72
Views
4
CrossRef citations to date
0
Altmetric
Review

Possible drug targets for celiac disease

, &
Pages 601-611 | Published online: 18 Jul 2006

Bibliography

  • SOLLID L: Molecular basis of coeliac disease. Ann. Rev. Immunol. (2000) 18:53-81.
  • GREEN P, JABRI B: Celiac disease. Lancet (2003) 362:383-391.
  • MAKI M, COLLIN P: Celiac disease. Lancet (1997) 349:1755-1759.
  • BOTTARO G, CATALDO F, ROTOLO N, SPINA M, CORAZZA GM: The clinical pattern of subclinical/silent celiac disease: an analysis on 1026 consecutive cases. Am. J. Gastroenterol. (1999) 94:691-696.
  • FASANO A, BERTI I, GERARDUZZI T et al.: Prevalence of celiac disease in at-risk and not-at-risk groups in the United States: a large multicenter study. Arch. Intern. Med. (2003) 163:286-292.
  • RYAN B, KELLEHER D: Refractory celiac disease. Gastroenterology (2000) 119:243-251.
  • MARGARITTE-JEANNIN P, BABRON MC, BOURGEY M et al.: HLA-DQ relative risks for coeliac disease in European populations: a study of the European Genetics Cluster on Coeliac Disease. Tissue Antigens (2004) 63:562-567.
  • LUNDIN KEA, SCOTT T, HANSEN G et al.: Gliadin-specific, HLA-DQ(α1*0501,_β1*0201) restricted T cells isolated from the small intestinal mucosa of celiac disease patients. J. Exp. Med. (1993) 188:187-196.
  • MOLBERG O, KETT K, SCOTT H, THORSBY E, SOLLID L, LUNDIN KEA: Gliadin-specific, HLA DQ2-restricted T cells are commonly found in small intestinal biopsies from coeliac disease patients, but not from controls. Scand. J. Immunol. (1997) 46:103-108.
  • NILSEN EM, LUNDIN KEA, KRAJCI P, SCOTT H, SOLLID LM, BRANDTZAEG P: Gluten specific, HLA-DQ restricted T cells from coeliac mucosa produce cytokines with Th1 or Th0 profile dominated by interferon-γ. Gut (1995) 37:766-776.
  • TRONCONE R, GIANFRANI C, MAZZARELLA G et al.: The majority of gliadin-specific T cell clones from the coeliac small intestinal mucosa produce both γ-interferon and IL4. Dig. Dis. Sci. (1998). 43:156-161.
  • ARENTZ-HANSEN H, McADAM S, MOLBERG O et al.: Celiac lesion T cells recognized epitopes that cluster in regions of gliadin rich in proline residues. Gastroenterology (2003) 123:803-809.
  • VAN DE WAL Y, KOOY Y, VAN VEELEN P et al.: Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. J. Immunol. (1998) 161:1585-1588.
  • MOLBERG O, McADAM SN, KORNER R et al.: Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat. Med. (1998) 4:713-717.
  • VADER L, DE RU A, VAN DER WAL Y et al.: Specificity of tissue transglutaminase explains cereal toxicity in celiac disease. J. Exp. Med. (2002) 195:643-649.
  • DIETERICH W, EHNIS T, BAUER M et al.: Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat. Med. (1997) 3:797-801.
  • GIANFRANI C, AURICCHIO S, TRONCONE R: Adaptive and innate immune responses in celiac disease. Immunol. Lett. (2005) 99:141-145.
  • MAIURI L, CIACCI C, AURICCHIO S, BROWN V, QUARATINO S, LONDEI M: Interleukin 15 mediates epithelial changes in celiac disease. Gastroenterology (2000) 119:996-1006.
  • MENTION JJ, AHMED MB, BEGUE B et al. Interleukin 15: a key to disrupted intraepithelial lymphocyte homeostasis and lymphomagenesis in celiac disease. Gastroenterology (2003) 125:730-745.
  • AURICCHIO S, BARONE M, TRONCONE R: Dietary proteins and mechanisms of gastrointestinal diseases: gliadin as a model. J. Pediatr. Gastroenterol. Nutr. (2004) 39:S738-S739.
  • GIANFRANI C, TRONCONE R, MUGIONE P et al.: Coeliac disease association with CD8+ T cell responses: identification of a novel gliadin-derived HLA-A2 restricted epitope. J. Immunol. (2003) 170:2719-2726.
  • SALVATI V, MAZZARELLA G, GIANFRANI C et al.: Recombinant human IL-10 suppresses gliadin-dependent T-cell activation in ex vivo cultured celiac intestinal mucosa. Gut (2005) 54:46-53.
  • GIANFRANI C, LEVINGS M, SARTIRANA C et al.: Gliadin-specific, Type 1 regulatory cells from the intestinal mucosa of treated celiac patients inhibit T cells. J. Immunol. (2006) In Press.
  • VADER W, KOOY Y, VAN VEELEN P et al.: The gluten response in children with coeliac disease is directed toward multiple gliadin and glutenin peptides. Gastroenterology (2002) 122:1729-1737.
  • SHAN L, MOLBERG O, PARROT I et al.: Structural basis for gluten intolerance in celiac sprue. Science (2002) 297:2275-2279.
  • GASS J, EHREN J, STROHMEIER G, ISAACS I, KHOSLA C: Fermentation, purification, formulation, and pharmacological evaluation of a prolyl endopeptidase from Myxococcus xanthus: Implications for Celiac Sprue therapy. Biotechnol. Bioeng. (2005) 92:674-684.
  • SHAN L, MARTI T, SOLLID L, GRAY G, KHOSLA C: Comparative biochemical analysis of three bacterial prolyl endopeptidases: implications for coeliac sprue. Biochem. J. (2004) 383:311-318.
  • MATYSIAK-BUDNIK T, CANDALH C, CELLIER C et al.: Limited efficiency of prolyl-endopeptidase in the detoxification of gliadin peptides in celiac disease. Gastroenterology (2005) 129:786-796.
  • MARTI T, MOLBERG O, LI Q, GRAY G, HOSLA C, SOLLID L: Prolyl endopeptidase-mediated destruction of T cell epitopes in whole gluten: chemical and immunological characterization. J. Pharmacol. Exp. Ther. (2005) 312:19-26.
  • PYLE GG, PAASO B, ANDERSON BE et al.: Effect of pre-treatment of food gluten with prolyl endopeptidase on gluten-induced malabsorption in celiac sprue. Clin. Gastroenterol. Hepatol. (2005) 3:687-694.
  • DI CAGNO R, DE ANGELIS M, AURICCHIO S et al.: Sourdough bread made from wheat and non-toxic flours and started with selected lactobacilli is tolerated in celiac sprue patients. Appl. Environ. Microbiol. (2004) 70:1088-1896.
  • FASANO A, NOT T, WANG W et al.: Zonulin, a newly discovered modulator of intestinal permeability, and its expression in celiac disease. Lancet (2001) 358:1729-1730.
  • CLEMENTE MG, DE VIRGILIIS S, KANG JS et al.: Early effects of gliadin on enterocyte intracellular signaling involved in intestinal barrier function. Gut (2003) 52:218-223.
  • DRAGO S, EL SAMAR R, DI PIERRO MR et al.: Gliadin, zonulin and gut permeability:Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand. J. Gastroent. (2006) 41:408-419.
  • MATYSIAK-BUDNIK T, CANDALH C, DUGAVE C et al.: Alteration of intestinal transport and processing of gliadin peptides in celiac disease. Gastroenterology (2003) 125:696-707.
  • AURICCHIO S, DE RITIS G, DE VINCENZI M et al.: Mannan and oligomers of N-acetylglucosamine protect intestinal mucosa of celiac patients with active disease from in vitro toxicity of gliadin peptides. Gastroenterology (1990) 99:973-978.
  • AURICCHIO S, DE RITIS G, DE VINCENZI M et al.: Amines protect in vitro the celiac small intestine from the damaging activity of gliadin peptides. Gastroenterology (1990) 99:1668-1674.
  • AESCHLIMANN D, PAULSSON M: Transglutaminase: protein cross-linking enzymes in tissues and body fluids. Thromb. Haemost. (1994) 71:402-415.
  • SOLLID L, KHOSLA C: Future therapeutic options for celiac disease. Nat. Clin. Pract. Gastroenterol. Hepatol. (2005) 2:140-147.
  • SETTE A, BULLS S, COLON S et al.: Structural characteristic of an antigen required for its interaction with Ia and recognition by T cells. Nature (1987) 328:395-399.
  • VADER W, STEPNIAK D, KOOY Y et al.: The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses. Proc. Natl. Acad. Sci. USA (2003) 100:12390-12395.
  • RAMMENSEE HG, FRIEDE T, STEVANOVIC S: MHC ligands and peptide motifs: first listing. Immunogenetics (1995) 41:178-228.
  • KIM CY, QUARSTEN H, BERGSENG E, KHOSLA C, SOLLID L: Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proc. Natl. Acad. Sci. USA (2004) 101:4175-4179.
  • QIAO S, BERGSENG C, MOLBERG O et al.: Refining the rules of gliadin T cell epitope binding to the disease-associated DQ2 molecule in celiac disease: importance of proline spacing and glutamine deamidation. J. Immunol. (2005) 175:254-261.
  • VADER L, DE RU A, VAN DER WAL Y et al.: Specificity of tissue transglutaminase explains cereal toxicity in celiac disease. J. Exp. Med. (2002) 195:643-649.
  • MAZZEO F, DE GIULIO B, SENGER S, ROSSI M, MALORNI A, SICILIANO R: Identification of transglutaminase-mediated deamidation sites in a recombinant alpha-gliadin by advanced mass-spectrometric methodologies. Protein. Sci. (2003) 12:2434-2442.
  • SETTE A, ALEXANDER J, RUPPERT J et al.: Antigen analogs/MHC complexes as specific T cell receptor antagonists. Ann. Rev. Immunol. (1994) 12:413-431.
  • MAZZARELLA G, MAGLIO M, PAPARO F et al.: An immunodominant DQ8 restricted gliadin peptide activates small intestinal immune response in in vitro cultured mucosa from HLA-DQ8 positive but not HLA-DQ8 negative coeliac patients. Gut (2003) 52:57-62.
  • ANDERSON RP, VAN HEEL DA, TYE-DYN JA et al.: Antagonist and non-toxic variants of the dominant wheat gliadin T cell epitope in celiac disease. Gut (2006) 55:485-491.
  • HORVATH C, DARNELL JE Jr: The state of the STATs: recent developments in the study of signal transduction to the nucleus. Curr. Opin. Cell. Biol. (1997) 9:233-239.
  • MAZZARELLA G, MACDONALD TT, SALVATI V et al.: Constitutive activation of the signal transducer and activator of transcription pathway in celiac disease lesions. Am. J. Pathol. (2003) 162:1845-1855.
  • HOMMES D, MIKHAJLOVA T, STOINOV S et al.: Fontolizumab (HuZAF), a humanized anti-IFN-gamma antibody, has a clinical activity and excellent tolerability in moderate to severe Crohn’s disease. Gastroenterology (2004) 127:332.
  • KENNEDY MK, PARK LS: Characterization of interleukin-15 (IL-15) and IL-15 receptor complex. J. Clin. Immunol. (1996) 16:134-143.
  • EBERT EC: Interleukin-15 is a potent stimulant of intraepithelial lymphocytes. Gastroenterology (1998) 115:1439-1445.
  • MERESSE B, CHEN Z, CISZEWSKI C et al.: Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine activated killer cels in celiac disease. Immunity (2004) 21:357-366.
  • DI SABATINO A, CICCOCIOPPO R, CUPELLI F et al.: Epithelium-derived IL-15 regulates intraepithelial lymphocyte Th1 cytokine production, cytotoxicity and survival in celiac disease. Gut (2006) 55:469-477.
  • FERRARI-LACRAZ S. ZANELLI E, NEUBERG M et al.: Targeting IL-15 receptor-bearing cells with an antagonist mutant IL-15-Fc protein prevents disease development and progression in murine collagen-induced arthritis. J. Immunol. (2004) 173:5818-5826.
  • VILLADSEN LS, SCHUURMAN J, BEURSKENS F et al.: Resolution of psoriasis upon blockade of IL-15 biological activity in a xenograft mouse model. J. Clin. Invest. (2003) 112:1571-1580.
  • MOWAT A: Anatomical basis of tolerance and immunity to intestinal antigens. Nat. Rev. Immunol. (2003) 3:331-341.
  • BATTAGLIA M, GIANFRANI C, GREGORI S, RONCAROLO MG: IL-10 producing T regulatory Type 1 cells and oral tolerance. Ann. N. Y. Acad. Sci. (2004) 1029:142-153.
  • KUHN R, LOHLER J, RENNICK D, RAJEWSKY K, MULLER W: Interleukin-10 deficient mice develop chronic enterocolitis. Cell (1993) 75:263-274.
  • RONCAROLO MG, BACCHETTA R, BORDIGNON C, NARULA S, LEVINGS M: Type 1 T regulatory cells. Immunol. Rev. (2001) 182:68-79.
  • SCHREIBER S, HEINIG T, THIELE HG, RAEDLER A: Immunoregulatory role of Interleukin 10 in patients with inflammatory bowel disease (IBD). Gastroenterology (1995) 108:1434-1444.
  • FEDORAK RF, GANGL A, ELSON C et al.: Interleukin 10 inflammatory bowel disease. Cooperative Study Group. Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn’s disease. Gastroenterology (2000) 119:1473-1482.
  • MULDER C, WAHAB P, MEIJER J, METSELAAR E: A pilot study of recombinant human Interleukin-10 in adults with refractory coeliac disease. Eur. J. Gastroenterol. Hepatol. (2001) 13:1183-1188.
  • VAN MONTFRANS C, HOOUBERG E, RODRIGUEZ PENA M et al.: Generation of regulatory gut-homing human T lymphocytes using ex vivo Interleukin 10 gene transfer. Gastroenterology (2002) 123:1877-1888.
  • HALL EJ, BATT RM: Dietary modulation of gluten sensitivity in a naturally occurring enteropathy of Irish setter dogs. Gut (1992) 33:198-205.
  • BLACK KE, MURRAY JA, DAVID CS: HLA-DQ determines the response to exogenous wheat proteins: a model of gluten sensitivity in transgenic knockout mice. J. Immunol. (2002) 169:5595-5600.
  • MARIETTA E, BLACK K, CAMILLERI M et al.: A new model for dermatitis herpetiformis that uses HLA-DQ8 transgenic NOD mice. J. Clin. Invest. (2004) 114:1090-1097.
  • SENGER S, LUONGO D, MAURANO F et al.: Intranasal administration of a recombinant α-gliadin down-regulates the immune response to wheat gliadin in DQ8 transgenic mice. Immunol. Lett. (2003) 88:127-134.
  • AURICCHIO S, DE RITIS G, DE VINCENZI M et al.: Agglutinating activity of gliadin-derived peptides from bread wheat: implications for coeliac disease pathogenesis. Biochem. Biophys. Res. Commun. (1984) 121:428-433.
  • DE VINCENZI M, STAMMATI A, LUCCHETTI R, SILANO M, GASBARRINI G, SILANO V: Structural specificities and significance for coeliac disease of wheat gliadin peptides able to agglutinate or to prevent agglutination of K562(S) cells. Toxicology (1998) 127:97-106.
  • AURICCHIO S, TRONCONE R: In vitro methods for the study of ceiac disese. Front. Gastrointest. Res. (1992) 19:44-51.
  • MAZZARELLA G, PAPARO F, MAGLIO M, TRONCONE R: Organ culture of rectal mucosa. In vitro challenge with gluten in celiac disease. In: Methods in molecular medicine. Celiac disease: Methods and protocols, Marsh MN (Ed), Humana Press, Inc. (2000) 41:163-173
  • MAIURI L, PICARELLI A, BOIRIVANT M et al.: Definition of the initial immunologic modification upon in vitro gliadin challenge in the small intestine of celiac patients. Gastroenterology (1996) 110:1368-1378.
  • HALSTENSEN TS, SCOTT H, FAUSA O, BRANDTZAEG P: Gluten stimulation of coeliac mucosa in vitro induces activation (CD25) of lamina propria CD4+ T cells and macrophages but no crypt-cell hyperplasia. Scand. J. Immunol. (1993) 38:581-590.
  • MAIURI L, AURICCHIO S, COLETTA S et al.: Blockage of T cell costimulation inhibits T-cell action in celiac disease. Gastroenterology (1998) 115:564-572.
  • TRONCONE R, CAPUTO N, MICILLO M, MAIURI L, POGGI V: Immunologic and intestinal permeability test as predictors of relapse during gluten challenge in childhood celiac disease. Scand. J. Gastroenterol. (1994) 29:144-147.
  • SPAENIJ-DEKKING L, KOOY-WINKELAAR Y, VAN VEELEN P et al.: Natural variation in toxicity of wheat: potential for selection of non-toxic varieties for celiac disease patients. Gastroenterology (2005) 129:797-806.
  • MOLBERG O, UHLEN AK, JENSEN T et al.: Mapping of gluten T-cell epitopes in the bread wheat ancestors: implications for celiac disease. Gastroenterology (2005) 128:393-401.
  • TURNER SM, MOORGHEN M, PROBERT CS: Refractory coeliac disease: remission with infliximab and immunomodulators. Eur. J. Gastroenterol. Hepatol. (2005) 17:667-669.
  • MARGARITTE-JEANNIN P, BABRON MC, BOURGEY M et al.: HLA-DQ relative risk for coeliac disease in European population: a study of the European Genetic Cluster on Coeliac Disease. Tissue Antigens (2004) 63:562-567.
  • IVARSOON A, PERSSON LA, NYSTROM L et al.: Epidemic of coeliac disease in Swedish children. Acta Paediatr. (2000) 89:165-171.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.