257
Views
38
CrossRef citations to date
0
Altmetric
Review

Protein lysine acetylation in normal and leukaemic haematopoiesis: HDACs as possible therapeutic targets in adult AML

, , , , &
Pages 51-68 | Published online: 27 Jan 2006

Bibliography

  • SMITH M, BARNETT M, BASSAN R, GATTA G, TONDINI C, KERN W: Adult acute myeloid leukaemia. Crit. Rev. Oncol. Hematol. (2004) 50(3):197-222.
  • JOHN AM, THOMAS NS, MUFTI GJ, PADUA RA: Targeted therapies in myeloid leukemia. Semin. Cancer Biol. (2004) 14(1):41-62.
  • COHEN T, YAO TP: AcK-knowledge reversible acetylation. Sci. STKE. (2004) 245:pe42.
  • KOUZARIDES T: Acetylation: a regulatory modification to rival phosphorylation. EMBO J. (2000) 19(6):1176-1179.
  • STERNER DE, BERGER SL: Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev. (2000) 64(2):435-459.
  • YANG XJ: Lysine acetylation and the bromodomain: a new partnership for signaling. Bioessays (2004) 26(10):1076-1087.
  • LUGER K, MADER AW, RICHMOND RK, SARGENT DF, RICHMOND TJ: Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature (1997) 389(6648):251-260.
  • ZHANG Y, REINBERG D: Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. (2001) 15(18):2343-2360.
  • NORTON VG, IMAI BS, YAU P, BRADBURY EM: Histone acetylation reduces nucleosome core particle linking number change. Cell (1989) 57(3):449-457.
  • MONNERET C: Histone deacetylase inhibitors. Eur. J. Med. Chem. (2005) 40(1):1-13.
  • DE RUIJTER AJ, VAN GENNIP AH, CARON HN, KEMP S, VAN KUILENBURG AB: Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. (2003) 370(Pt 3):737-749.
  • HUO X, ZHANG J: Important roles of reversible acetylation in the function of hematopoietic transcription factors. J. Cell. Mol. Med. (2005) 9(1):103-112.
  • YANG XJ, GREGOIRE S: Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol. Cell. Biol. (2005) 25(8):2873-2884.
  • BLANDER G, GUARENTE L: The Sir2 family of protein deacetylases. Annu. Rev. Biochem. (2004) 73:417-435.
  • GAO L, CUETO MA, ASSELBERGS F, ATADJA P: Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J. Biol. Chem. (2002) 277(28):25748-25755.
  • DOKMANOVIC M, MARKS PA: Prospects: Histone deacetylase inhibitors. J. Cell. Biochem. (2005) 96(2):293-304.
  • WU J, CARMEN AA, KOBAYASHI R, SUKA N, GRUNSTEIN M: HDA2 and HDA3 are related proteins that interact with and are essential for the activity of the yeas histone deacetylase HDA1. Proc. Natl. Acad. Sci. USA (2001) 98(8):4391-4396.
  • ZHOU X, RICHON VM, WANG AH, YANG XJ, RIFKIND RA, MARKS PA: Histone deacetylase 4 associates with extracellular signal-regulated kinases 1 and 2, and its cellular location is regulated by orcogenic Ras. Proc. Natl. Acad. Sci. USA (2000) 97(26):14329-14333.
  • PARONI G, MIZZAU M, HENDERSON C, DEL SAL G, SCHNEIDER C, BRANCOLINI C: Caspase-dependent regulation of histone deacetylase 4 nuclear-cytoplasmic shuttling promotes apoptosis. Mol. Biol. Cell (2004) 15(6):2804-2818.
  • GUENTHER MG, YU J, KAO GD, YEN TJ, LAZAR MA: Assembly of the SMRT-histone deacetylase 3 repression complex requires the TCP-1 ring complex. Genes Dev. (2002) 16(24):3130-3135.
  • YANG XJ: The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res. (2004) 32(3):959-976.
  • GOODMAN RH, SMOLIK S: CBP/p300 in cell growth, transformation, and development. Genes Dev. (2000) 14(13):1553-1577.
  • BHALLA KN: Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J. Clin. Oncol. (2005) 23(17):3971-3993.
  • CAMMENGA J: Gatekeeper pathways and cellular background in the pathogenesis and therapy of AML. Leukemia (2005) 19(10):1719-1728.
  • YAMAMOTO M, TAKAHASHI S, ONODERA K, MURAOSA Y, ENGEL JD: Upstream and downstream of erythroid transcription factor GATA-1. Genes Cells (1997) 2(2):107-115.
  • WATAMOTO K, TOWATARI M, OZAWA Y et al.: Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation. Oncogene (2003) 22(57):9176-9184.
  • SIEHL JM, THIEL E, HEUFELDER K et al.: Possible regulation of Wilms’ tumour gene 1 (WT1) expression by the paired box genes PAX2 and PAX8 and by the haematopoietic transcription factor GATA-1 in human acute myeloid leukemias. Br. J. Haematol. (2003) 123(2):235-242.
  • RICE AM, HOLTZ KM, KARP J, ROLLINS S, SARTORELLI AC: Analysis of the relationship between Scl transcription factor complex protein expression patterns and the effects of LiCl on ATRA-induced differentiation in blast cells from patients with acute myeloid leukemia. Leuk. Res. (2004) 28(11):1227-1237.
  • LARSON RA, LE BEAU MM: Therapy-related myeloid leukemia: a model for leukemogenesis in humans. Chem. Biol. Interact. (2005) 153-154:187-195.
  • HUNG HL, KIM AY, HONG W, RAKOWSKI C, BLOBEL GA: Stimulation of NF-E2 DNA binding by CREB-binding protein (CBP)-mediated acetylation. J. Biol. Chem. (2001) 276(14):10715-10721.
  • ARMSTRONG JA, EMERSON BM: NF-E2 disrupts chromatin structure at human β-globulin locus control region hypersensitive site 2 in vitro. Mol. Cell. Biol. (1996) 16(10):5634-5644.
  • MATSUMURA I, KANAKURA Y, KATO T et al.: The biological properties of recombinant human thrombopoietin in the proliferation and megakaryocytic differentiation of acute myeloblastic leukemia cells. Blood (1996) 88(8):3074-3082.
  • WIESER R, VOLZ A, VINATZER U et al.: Transcription factor GATA-2 gene is located near 3q21 breakpoints in myeloid leukemia. Biochem. Biophys. Res. Commun. (2000) 273(1):239-245.
  • HUANG S, BRANDT SJ: mSin3A regulates murine erythroleukemia cell differentiation through association with the TAL1 (or SCL) transcription factor. Mol. Cell. Biol. (2000) 20(6):2248-2259.
  • O’NEIL J, SHANK J, CUSSON N, MURRE C, KELLIHER M: TAL1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB. Cancer Cell (2004) 5(6):587-596.
  • GOPAL V, HULETTE B, LI YQ et al.: c-myc and c-myb expression in acute myelogenous leukemia. Leuk. Res. (1992) 16(10):1003-1011.
  • LARIBEE RN, KLEMSZ MJ: Loss of PU.1 expression following inhibition of histone deacetylases. J. Immunol. (2001) 167(9):5160-5166.
  • HONG W, KIM AY, KY S et al.: Inhibition of CBP-mediated protein acetylation by the Ets family oncoprotein PU.1. Mol. Cell. Biol. (2002) 22(11):3729-3743.
  • SURAWEERA N, MEIJNE E, MOODY J et al.: Mutations of the PU.1 Ets domain are specifically associated with murine radiation-induced, but not human therapy-related, acute myeloid leukemia. Oncogene (2005) 24(22):3678-3683.
  • ROSENBAUER F, WAGNER K, KUTOK JL et al.: Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat. Genet. (2004) 36(6):624-630.
  • VANGALA RK, HEISS-NEUMANN MS, RANGATIA JS et al.: The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood (2003) 101(1):270-277.
  • MIZUKI M, SCHWABLE J, STEUR C et al.: Suppression of myeloid transcription factors and induction of STAT reponse genes by AML-specific Flt3 mutations. Blood (2003) 101(8):3164-3173.
  • MUELLER BU, PABST T, OSATO M et al.: Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood (2002) 100(3):998-1007.
  • BEN-DAVID Y, BERNSTEIN A: Friend virus-induced erythroleukemia and the multistage nature of cancer. Cell (1991) 66(5):831-834.
  • JIN S, LEVINE AJ: The p53 functional circuit. J. Cell. Sci. (2001) 114(Pt 23):4139-4140.
  • FENAUX P, PREUDHOMME C, QUIQUANDON I et al.: Mutations of the P53 gene in acute myeloid leukaemia. Br. J. Haematol. (1992) 80(2):178-183.
  • WOJCIK I, SZYBKA M, GOLANSKA E et al.: Abnormalities of the P53, MDM2, BCL2 and BAX genes in acute leukemias. Neoplasma (2005) 52(4):318-324.
  • WATTEL E, PREUDHOMME C, HECQUET B et al.: p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood (1994) 84(9):3148-3157.
  • MELO MB, AHMAD NN, LIMA CS et al.: Mutations in the p53 gene in acute myeloid leukemia patients correlate with poor prognosis. Hematology (2002) 7(1):13-19.
  • PEDERSEN-BJERGAARD J, ANDERSEN MK, CHRISTIANSEN DH, NERLOV C: Genetic pathways in therapy-related myelodysplasia and acute myeloid leukemia. Blood (2002) 99(6):1909-1912.
  • XU Y: Regulation of p53 responses by post-translational modifications. Cell Death Differ. (2003) 10(4):400-403.
  • BODE AM, DONG Z: Post-translational modification of p53 in tumorigenesis. Nat. Rev. Cancer (2004) 4(10):793-805.
  • APPELLA E, ANDERSON CW: Post-translational modifications and activation of p53 by genotoxic stresses. Eur. J. Biochem. (2001) 268(10):2764-2772.
  • FENG L, LIN T, URANISHI H, GU W, XU Y: Functional analysis of the roles of posttranslational modifications at the p53 C terminus in regulating p53 stability and activity. Mol. Cell. Biol. (2005) 25(13):5389-5395.
  • MIRZA A, WU Q, WANG L et al.: Global transcriptional program of p53 target genes during the process of apoptosis and cell cycle progression. Oncogene (2003) 22(23):3645-3654.
  • HARRIS SL, LEVINE AJ: The p53 pathway: positive and negative feedback loops. Oncogene (2005) 24(17):2899-2908.
  • SAKAGUCHI K, HERRERA JE, SAITO S et al.: DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. (1998) 12(18):2831-2841.
  • DUMAZ N, MEEK DW: Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. EMBO J. (1999) 18(24):7002-7010.
  • XIRODIMAS DP, SAVILLE MK, BOURDON JC, HAY RT, LANE DP: Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell (2004) 118(1):83-97.
  • LØNNING PE: Genes causing inherited cancer as beacons to identify the mechanisms of chemoresistance. Trends Mol. Med. (2004) 10(3):113-118.
  • INSINGA A, MONESTIROLI S, RONZONI S et al.: Impairment of p53 acetylation, stability and function by an oncogenic transcription factor. EMBO J. (2004) 23(5):1144-1154.
  • LUO J, LI M, TANG Y, LASZKOWSKA M, ROEDER RG, GU W: Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc. Natl. Acad. Sci. USA (2004) 101(8):2259-2264.
  • GU W, ROEDER RG: Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell (1997) 90(4):595-606.
  • LIU L, SCOLNICK DM, TRIEVEL RC et al.: p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol. Cell. Biol. (1999) 19(2):1202-1209.
  • ITO A, LAI CH, ZHAO X et al.: p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J. (2001) 20(6):1331-1340.
  • COURTOIS S, VERHAEGH G, NORTH S et al.: DeltaN-p53, a natural isoform of p53 lacking the first transactivation domain, counteracts growth suppression by wild-type p53. Oncogene (2002) 21(44):6722-6728.
  • GHOSH A, STEWART D, MATLASHEWSKI G: Regulation of human p53 activity and cell localization by alternative splicing. Mol. Cell. Biol. (2004) 24(18):7987-7997.
  • BOURDON JC, FERNANDES K, MURRAY-ZMIJEWSKI F et al.: p53 isoforms can regulate p53 transcriptional activity. Genes Dev. (2005) 19(18):2122-2137.
  • TERUI T, MURAKAMI K, TAKIMOTO R ET et al.: Induction of PIG3 and NOXA through acetylation of p53 at 320 and 373 lysine residues as a mechanism for apoptotic cell death by histone deacetylase inhibitors. Cancer Res. (2003) 63(24):8948-54.
  • XU WS, PEREZ G, NGO L, GUI CY, MARKS PA: Induction of polyploidy by histone deacetylase inhibitor: a pathway for antitumor effects. Cancer Res. (2005) 65(17):7832-7839.
  • BRUSERUD Ø, TRONSTAD KJ, MC CORMACK E, GJERTSEN BT: Is targeted chemotherapy an alternative to immunotherapy in chronic lymphocytic leukemia? Cancer Immunol. Immunother. (2006) 55(2):221-228.
  • KOVACS JJ, MURPHY PJ, GAILLARD S et al.: HDAC6 regulates Hsp90 acetylation and chaperon-dependent activation of glucocorticoid receptor. Mol. Cell (2005) 18(5):601-607.
  • BALI P, PRANPAT M, BRADNER J et al.: Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J. Biol. Chem. (2005) 280(29):26729-26734.
  • AOYAGI S, ARCHER TK: Modulating molecular chaperone Hsp90 functions through reversible acetylation. Trends Cell Biol. (2005) 15(11):565-567.
  • ROMANSKI A, BACIC B, BUG G et al.: Use of a novel histone deacetylase inhibitor to induce apoptosis in cell lines of acute lymphoblastic leukemia. Haematologica (2004) 89(4):419-426.
  • REVENU C, ATHMAN R, ROBINE S, LOUVARD D: The co-workers of actin filaments: from cell structures to signals. Nat. Rev. Mol. Cell Biol. (2004) 5(8):635-646.
  • MATSUYAMA A, SHIMAZU T, SUMIDA Y et al.: In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J. (2002) 21(24):6820-6831.
  • ZHANG Y, ADACHI M, KAWAMURA R, IMAI K: Bmf is a possible mediator in histone deacetylase inhibitors FK228 and CBHA-induced apoptosis. Cell Death Differ. (2006) 13(1):129-140.
  • BAKIN RE, JUNG MO: Cytoplasmic sequestration of HDAC7 from mitochondrial and nuclear compartments upon initiation of apoptosis. J. Biol. Chem. (2004) 279(49):51218-51225.
  • CZUBRYT MP, MCANALLY J, FISHMAN GI, OLSON EN: Regulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha) and mitochondrial function by MEF2 and HDAC5. Proc. Natl. Acad. Sci. USA (2003) 100(4):1711-1716.
  • BORDONE L, GUARENTE L: Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat. Rev. Mol. Cell Biol. (2005) 6(4):298-305.
  • ONYANGO P, CELIC I, MCCAFFERY JM, BOEKE JD, FEINBERG AP: SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc. Natl. Acad. Sci. USA (2002) 99(21):13653-13658.
  • SHI T, WANG F, STIEREN E, TONG Q: SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J. Biol. Chem. (2005) 280(14):13560-13567.
  • SILVERSTEIN RA, EKWALL K: Sin3: a flexible regulator of global gene expression and genome stability. Curr. Genet. (2005) 47(1):1-17.
  • PILE LA, SPELLMAN PT, KATZENBERGER RJ, WASSARMAN DA: The SIN3 deacetylase complex represses genes encoding mitochondrial proteins: implications for the regulation of energy metabolism. J. Biol. Chem. (2003) 278(39):37840-37848.
  • AVLIYAKULOV NK, LUKES J, RAY DS: Mitochondrial histone-like DNA-binding proteins are essential for normal cell growth and mitochondrial function in Crithidia fasciculata. Eukaryot Cell (2004) 3(2):518-526.
  • FINNIN MS, DONIGIAN JR, COHEN A et al.: Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature (1999) 401(6749):188-193.
  • SOMOZA JR, SKENE RJ, KATZ BA et al.: Structural snapshots of human HDAC8 provide insight into the class I histone deacetylases. Structure (Camb) (2004) 12(7):1325-1334.
  • DAVIE JR, MONIWA M: Control of chromatine remodelling. Crit. Rev. Eukaryot. Gene Expr. (2000) 10(3-4):303-325.
  • MARIADASON JM, CORNER GA, AUGENLICHT LH: Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer. Cancer Res. (2000) 60(16):4561-4572.
  • YANG J, KAWAI Y, HANSON RW, ARINZE IJ: Sodium butyrate induces transcription from the G alpha(i2) gene promoter through multiple Sp1 sites in the promoter and by activating the MEK-ERK signal transduction pathway. J. Biol. Chem. (2001) 276(28):25742-25752.
  • TRUS MR, YANG L, SUAREZ SAIZ F, BORDELEAU L, JURISICA I, MINDEN MD: The histone deacetylase inhibitor valproic acid alters sensitivity towards all trans retinoic acid in acute myeloblastic leukemia cells. Leukemia (2005) 19(7):1161-1168.
  • GOTTLICHER M, MINUCCI S, ZHU P et al.: Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. (2001) 20(24):6969-6978.
  • MARCHION DC, BICAKU E, DAUD AI, SULLIVAN DM, MUNSTER PN: Valproic acid alters chromatin structure by regulation of chromatin modulation proteins. Cancer Res. (2005) 65(9):3815-3822.
  • MARCHION DC, BICAKU E, DAUD AI, RICHON V, SULLIVAN DM, MUNSTER PN: Sequence-specific potentiation of topoisomerase II inhibitors by the histone deacetylase inhibitor suberoylanilide hydroxamic acid. J. Cell. Biochem. (2004) 92(2):223-237.
  • TRONSTAD KJ, BERGE K, BERGE RK, BRUSERUD Ø: Modified fatty acids and their possible therapeutic targets in malignant diseases. Expert Opin. Ther. Targets (2003) 7(5):663-677.
  • DAVIE JR: Inhibition of histone deacetylase activity by butyrate. J. Nutr. (2003) 133(7 Suppl.):2485S-2493S.
  • SPIRA AI, CARDUCCI MA: Differentiation therapy. Curr. Opin. Pharmacol. (2003) 3(4):338-343.
  • GOH M, CHEN F, PAULSEN MT, YEAGER AM, DYER ES, LJUNGMAN M: Phenylbutyrate attenuates the expression of Bcl-X(L), DNA-PK, caveolin-1 and VEGF in prostate cancer cells. Neoplasia (2001) 3(4):331-338.
  • DIGIUSEPPE JA, WENG LJ, YU KH et al.: Phenylbutyrate-induced G1 arrest and apoptosis in myeloid leukemia cells: structure-function analysis. Leukemia (1999) 13(8):1243-1253.
  • GORE SD, WENG LJ, ZHAI S et al.: Impact of the putative differentiating agent sodium phenylbutyrate on myelodysplastic syndromes and acute myeloid leukemia. Clin. Cancer Res. (2001) 7(8):2330-2339.
  • GORE SD, WENG LJ, FIGG WD et al.: Impact of prolonged infusions of the putative differentiating agent sodium phenylbutyrate on myelodysplastic syndroms and acute myeloid leukemia. Clin. Cancer Res. (2002) 8(4):963-970.
  • GORE SD, SAMID D, WENG LJ: Impact of the putative differentiating agents sodium phenylbutyrate and sodium phenylacetate on proliferation, differentiation and apoptosis of primary neoplastic myeloid cells. Clin. Cancer Res. (1997) 3(10):1755-1762.
  • TONG KP, DAVID-BEABES G, MEEKER A, BUCCI J, DEWEESE T, CARDUCCI MA: Phenylbutyrate has pleiotropic effects on gene transcription and inhibits teleomerase activity in human prostate cancer. Anti-Cancer Res. (1997) 17(62):3953-3958.
  • GILBERT J, BAKER SD, BOWLING MK et al.: A Phase I dose escalation and bioavailability study of oral sodium phenylbutyrate in patients with refractory solid tumor malignancies. Clin. Cancer Res. (2001) 7(8):2292-2300.
  • FURUMAI R, MATSUYAMA A, KOBASHI N et al.: FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res. (2002) 62(17):4916-4921.
  • XIAO JJ, BYRD J, MARCUCCI G, GREVER M, CHAN KK: Identification of thiols and glutathione conjugates of depsipeptide FK228 (FR901228), a novel histone protein deacetylase inhibitor, in the blood. Rapid. Commmun. Mass Spectrom. (2003) 17(8):757-766
  • BYRD JC, SHINN C, RAVI R et al.: Depsipeptide (FR901228): a novel therapeutic agent with selective, in vitro activity against human B-cell chronic lymphocytic leukemia cells. Blood (1999) 94(4):1401-1408.
  • SANDOR V, BAKKE S, ROBEY RW et al.: Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin. Cancer Res. (2002) 8(3):718-728.
  • MARSHALL JL, RIZVI N, KAUH J et al.: A Phase I trial of depsipeptide (FR901228) in patients with advanced cancer. J. Exp. Ther. Oncol. (2002) 2(6):325-332.
  • RICHON VM, EMILIANI S, VERDIN E et al.: A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylase. Proc. Natl. Acad. Sci. USA (1998) 95(6):3003-3007.
  • MITSIADES CS, MITSIADES NS, McMULLAN CJ et al.: Transcriptional signature of histone deacetylase inhibition in multiple myeloma: Biological and clinical implications. Proc. Natl. Acad. Sci. USA (2004) 101(2):540-545.
  • KELLY WK, O’CONNOR OA, KRUG LM et al.: Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J. Clin. Oncol. (2005) 23(17):3923-3931.
  • KELLY WK, RICHON VM, O’CONNOR O et al.: Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin. Cancer Res. (2003) 9(10 Pt 1):3578-3588.
  • DRUMMOND DC, NOBLE CO, KIRPOTIN DB, GUO Z, SCOTT GK, BENZ CC: Clinical development of histone deacetylase inhibitors as anticancer agents. Ann. Rev. Pharmacol. Toxicol. (2005) 45:495-528.
  • ROSATO RR, MAGGIO SC, ALMENARA JA et al.: The histone deacetylase inhibitor LAQ-824 induces human leukemia cell death through a process involving XIAP down-regulation, oxidative injury, and the acid sphingomyelinase-dependent generation of ceramide. Mol. Pharmacol. (2005) Epub ahead of print.
  • PIEKARTZ R, BATES S: A review of depripeptide and other histone deacetylase inhibitors in clinical trials. Curr. Pharm. Des. (2004) 10(19):2289-2298.
  • KUENDGEN A, STRUPP C, AIVADO M et al.: Treatment of myelodysplastic syndromes with valproic acid alone or in combination with all-trans retinoic acid. Blood (2004) 104(5):1266-1269.
  • PILATRINO C, CILLONI D, MESSA E et al.: Increase in platelet count in older, poor-risk patients with acute myeloid leukemia or myelodysplastic syndrome treated with valproic acid and all-trans retinoic acid. Cancer (2005) 104(1):101-109.
  • BUG G, RITTER M, WASSMANN B et al.: Clincal trial of valproic acid and all-trans retinoic acid in patients with poor-risk acute myeloid leukemia. Cancer (2005) 104(12):2717-2725.
  • RAFFOUX E, CHAIBI P, DOMBRET H, DEGOS L: Valprotic acid and all-trans retinoic acid for the treatment of elderly patients with acute myeloid leukemia. Haematologica (2005) 90(7):986-988.
  • ZHOU DC, KIM SH, DING W, SCHULTZ C, WARRELl RP, GALLAGHER RE: Frequent mutations in the ligand-binding domain of PML-RARalpha after multiple relapses of acute promyelocytic leukemia: analysis for functional relationship to response to all-trans retinoic acid and histone deacetylase inhibitors in vivo and in vitro. Blood (2002) 99(4):1356-1363.
  • BYRD JC, MARCUCCI G, PARTHUN MR et al.: A Phase I and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood (2005) 105(3):959-967.
  • ROBIN M, SCHLAGETER MH, CHOMIENNE C, PADUA RA: Targeted immunotherapy in acute myeloblastic leukemia: from animals to humans. Cancer Immunol. Immunother. (2005); 54(10):933-943.
  • BRUSERUD Ø, WENDELBO Ø: Biological treatment in acute myelogenous leukemia: how should T cell targeting immunotherapy be combined with intensive chemotherapy. Expert Opin. Biol. Ther. (2001) 1(6):1005-1016.
  • MOREIRA JM, SCHEIPERS P, SORENSEN P: The histone deacetylase inhibitor Trichostatin A modulates CD4+ T cell responses. BMC Cancer (2003) 3(30):1-18.
  • MORINOBU A, KANNO Y, O’SHEA JJ: Discrete roles for histone acetylation in human T helper 1 cell-specific gene expression. J. Biol. Chem. (2004) 279(39):40640-40646.
  • MAEDA T, TOWATARI M, KOSUGI H, SAITO H: Up-regulation of costimulatory/adhesion molecules by histone deacetylase inhibitors in acute myeloid leukemia cells. Blood (2000) 96(12):3847-3856.
  • SJØHOLT G, ANENSEN N, WERGELAND L, MC CORMACK E, BRUSERUD Ø, GJERTSEN BT: Proteomics in acute myelogenous leukaemia (AML): methodological strategies and identification of protein targets for novel antileukaemic therapy. Curr. Drug Targets (2005) 6(6):631-646.
  • BRUSERUD Ø, GJERTSEN BT, FOSS B, HUANG TS: New strategies in the treatment of acute myelogenous leukemia (AML): in vitro culture of aml cells-the present use in experimental studies and the possible importance for future therapeutic approaches. Stem Cells (2001) 19(1):1-11.
  • GAUSDAL G, GJERTSEN BT, FLADMARK KE, DEMOL H, VANDEKERCKHOVE J, DOSKELAND SO: Caspase-dependent, geldanamycin-enhanced cleavage of co-chaperone p23 in leukemic apoptosis. Leukemia (2004) 18(12):1989-1996.
  • GREGORY RI, SHIEKHATTAR R: MicroRNA biogenesis and cancer. Cancer Res. (2005) 65(9):3509-3512.
  • HE L, THOMSON JM, HEMANN MT et al.: A microRNA polycistron as a potential human oncogene. Nature (2005) 435(7043):828-833.
  • COSIO BG, TSAPROUNI L, ITO K, JAZRAWI E, ADCOCK IM, BARNES PJ: Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages. J. Exp. Med. (2004) 200(5):689-695.
  • YANG H, HOSHINO K, SANCHEZ-GONZALES B, KANTARJIAN H, GARCIA-MANERO G: Antileukemic activity of the combination of 5-aza-2’-deoxycytidine with valproic acid. Leuk. Res. (2005) 29(7):739-748.
  • MROZEK K, HEEREMA NA, BLOOMFIELD CD: Cytogenetics in acute leukemia. Blood Rev. (2004) 18(2):115-136.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.