231
Views
24
CrossRef citations to date
0
Altmetric
Review

The parkin protein as a therapeutic target in Parkinson's disease

, MD PhD
Pages 1543-1552 | Published online: 18 Nov 2007

Bibliography

  • SPILLANTINI MG, SCHMIDT ML, LEE VM et al.: α-synuclein in Lewy bodies. Nature (1997) 388(6645):839-840.
  • BRAAK H, GHEBREMEDHIN E, RUB U, BRATZKE H, DEL TREDICI K: Stages in the development of Parkinson's disease-related pathology. Cell Tissue Res. (2004) 318(1):121-134.
  • BOVE J, PROU D, PERIER C, PRZEDBORSKI S: Toxin-induced models of Parkinson's disease. NeuroRx (2005) 2(3):484-494.
  • FLEMING SM, FERNAGUT PO, CHESSELET MF: Genetic mouse models of parkinsonism: strengths and limitations. NeuroRx (2005) 2(3):495-503.
  • MELROSE HL, LINCOLN SJ, TYNDALL GM, FARRER MJ: Parkinson's disease: a rethink of rodent models. Exp. Brain Res. Experimentelle Hirnforschung (2006) 173(2):196-204.
  • MANNING-BOG AB, LANGSTON JW: Model fusion, the next Phase in developing animal models for Parkinson's disease. Neurotox. Res. (2007) 11(3-4):219-240.
  • KLEIN C, SCHLOSSMACHER MG: Parkinson disease, 10 years after its genetic revolution. Multiple clues to a complex disorder. Neurology (2007).
  • THOMAS B, BEAL MF: Parkinson's disease. Hum. Mol. Genet. (2007) 16(Spec No 2):R183-R194.
  • KITADA T, ASAKAWA S, HATTORI N et al.: Mutations in the parkin gene cause autosomal parkinsonism. Nature (1998) 392(6676):605-608.
  • MATA IF, LOCKHART PJ, FARRER MJ: Parkin genetics: one model for Parkinson's disease. Hum. Mol. Genet. (2004) 13(Spec No 1):R127-R133.
  • WEST AB, MAIDMENT NT: Genetics of parkin-linked disease. Hum. Genet. (2004) 114(4):327-336.
  • LOHMANN E, PERIQUET M, BONIFATI V et al.: How much phenotypic variation can be attributed to parkin genotype? Ann. Neurol. (2003) 54(2):176-185.
  • SCHLOSSMACHER MG, FROSCH MP, GAI WP et al.: Parkin localizes to the Lewy bodies of Parkinson disease and dementia with Lewy bodies. Am. J. Pathol. (2002) 160(5):1655-1667.
  • FARRER M, CHAN P, CHEN R et al.: Lewy bodies and parkinsonism in families with parkin mutations. Ann. Neurol. (2001) 50(3):293-300.
  • SASAKI S, SHIRATA A, YAMANE K, IWATA M: Parkin-positive autosomal recessive juvenile parkinsonism with α-synuclein-positive inclusions. Neurology (2004) 63(4):678-682.
  • PRAMSTALLER PP, SCHLOSSMACHER MG, JACQUES TS et al.: Lewy body Parkinson's disease in a large pedigree with 77 Parkin mutation carriers. Ann. Neurol. (2005) 58(3):411-422.
  • VAN DE WARRENBURG BP, LAMMENS M, LUCKING CB et al.: Clinical and pathologic abnormalities in a family with parkinsonism and parkin gene mutations. Neurology (2001) 56(4):555-557.
  • GAIG C, MARTI MJ, EZQUERRA M et al.: G2019S LRRK2 mutation causing Parkinson's disease without Lewy bodies. J. Neurol. Neurosurg. Psychiatry (2007) 78(6):626-628.
  • GIASSON BI, COVY JP, BONINI NM et al.: Biochemical and pathological characterization of Lrrk2. Ann. Neurol. (2006) 59(2):315-322.
  • ZIMPRICH A, BISKUP S, LEITNER P et al.: Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron (2004) 44(4):601-607.
  • PALACINO JJ, SAGI D, GOLDBERG MS et al.: Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J. Biol. Chem. (2004) 279(18):18614-18622.
  • WHITWORTH AJ, WES PD, PALLANCK LJ: Drosophila models pioneer a new approach to drug discovery for Parkinson's disease. Drug Discov. Today (2006) 11(3-4):119-126.
  • CLARK IE, DODSON MW, JIANG C et al.: Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature (2006) 441(7097):1162-1166.
  • PARK J, LEE SB, LEE S et al.: Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature (2006) 441(7097):1157-1161.
  • YANG Y, GEHRKE S, IMAI Y et al.: Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc. Natl. Acad. Sci. USA (2006) 103(28):10793-10798.
  • EXNER N, TRESKE B, PAQUET D et al.: Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J. Neurosci. (2007) 27(45):12413-12418.
  • PICKART CM, FUSHMAN D: Polyubiquitin chains: polymeric protein signals. Curr. Opin. Chem. Biol. (2004) 8(6):610-616.
  • KERSCHER O, FELBERBAUM R, HOCHSTRASSER M: Modification of proteins by ubiquitin and ubiquitin-like proteins. Ann. Rev. Cell Dev. Biol. (2006) 22:159-180.
  • MOORE DJ: Parkin: a multifaceted ubiquitin ligase. Biochem. Soc. Transactions (2006) 34(Part 5):749-753.
  • KO HS, KIM SW, SRIRAM SR, DAWSON VL, DAWSON TM: Identification of far upstream element-binding protein-1 as an authentic Parkin substrate. J. Biol. Chem. (2006) 281(24):16193-16196.
  • KO HS, VON COELLN R, SRIRAM SR et al.: Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death. J. Neurosci. (2005) 25(35):7968-7978.
  • HENN IH, BOUMAN L, SCHLEHE JS et al.: Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling. J. Neurosci. (2007) 27(8):1868-1878.
  • TAN EK, PUONG KY, CHAN DK et al.: Impaired transcriptional upregulation of Parkin promoter variant under oxidative stress and proteasomal inhibition: clinical association. Hum. Genet. (2005) 118(3-4):484-488.
  • LESNE S, KOH MT, KOTILINEK L et al.: A specific amyloid-β protein assembly in the brain impairs memory. Nature (2006) 440(7082):352-357.
  • CHEN ZJ: Ubiquitin signalling in the NF-kappaB pathway. Nat. Cell Biol. (2005) 7(8):758-765.
  • HAGLUND K, DIKIC I: Ubiquitylation and cell signaling. EMBO J. (2005) 24(19):3353-3359.
  • KRAPPMANN D, SCHEIDEREIT C: A pervasive role of ubiquitin conjugation in activation and termination of IkappaB kinase pathways. EMBO Rep. (2005) 6(4):321-326.
  • FALLON L, BELANGER CM, CORERA AT et al.: A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K-Akt signalling. Nat. Cell Biol. (2006) 8(8):834-842.
  • MOCHIZUKI H: Gene therapy for Parkinson's disease. Expert Rev. Neurother. (2007) 7(8):957-960.
  • MANFREDSSON FP, BURGER C, SULLIVAN LF et al.: rAAV-mediated nigral human parkin over-expression partially ameliorates motor deficits via enhanced dopamine neurotransmission in a rat model of Parkinson's disease. Exp. Neurol. (2007) 207(2):289-301.
  • PATERNA JC, LENG A, WEBER E, FELDON J, BUELER H: DJ-1 and Parkin modulate dopamine-dependent behavior and inhibit MPTP-induced nigral dopamine neuron loss in mice. Mol. Ther. (2007) 15(4):698-704.
  • VERCAMMEN L, VAN DER PERREN A, VAUDANO E et al.: Parkin protects against neurotoxicity in the 6-hydroxydopamine rat model for Parkinson's disease. Mol. Ther. (2006) 14(5):716-723.
  • YAMADA M, MIZUNO Y, MOCHIZUKI H: Parkin gene therapy for α-synucleinopathy: a rat model of Parkinson's disease. Hum. Gene Ther. (2005) 16(2):262-270.
  • YASUDA T, MIYACHI S, KITAGAWA R et al.: Neuronal specificity of α-synuclein toxicity and effect of Parkin co-expression in primates. Neuroscience (2007) 144(2):743-753.
  • LO BIANCO C, SCHNEIDER BL, BAUER M et al.: Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an α-synuclein rat model of Parkinson's disease. Proc. Natl. Acad. Sci. USA (2004) 101(50):17510-17515. [Epub 12004 Dec 17502].
  • KLEIN RL, DAYTON RD, HENDERSON KM, PETRUCELLI L: Parkin is protective for substantia nigra dopamine neurons in a tau gene transfer neurodegeneration model. Neurosci. Lett. (2006) 401(1-2):130-135.
  • HENN IH, GOSTNER JM, TATZELT J, WINKLHOFER KF: Pathogenic mutations inactivate parkin by distinct mechanisms. J. Neurochem. (2005) 92:114-122.
  • WINKLHOFER KF, HENN IH, KAY-JACKSON P, HELLER U, TATZELT J: Inactivation of parkin by oxidative stress and C-terminal truncations; a protective role of molecular chaperones. J. Biol. Chem. (2003) 278:47199-47208.
  • LAVOIE MJ, OSTASZEWSKI BL, WEIHOFEN A, SCHLOSSMACHER MG, SELKOE DJ: Dopamine covalently modifies and functionally inactivates parkin. Nat. Med. (2005) 11(11):1214-1221.
  • CHUNG KK, THOMAS B, LI X et al.: S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function. Science (2004) 304(5675):1328-1331.
  • YAO D, GU Z, NAKAMURA T et al.: Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc. Natl. Acad. Sci. USA (2004) 101(29):10810-10814.
  • GU WJ, CORTI O, ARAUJO F et al.: The C289G and C418R missense mutations cause rapid sequestration of human Parkin into insoluble aggregates. Neurobiol. Dis. (2003) 14(3):357-364.
  • COOKSON MR, LOCKHART PJ, MCLENDON C et al.: RING finger 1 mutations in Parkin produce altered localization of the protein. Hum. Mol. Genet. (2003) 12(22):2957-2965.
  • SRIRAM SR, LI X, KO HS et al.: Familial-associated mutations differentially disrupt the solubility, localization, binding and ubiquitination properties of parkin. Hum. Mol. Genet. (2005) 14(17):2571-2586.
  • WANG C, TAN JM, HO MW et al.: Alterations in the solubility and intracellular localization of parkin by several familial Parkinson's disease-linked point mutations. J. Neurochem. (2005) 93(2):422-431.
  • WANG C, KO HS, THOMAS B et al.: Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin's protective function. Hum. Mol. Genet. (2005) 14(24):3885-3897.
  • HAMPE C, ARDILA-OSORIO H, FOURNIER M, BRICE A, CORTI O: Biochemical analysis of Parkinson's disease-causing variants of Parkin, an E3 ubiquitin-protein ligase with monoubiquitylation capacity. Hum. Mol. Genet. (2006) 15(13):2059-2075.
  • WONG ES, TAN JM, WANG C et al.: Relative sensitivity of parkin and other cysteine-containing enzymes to stress-induced solubility alterations. J. Biol. Chem. (2007) 282(16):12310-12318.
  • KYRATZI E, PAVLAKI M, KONTOSTAVLAKI D, RIDEOUT HJ, STEFANIS L: Differential effects of Parkin and its mutants on protein aggregation, the ubiquitin-proteasome system, and neuronal cell death in human neuroblastoma cells. J. Neurochem. (2007) 102(4):1292-1303.
  • KIERAN D, KALMAR B, DICK JR et al.: Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat. Med. (2004) 10(4):402-405.
  • BEHL C: Vitamin E protects neurons against oxidative cell death in vitro more effectively than 17-β estradiol and induces the activity of the transcription factor NF-κB. J. Neural. Transm. (2000) 107(4):393-407.
  • GAL S, ZHENG H, FRIDKIN M, YOUDIM MB: Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases. In vivo selective brain monoamine oxidase inhibition and prevention of MPTP-induced striatal dopamine depletion. J. Neurochem. (2005) 95(1):79-88.
  • ROGHANI M, BEHZADI G: Neuroprotective effect of vitamin E on the early model of Parkinson's disease in rat: behavioral and histochemical evidence. Brain Res. (2001) 892(1):211-217.
  • ZHENG H, GAL S, WEINER LM et al.: Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases: in vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition. J. Neurochem. (2005) 95(1):68-78.
  • SHOULSON I: DATATOP: a decade of neuroprotective inquiry. Parkinson study group. Deprenyl and tocopherol antioxidative therapy of parkinsonism. Ann. Neurol. (1998) 44(3 Suppl. 1):S160-S166.
  • ETMINAN M, GILL SS, SAMII A: Intake of vitamin E, vitamin C, and carotenoids and the risk of Parkinson's disease: a meta-analysis. Lancet Neurol. (2005) 4(6):362-365.
  • BJELAKOVIC G, NIKOLOVA D, GLUUD LL, SIMONETTI RG, GLUUD C: Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA (2007) 297(8):842-857.
  • MILLER ER III, PASTOR-BARRIUSO R, DALAL D et al.: Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann. Internal Med. (2005) 142(1):37-46.
  • PAHL HL: Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene (1999) 18(49):6853-6866.
  • HAYDEN MS, GHOSH S: Signaling to NF-kappaB. Genes Dev. (2004) 18(18):2195-2224.
  • HUNOT S, BRUGG B, RICARD D et al.: Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with parkinson disease. Proc. Natl. Acad. Sci. USA (1997) 94(14):7531-7536.
  • MORAN LB, CROISIER E, DUKE DC et al.: Analysis of α-synuclein, dopamine and parkin pathways in neuropathologically confirmed parkinsonian nigra. Acta Neuropathol. (Berl) (2007) 113(3):253-263.
  • CAMANDOLA S, MATTSON MP: NF-κB as a therapeutic target in neurodegenerative diseases. Expert Opin. Ther. Targets (2007) 11(2):123-132.
  • MEFFERT MK, BALTIMORE D: Physiological functions for brain NF-kappaB. Trends Neurosci. (2005) 28(1):37-43.
  • YAMAMOTO A, FRIEDLEIN A, IMAI Y et al.: Parkin phosphorylation and modulation of its E3 ubiquitin ligase activity. J. Biol. Chem. (2005) 280(5):3390-3399.
  • AVRAHAM E, ROTT R, LIANI E, SZARGEL R, ENGELENDER S: Phosphorylation of Parkin by the cyclin-dependent kinase 5 at the linker region modulates its ubiquitin-ligase activity and aggregation. J. Biol. Chem. (2007) 282(17):12842-12850.
  • PAPA S, ZAZZERONI F, PHAM CG, BUBICI C, FRANZOSO G: Linking JNK signaling to NF-kappaB: a key to survival. J. Cell Sci. (2004) 117(Part 22):5197-5208.
  • DAVIS RJ: Signal transduction by the JNK group of MAP kinases. Cell (2000) 103(2):239-252.
  • PENG J, ANDERSEN JK: The role of c-Jun N-terminal kinase (JNK) in Parkinson's disease. IUBMB Life (2003) 55(4-5):267-271.
  • WAETZIG V, HERDEGEN T: Neurodegenerative and physiological actions of c-Jun N-terminal kinases in the mammalian brain. Neurosci. Lett. (2004) 361(1-3):64-67.
  • CHA GH, KIM S, PARK J et al.: Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proc. Natl. Acad. Sci. USA (2005) 102(29):10345-10350.
  • MATHIASEN JR, MCKENNA BA, SAPORITO MS et al.: Inhibition of mixed lineage kinase 3 attenuates MPP+-induced neurotoxicity in SH-SY5Y cells. Brain Res. (2004) 1003(1-2):86-97.
  • SAPORITO MS, BROWN EM, MILLER MS, CARSWELL S: CEP-1347/KT-7515, an inhibitor of c-jun N-terminal kinase activation, attenuates the 1-methyl-4-phenyl tetrahydropyridine-mediated loss of nigrostriatal dopaminergic neurons in vivo. J. Pharmacol. Exp. Ther. (1999) 288(2):421-427.
  • HARRIS CA, DESHMUKH M, TSUI-PIERCHALA B, MARONEY AC, JOHNSON EM Jr: Inhibition of the c-Jun N-terminal kinase signaling pathway by the mixed lineage kinase inhibitor CEP-1347 (KT7515) preserves metabolism and growth of trophic factor-deprived neurons. J. Neurosci. (2002) 22(1):103-113.
  • LAVOIE MJ, CORTESE GP, OSTASZEWSKI BL, SCHLOSSMACHER MG: The effects of oxidative stress on parkin and other E3 ligases. J. Neurochem. (2007) (In Press).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.