHANG LY, LIANG HX, DIEGELMANN RF, COHEN IK: Wound fluids from human pressure ulcers contain elevated matrix metalloproteinase levels and activity compared to surgical wound fluids. J. Invest. Dermatol. (1996) 107:743-748.
  • NWOMEH BC, LIANG HX, COHEN IK, YAGER DR: MMP-8 is the predominant collagenase in healing wounds and nonhealing ulcers. J. Surg. Res. (1999) 81:189-195.
  • JUDE EB, SELBY PL, BURGESS J et al.: Bisphosphonates in the treatment of Charcot neuroarthropathy: a double-blind randomised controlled trial. Diabetologia (2001) 44:2032-2037.
  • PARKS WC: Matrix metalloproteinases in repair. Wound Repair Regen. (1999) 7:423-432.
  • YAGER DR, NWOMEH BC: The proteolytic environment of chronic wounds. Wound Repair Regen. (1999) 7:433-441.
  • SKILES JW, GONNELLA NC, JENG AY: The design, structure, and clinical update of small molecular weight matrix metalloproteinase inhibitors. Curr. Med. Chem. (2004) 11:2911-2977.
  • WHELAN CJ: Metalloprotease inhibitors as anti-inflammatory agents: an evolving target? Curr. Opin. Investig. Drugs (2004) 5:511-516.
  • SCHWARTZ MA, VENKATARAMAN S, GHAFFARI MA et al.: Inhibition of human collagenases by sulfur-based substrate analogs. Biochem. Biophys. Res. Commun. (1991) 176:173-179.
  • BARLETTA JP, ANGELLA G, BALCH KC et al.: Inhibition of pseudomonal ulceration in rabbit corneas by a synthetic matrix metalloproteinase inhibitor. Invest. Ophthalmol. Vis. Sci. (1996) 37:20-28.
  • SCHULTZ GS, STRELOW S, STERN GA et al.: Treatment of alkali-injured rabbit corneas with a synthetic inhibitor of matrix metalloproteinases. Invest. Ophthalmol. Vis. Sci. (1992) 33:3325-3331.
  • MIRASTSCHIJSKI U, HAAKSMA CJ, TOMASEK JJ, AGREN MS: Matrix metalloproteinase inhibitor GM 6001 attenuates keratinocyte migration, contraction and myofibroblast formation in skin wounds. Exp. Cell Res. (2004) 299:465-475.
  • JACKSON CJ, XUE M, THOMPSON P et al.: Activated protein C prevents inflammation yet stimulates angiogenesis to promote cutaneous wound healing. Wound Repair Regen. (2005) 13:284-294.
  • MIRASTSCHIJSKI U, IMPOLA U, KARSDAL MA, SAARIALHO-KERE U, AGREN MS: Matrix metalloproteinase inhibitor BB-3103 unlike the serine proteinase inhibitor aprotinin abrogates epidermal healing of human skin wounds ex vivo1. J. Invest. Dermatol. (2002) 118:55-64.
  • ROUIS M, ADAMY C, DUVERGER N et al.: Adenovirus-mediated overexpression of tissue inhibitor of metalloproteinase-1 reduces atherosclerotic lesions in apolipoprotein E-deficient mice. Circulation (1999) 100:533-540.
  • ALLAIRE E, FOROUGH R, CLOWES M, STARCHER B, CLOWES AW: Local overexpression of TIMP-1 prevents aortic aneurysm degeneration and rupture in a rat model. J. Clin. Invest. (1998) 102:1413-1420.
  • MIYOSHI H, KANEKURA T, AOKI T, KANZAKI T: Beneficial effects of tissue inhibitor of metalloproteinases-2 (TIMP-2) on chronic dermatitis. J. Dermatol. (2005) 32:346-353.
  • CHENG XW, KUZUYA M, SASAKI T et al.: Green tea catechins inhibit neointimal hyperplasia in a rat carotid arterial injury model by TIMP-2 overexpression. Cardiovasc. Res. (2004) 62:594-602.
  • CHENG XW, KUZUYA M, KANDA S et al.: Epigallocatechin-3-gallate binding to MMP-2 inhibits gelatinolytic activity without influencing the attachment to extracellular matrix proteins but enhances MMP-2 binding to TIMP-2. Arch. Biochem. Biophys. (2003) 415:126-132.
  • NATCHUS MG, BOOKLAND RG, LAUFERSWEILER MJ et al.: Development of new carboxylic acid-based MMP inhibitors derived from functionalized propargylglycines. J. Med. Chem. (2001) 44:1060-1071.
  • DUNTEN P, KAMMLOTT U, CROWTHER R et al.: X-ray structure of a novel matrix metalloproteinase inhibitor complexed to stromelysin. Protein Sci. (2001) 10:923-926.
  • ULRICH D, LICHTENEGGER F, UNGLAUB F, SMEETS R, PALLUA N: Effect of chronic wound exudates and MMP-2/-9 inhibitor on angiogenesis in vitro. Plast. Reconstr. Surg. (2005) 116:539-545.
  • SINGH J, CONZENTINO P, CUNDY KE et al.: Relationship between structure and bioavailability in a series of hydroxamate based metalloprotease inhibitors. Bioorganic Med. Chem. Lett. (1995) 5:337-342.
  • PENG SX, BORAH B, DOBSON RL, LIU YD, PIKUL S: Application of LC-NMR and LC-MS to the identification of degradation products of a protease inhibitor in dosage formulations. J. Pharm. Biomed. Anal. (1999) 20:75-89.
  • HAJDUK PJ, SHUKER SB, NETTESHEIM DG et al.: NMR-based modification of matrix metalloproteinase inhibitors with improved bioavailability. J. Med. Chem. (2002) 45:5628-5639.
  • GABISON EE, HOANG-XUAN T, MAUVIEL A, MENASHI S: EMMPRIN/CD147, an MMP modulator in cancer, development and tissue repair. Biochimie (2005) 87:361-368.
  • MIYAUCHI T, KANEKURA T, YAMAOKA A, OZAWA M, MIYAZAWA S, MURAMATSU T: Basigin, a new, broadly distributed member of the immunoglobulin superfamily, has strong homology with both the immunoglobulin V domain and the beta-chain of major histocompatibility complex class II antigen. J. Biochem. (1990) 107:316-323.
  • DECASTRO R, ZHANG Y, GUO H et al.: Human keratinocytes express EMMPRIN, an extracellular matrix metalloproteinase inducer. J. Invest. Dermatol. (1996) 106:1260-1265.
  • LIM M, MARTINEZ T, JABLONS D et al.: Tumor-derived EMMPRIN (extracellular matrix metalloproteinase inducer) stimulates collagenase transcription through MAPK p38. FEBS Lett. (1998) 441:88-92.
  • SAMESHIMA T, NABESHIMA K, TOOLE BP et al.: Glioma cell extracellular matrix metalloproteinase inducer (EMMPRIN) (CD147) stimulates production of membrane-type matrix metalloproteinases and activated gelatinase A in co-cultures with brain-derived fibroblasts. Cancer Lett. (2000) 157:177-184.
  • GABISON EE, MOURAH S, STEINFELS E et al.: Differential expression of extracellular matrix metalloproteinase inducer (CD147) in normal and ulcerated corneas: role in epithelio-stromal interactions and matrix metalloproteinase induction. Am. J. Pathol. (2005) 166:209-219.
  • IRWIN CR, MYRILLAS TT, TRAYNOR P, LEADBETTER N, CAWSTON TE: The role of soluble interleukin (IL)-6 receptor in mediating the effects of IL-6 on matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 expression by gingival fibroblasts. J. Periodontol. (2002) 73:741-747.
  • SUNDELIN K, ROBERG K, GRENMAN R, HAKANSSON L: Effects of cytokines on matrix metalloproteinase expression in oral squamous cell carcinoma in vitro. Acta. Otolaryngol. (2005) 125:765-773.
  • TAYLOR PC: Anti-TNFalpha therapy for rheumatoid arthritis: an update. Intern. Med. (2003) 42:15-20.
  • BLACK RA, RAUCH CT, KOZLOSKY CJ et al.: A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature (1997) 385:729-733.
  • MOSS ML, JIN SL, MILLA ME et al.: Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature (1997) 385:733-736.
  • BECK G, BOTTOMLEY G, BRADSHAW D et al.: (E)-2(R)-[1(S)-(Hydroxycarbamoyl)-4-phenyl-3-butenyl]-2’-isobutyl-2’-(methanesulfonyl)-4-methylvalerohydrazide (Ro 32-7315), a Selective and Orally Active Inhibitor of Tumor Necrosis Factor-alpha Convertase. J. Pharmacol. Exp. Ther. (2002) 302:390-396.
  • KIM IY, KIM MM, KIM SJ: Transforming growth factor-beta : biology and clinical relevance. J. Biochem. Mol. Biol. (2005) 38:1-8.
  • PHILIPP K, RIEDEL F, GERMANN G, HORMANN K, SAUERBIER M: TGF-beta antisense oligonucleotides reduce mRNA expression of matrix metalloproteinases in cultured wound-healing-related cells. Int. J. Mol. Med. (2005) 15:299-303.
  • WILGUS TA, VODOVOTZ Y, VITTADINI E, CLUBBS EA, OBERYSZYN TM: Reduction of scar formation in full-thickness wounds with topical celecoxib treatment. Wound Repair Regen. (2003) 11:25-34.
  • SZPADERSKA AM, DIPIETRO LA: Inflammation in surgical wound healing: friend or foe? Surgery (2005) 137:571-573.
  • EFRON PA, MOLDAWER LL: Cytokines and wound healing: the role of cytokine and anticytokine therapy in the repair response. J. Burn Care Rehabil. (2004) 25:149-160.
  • ESMON CT: The regulation of natural anticoagulant pathways. Science (1987) 235:1348-1352.
  • ESMON CT, FUKUDOME K, MATHER T et al.: Inflammation, sepsis, and coagulation. Haematologica (1999) 84:254-259.
  • XUE M, THOMPSON P, KELSO I, JACKSON C: Activated protein C stimulates proliferation, migration and wound closure, inhibits apoptosis and upregulates MMP-2 activity in cultured human keratinocytes. Exp. Cell Res. (2004) 299:119-127.
  • UCHIBA M, OKAJIMA K, OIKE Y et al.: Activated protein C induces endothelial cell proliferation by mitogen-activated protein kinase activation in vitro and angiogenesis in vivo. Circ. Res. (2004) 95:34-41.
  • MAKELA M, LARJAVA H, PIRILA E et al.: Matrix metalloproteinase 2 (gelatinase A) is related to migration of keratinocytes. Exp. Cell Res. (1999) 251:67-78.
  • SWARNAKAR S, GANGULY K, KUNDU P, BANERJEE A, MAITY P, SHARMA AV: Curcumin regulates expression and activity of matrix metalloproteinases 9 and 2 during prevention and healing of indomethacin-induced gastric ulcer. J. Biol. Chem. (2005) 280:9409-9415.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.