149
Views
11
CrossRef citations to date
0
Altmetric
Review

Targeting apoptosis in solid tumors: the role of bortezomib from preclinical to clinical evidence

, , , , , , , & , MD PhD show all
Pages 1571-1586 | Published online: 18 Nov 2007

Bibliography

  • KRESGE N, SIMONI RD, HILL RL: The discovery of ubiquitin-mediated proteolysis by Aaron Ciechanover, Avram Hershko, and Irwin Rose. J. Biol. Chem. (2006) 281(40):32.
  • WILKINSON KD: Ubiquitin: a nobel protein. Cell (2004) 119:741-745.
  • GLICKMAN MH, CIECHANOVER A: The ubiquitin–proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. (2002) 82:373-428.
  • NAUJOKAT C, HOFFMANN S: Role and function of the 26S proteasome in poliferation and apoptosis. Lab. Invest. (2002) 82:965-980.
  • VOGES D, ZWICKL P, BAUMEISTER W: The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. (1999) 68:1015-1068.
  • DREXLER HC: Activation of the cell death program by inhibition of proteasome fuction. Proc. Natl. Acad. Sci. USA (1997) 94:855-860.
  • ADAMS J: Development of the proteasome inhibitor PS-341. Oncologist (2002) 7:9-16.
  • ADAMS J, PALOMBAELLA VJ, SAUSVILLE EA et al.: Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. (1999) 59:2615-2622.
  • BOCCADORO M, MORGAN G, CAVENAGH J: Preclinical evaluation of the proteasome inhibitor bortezomib in cancer therapy. Cancer Cell Int. (2005) 5:18.
  • HIDESHIMA T, RICHARDSON P, CHAUHAN D et al.: The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res. (2001) 61:3071-3076.
  • ADAMS J: Proteasome inhibition: a novel approach to cancer therapy. Trends Mol. Med. (2002) 8(Suppl. 4):S49-S54.
  • ANDERSEN PL, ZHOU H, PASTUSHOK L et al.: Distinct regulation of Ubc13 functions by the two ubiquitin-conjugating enzyme variants Mms2 and Uev1A. J. Cell. Biol. (2005) 170(5):745-755.
  • SUNWOO JB, CHEN Z, DONG G et al.: Novel proteasome inhibitor PS-341 inhibits activation of NF-κB, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin. Cancer Res. (2001) 7:1419-1428.
  • ADAMS J: The proteasome: structure, function, and role in the cell. Cancer Treat. Rev. (2003) 29(Suppl. 1):3-9.
  • VOGES D, ZWICK P, BAUMEISTER W: The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. (1999) 68:1015-1068.
  • GLICKMAN MH, ADIR N: The proteasome and the delicate balance between destruction and rescue. PLoS Biol. (2004) 2(1):E13.
  • ALMOND JB, COHEN GM: The proteasome: a novel target for cancer chemotherapy. Leukemia (2002) 16:433-443.
  • MYUNG J, BEHNKE M, CHEN S et al.: Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Med. Res. Rev. (2001) 21:245-273.
  • BURGER AM, SETH AK: The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. Eur. J. Cancer (2004) 40:2217-2129.
  • KISSELEV AF, AKOPIAN, WOO KM, GOLDBERG AL: The size of peptides generated from protein by mammalian 26S and 20S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J. Biol. Chem. (1999) 274:3363-3371.
  • DEMARCHI F, BRANCOLINI C: Altering protein turnover in tumor cells: new opportunities for anti-cancer therapies. Drug Res. Updates (2005) 8:359-368.
  • KISSELEV AF, CALLARD A, GOLDBERG AL: Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate. J. Biol. Chem. (2006) 281:8582-8590.
  • FINLEY D, CIECHANOVER A, VARSHAVSKY A: Ubiquitin as a central cellular regulator. Cell (2004) 116:29-32.
  • MELINO G: Discovery of the ubiquitin proteasome system and its involvement in apoptosis. Cell Death Differ. (2005) 12:1155-1157.
  • CHIARLE R, BUDEL LM, SKOLNIK J et al.: Increased proteasome degradation of cyclin-dependent kinase inhibitor p27 is associated with a decreased overall survival in mantle cell lymphoma. Blood (2000) 95(2):619-626.
  • LLOYD RV, ERICKSON LA, JIN L et al.: P27kip1: a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancer. Am. J. Pathol. (1999) 154(2):313-323.
  • LUDWIG H, KHAYAT D, GIACCONE G et al.: Proteasome inhibition and its clinical prospects in the treatment of hematologic and solid malignancies. Cancer (2005) 104(9):1794-1807.
  • AA FRIDMAN JS, LOWE SW: Control of apoptosis by p53. Oncogene (2003) 22:9030-9040.
  • HIDESHIMA T, CHAUHAN D, RICHARDSON P et al.: NF-κB as a therapeutic target in multiple myeloma. J. Biol. Chem. (2002) 277:16639-16647.
  • KARIN M, YAMAMOTO Y, WANG QM: The IKK NF-κB system: a treasure trove for drug development. Nat. Rev. Drug Discov. (2004) 3:17-24.
  • WANG W, ABBRUZZESE JL, EVANS DB et al.: The NF-κB RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin. Cancer Res. (1999) 5(1):119-127.
  • ARLT A, VORNDAMM J, MUERKOSTER SD et al.: Autocrine production of interleukin 1β confers constitutive NF-κB activity and chemoresistance in pancreatic carcinoma cell lines. Cancer Res. (2002) 62(3):910-916.
  • BERENSON JR, MA HM, VESCIO R: The role of NF-κB in the biology and treatment of multiple myeloma. Semin. Oncol. (2001) 28:626-633.
  • ADAMS J, PALOMBELLA VT, SAUSVILLE EA et al.: Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. (1999) 59:2615-2622.
  • BERKERS CR, VERDOES M, LICHTMAN E et al.: Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib. Nat. Methods (2005) 2:357-362.
  • CORY S, ADAMS JM: The Bcl2 family:regulators of the cellular life-or-death switch. Nat. Rev. Cancer (2002): 2(9)647-656.
  • KORSMEYER SJ: BCL-2 gene family and the regulation of programmed cell death. Cancer Res. (1999) 59:S1693-S1700.
  • YAGITA H, TAKEDA K, HAYAKAWA Y et al.: TRAIL and its receptors as target for cancer therapy. Cancer Sci. (2004) 95(10):777-783.
  • WANG S, EL-DEIRY WS: TRAIL and apoptosis induction by TNF-family death receptors. Oncogene (2003) 22(53):8628-8633.
  • KABORE AF, SUN J, HU X et al.: The TRAIL apoptotic pathway mediates proteasome inhibitor induced apoptosis in primary chronic lymphocytic leukemia cells. Apoptosis (2006) 11:1175-1193.
  • LAURICELLA M, EMANUELE S, D'ANNEO A et al.: JNK and AP-1 mediate apoptosis induced by bortezomib in HepG2 cells via FasL/caspase-8 and mitochondria-dependent pathways. Apoptosis (2006) 11:607-625.
  • CHAUGHAN D, LI G, SHRINGARPURE R et al.: Blockade of Hsp27 overcomes bortezomib/proteasome inhibitor PS-341 resistance in lymphoma cells. Cancer Res. (2003) 63:6174-6177.
  • MITSIADES CS, MITSIADES NS, MCMULLAN CJ et al.: Antimyeloma activity of heat shock protein-90 inhibition. Blood (2006) 107:1092-1100.
  • MIMNAUGH EG, XU W, VOS M et al.: Simultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum-derived cytosolic vacuolization, and enhances antitumor activity. Mol. Cancer Ther. (2004) 3(5):551-566.
  • NOWIS D, MCCONNELL EJ, DIERLAM L: TNF potentiates anticancer activity of bortezomib (Velcade1) through reduced expression of proteasome subunits and dysregulation of unfolded protein response. Int. J. Cancer (2007) 121:431-441.
  • MARX C, YAU C, BANWAIT S et al.: Proteasome-regulated ERBB2 and estrogen receptor pathways in breast cancer. Mol. Pharmacol. (2007) 71:1525-1534.
  • SUN K, WELNIAK LA, PANOSKALTSIS-MORTARI A et al.: Inhibition of acute graft-versus-host disease with retention of graft-versus-tumor effects by the proteasome inhibitor bortezomib. Proc. Natl. Acad. Sci. USA (2004) 101(21):8120-8125.
  • LING HY, LIEBES L, ZOU Y et al.: Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J. Biol. Chem. (2003) 278:33714-33723.
  • FRIBLEY A, ZENG Q, WANG CY et al.: Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmatic reticulum stess-reactive oxygen species in head and neck squamous cell carcinoma cells. Mol. Cell Biol. (2004) 24:9695-9704.
  • YU C, RAHNMANI, DENT P et al.: The hierarchical relationship between MAPK signaling and ROS generation in human leukemia cells undergoing apoptosis in response to the proteasome inhibitor bortezomib. Exp. Cell Res. (2004) 295:555-566.
  • MACLAREN AP, CHAPMAN RS, WYLLIE AH et al.: P53-dependent apoptosis induced by proteasome inhibition in mammary epithelial cell. Cell Death Differ. (2001) 8(3):210-218.
  • KURLAND JF, MEYN RE: Protease inhibitors restore radiation induced apoptosis to Bcl-2 expressing lymphoma cells. Int. J. Cancer (2001) 96(6):327-333.
  • LOPES UG, ERHARDT P, YAO R et al.: P53-dependent induction of apoptosis by proteasome inhibitors. J. Biol. Chem. (1997) 272:12893-12896.
  • FAN XM, WONG BC, WANG WP et al.: Inhibition proteasome function induced apoptosis in gastric cancer. Int. J. Cancer (2001) 93(4):481-488.
  • LEBLANC R, CATLEY L, HIDESHIMA T et al.: Proteasome inhibitor PS-341 inhibits human multiple myeloma cell growth in a murine model. Blood (2001) 98(11):A774.
  • SHINORA K, TOMIOKA M, NAKAN H et al.: Apoptosis induction resulting from proteasome inhibition. Biochem. J. (1996) 317:385-388.
  • NAUJOKAT C, SEZER O, ZINKE H et al.: Proteasome inhibitors induced caspase-dependent apoptosis and accumulation of P21WAF1/Cip1 in human immature leukemiac cells. Eur. J. Haematol. (2000) 65(4):221-236.
  • PEI XY, DAI Y, GRANT S et al.: The proteasome inhibitor bortezomib promotes mitochondrial injuri and apoptosis induced by the small molecule Bcl-2 inhibitor HA 14-1 in multiple myeloma cells. Leukemia (2003) 17:2036-2045.
  • JOHNSON TR, STONE K, NIKRAD M et al.: The proteasome inhibitor PS-341 overcomes TRAIL resistance in Bax and caspase 9-negative or Bcl-xL over expressing cells. Oncogene (2003) 22(32):4953-4963.
  • YANG Y, IKEZOE T, KOBAYASHI M et al.: Proteasome inhibitor PS-341 induces growth arrest and apoptosis of non-small cell lung cancer cells via the JNK/c-Jun/AP-1 signaling. Cancer Sci. (2004) 95:176-180.
  • ANDO T, KAWABE T, OHARA H et al.: Involvement of the interaction between p21 and proliferating cell nuclear antigen for the maintenance of G2/M arrest after DNA damage. J. Biol. Chem. (2001) 276:42971-42977.
  • LING YH, LIEBES L, JIANG JD et al.: Mechanisms of proteasome inhibitor PS-341-induced G2-M-phase arrest and apoptosis in human non-small cell lung cancer cell lines. Clin. Cancer Res. (2003) 9:1145-1154.
  • LENZ H-J: Clinical update: proteasome inhibitors in solid tumors. Cancer Treat. Rev. (2003) 29(Suppl. 1):41-48.
  • SAYER TJ, BROOKS AD, KOH CY et al.: The proteasome inhibitor PS-341 sensitize neoplastic cells to TRAIL-mediated apoptosis by reducing levels of c-FLIP. Blood (2003) 102(1):303-310.
  • AN J, SUN Y, FISHER M et al.: Maximal apoptosis of renal cell carcinoma by the proteasome inhibitor bortezomib is NF-κB dependent. Mol. Cancer Ther. (2004) 3:727-736.
  • BANCROFT CC, CHEN Z, DONG G et al.: Coexpression and VEGF by human head and neck squamous cell carcinoma involves coactivation by κB signal pathways. Clin. Cancer Res. (2001) 7:435-442.
  • BANCROFT CC, CHEN Z, DONG G et al.: Coexpression of proangiogenic factors IL-8 and VEGF by human head and neck squamous cell carcinoma involves in coactivation by MEK-MAPK and IKK-NF-κB signal pathways. Clin. Cancer Res. (2001) 7:435-442.
  • TEICHER BA, ARA G, HERBST R et al.: The proteasome inhibitor PS-341 in cancer therapy. Clin. Cancer Res. (1999) 5(9):2638-2645.
  • CUSACK JC Jr, LIU R, HOUSTON M et al.: Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic NF-κB inhibition. Cancer Res. (2001) 61(9):3535-3540.
  • AN B, GOLDFARB RH, SIMAN R et al.: Novel dipeptidyl proteasome inhibitors overcome Bcl-2 protective function and selectively accumulate the cyclin-dependent kinase inhibitor p27 and induce apoptosis in transformated, but not normal, human fibroblast. Cell Death Differ. (1998) 5(12):1062-1075.
  • SHAH SA, POTTER MW, MCDADE TP et al.: 26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer. J. Cell Biochem. (2001) 82(1):110-122.
  • WILLIAMS S, PETTAWAY C, SONG R et al.: Differential effects of the proteasome inhibitor bortezomib on apoptosis and angiogenesis in human prostate tumor xenografts. Mol. Cancer Ther. (2003) 2:835-843.
  • SUNWOO JB, CHEN Z, DONG G et al.: Novel proteasome inhibitor PS-341 inhibits activation of NF-κB, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin. Cancer Res. (2001) 7:1419-1428.
  • FRIBLEY A, ZENG Q, WANG CY: Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells. Mol. Cell Biol. (2004) 24(22):9695-9704.
  • FRANKEL A, MAN S, ELLIOTT P et al.: Lack of multicellular drug resistance observed in human ovarian and prostate carcinoma treated with the proteasome inhibitor PS-341. Clin. Cancer Res. (2000) 6:3719-3728.
  • MA MH, YANG HH, PARKER K et al.: The proteasome inhibitor PS-341 markedly enhances sensitivity of multiple myeloma tumor cells to chemotherapeutic agents. Clin. Cancer Res. (2003) 9:1136-1144.
  • MITSIADES N, MITSIADES CS, RICHARDSON PG et al.: The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic application. Blood (2003) 101:2377-2380.
  • AMIRI KI, HORTON LW, LAFLEUR et al.: Augmenting chemosensitivity of malignant melanoma tumors via proteasome inhibition: implication for bortezomib (VELCADE, PS-341) as a therapeutic agent for malignant melanoma. Cancer Res. (2004) 101:4912-4918.
  • RUSSO SM, TEPPER JE, BALDWIN AS et al.: Enhancement of radiosensitivity by proteasome inhibition: implication for a role of NF-kB. Int. J. Radiat. Oncol. Biol. Phys. (2001) 50:183-189.
  • CUSACK JC Jr, LIU R, BALDWIN AS Jr: Inducile chemoresistance to 7-ethyl-10-[4-(1-piperidino)-1-piperi-dino]-carbonyloxycamptothe cin (CPT-11) in colorectal cancer cells and a xenograft model is overcome by inhibition of NF-κB activation. Cancer Res. (2000) 60:2323-2330.
  • EDELMAN MJ: The potential role of bortezomib in combination with chemotherapy and radiation in non-small-cell lung cancer. Clin. Lung Cancer (2005) 7(Suppl. 2):S64-S66.
  • AGHAJANIAN C, SOIGNET S, DIZON DS et al.: A Phase I trial of the novel proteasome inhibitor PS341 in advanced solid tumor malignancies. Clin. Cancer Res. (2002) 8:2505-2511.
  • APPLEMAN LJ, RYAN DP, CLARK JW et al.: Phase I dose escalation study with bortezomib and gemcitabine safety and tolerability in patients with advanced solid tumors. Proc. Am. Soc. Clin. Oncol. (2003) 22:A209 (Abstract).
  • ALBANELL J, BASELGA J, GUIX M et al.: Phase I study of bortezomib in combination with docetaxel in anthracycline pretreated advanced breast cancer. Proc. Am. Soc. Clin. Oncol. (2003) 22:A16 (Abstract 63).
  • RYAN DP, O'NEIL B, LIMA CR et al.: Phase I dose escalation study of the proteasome inhibitor, bortezomib, plus irinotecan in patients with advanced solid tumors. Proc. Am. J. Clin. Oncol. (2003) 22:228 (Abstract).
  • PAPANDREOU CN, DALIANI DD, NIX D et al.: Phase I trial of the proteasome inhibitor bortezomib in patients with advanced solid tumors with observations in androgen-independent prostate cancer. J. Clin. Oncol. (2004) 22:2108-2121.
  • BLANEY SM, BERNSTEIN M, NEVILLE K et al.: Phase I study of the proteasome inhibitor bortezomib in pediatric patients with refractory solid tumors: a children's oncology group study (ADVL0015). J. Clin. Oncol. (2004) 22:4804-4809.
  • DAVIES AM, LARA PN, LAU D et al.: The proteasome inhibitor, bortezomib, in combination with gemcitabine (gem) and carboplatin (carbo) in advanced non-small cell lung cancer (NSCLC): final results of a Phase I California consortium study. J. Clin. Oncol. (2004) 22(Suppl. S14):S642 (Abstract 7106).
  • AGHAJANIAN C, DIZON DS, SABBATICI P et al.: Phase I trial of bortezomib and carboplatin in recurrent ovarian or primary peritoneal cancer. J. Clin. Oncol. (2005) 23(25):5943-5949.
  • VOORTMAN J, SMIT EF, KUENEN BC et al.: A Phase IB, open-label, dose-escalation study of bortezomib in combination with gemcitabine (gem) and cisplatin (cis) in the first-line treatment of patients with advanced solid tumors: preliminary results of a Phase IB study. J. Clin. Oncol. (2005) 23(Suppl. S16):2103.
  • HAMILTON AL, EDER JP, PAVLICK AC et al.: Proteasome inhibition with bortezomib (PS-341): a Phase I study with pharmacodynamic end points using a day 1 and day 4 schedule in a 14-day cycle. J. Clin. Oncol. (2005) 23(25):6107-6116.
  • SCHELMAN WR, KOLESAR J, SCHELL K et al.: A Phase I study of vorinostat in combination with bortezomib in refractory solid tumors. Proc. Am. J. Clin. Oncol. (2007) S18:3573.
  • CHEN GQ, VIKSTROM B, BECKETT L et al.: Proteasome inhibition with bortezomib (BORT) in combination with topotecan: a Phase I solid tumor trial. Proc. Am. J. Clin. Oncol. (2007) S18:14047.
  • LACOMBE DA, CAPONIGRO F, ANTHONEY A et al.: A Phase I study of bortezomib in combination with 5FU/LV plus oxaliplatin in patients (pts) with advanced colorectal cancer (CRC): EORTC 16029. Proc. Am. J. Clin. Oncol. (2007) S18:4090.
  • PRICE N, DREICER R: Phase I/II trial of bortezomib plus docetaxel in patients with advanced androgen-independent prostate cancer. Clin. Prostate Cancer (2004) 3(3):141-143.
  • SHAH MH, YOUNG D, KINDLER HL et al.: Phase II study of the proteasome inhibitor bortezomib (PS-341) in patients with metastatic neuroendocrine tumors. Clin. Cancer Res. (2004) 10(18):6111-6118.
  • DAVIS NB, TABER DA, ANSARI RH et al.: Phase II trial of PS-341 in patients with renal cell cancer: a University of Chicago Phase II consortium study. J. Clin. Oncol. (2004) 22:115-119.
  • KONDAGUNTA GV, DRUCKER B, SCHWARTZ L et al.: Phase II trial of bortezomib for patients with advanced renal cell carcinoma. J. Clin. Oncol. (2004) 22:3720-3725.
  • FANUCCHI MP, BELT RJ, FOSSELLA FV et al.: Phase (ph) II study of bortezomib-docetaxel in previously treated patients (pts) with advanced non-small cell lung cancer (NSCLC). Preliminary results. J. Clin. Oncol. (2004) 22(Suppl. S14):s643 (Abstract 7107).
  • STEVENSON J, NHO CW, JOHNSON SW et al.: Phase II/pharmacodynamic trial of PS-341 (bortezomib, VELCADE) in advanced non-small cell lung cancer. J. Clin. Oncol.. (2004) 22(Suppl. S14):S652 (Abstract).
  • MACKAY H, HEDLEY D, MAJOR P et al.: A Phase II trial with pharmacodynamic endpoints of the proteasome inhibitor bortezomib in patients with metastatic colorectal cancer. Clin. Cancer Res. (2005) 11:5526-5533.
  • MARKOVIC SN, GEYER SM, DAWKINS F et al.: A Phase II study of bortezomib in the treatment of metastatic malignant. Cancer (2005) 103:2584-2589.
  • ALBERTS SR, FOSTER NR, MORTON RF et al.: PS-341 and gemcitabine in patients with metastatic pancreatic adenocarcinoma: a North central cancer treatment group (NCCTG) randomized Phase II study. Ann. Oncol. (2005) 16(10):1654-1661.
  • MAKI RG, KRAFT AS, SCHEU K et al.: A multicenter Phase II study of bortezomib in recurrent or metastatic sarcomas. Cancer (2005) 103(7):1431-1418.
  • DAVIES AM, MCCOY J, LARA PN et al.: Bortezomib + gemcitabine (gem)/carboplatin (carbo) results in encouraging survival in advanced non-small cell lung cancer (NSCLC): results of a Phase II Southwest oncology group (SWOG) trial (S0339). Proc. Am. J. Clin. Oncol. (2006) S18:7017.
  • YANG CH, GONZALEZ-ANGULO AM, REUBEN JM et al.: Bortezomib (VELCADE) in metastatic breast cancer: pharmacodynamics, biological effects, and prediction of clinical benefits. Ann. Oncol. (2006) 17(5):813-817.
  • OCEAN AJ, SCHNOLL-SUSSMAN F, CHEN XE et al.: Recent results of Phase II study of PS-341 (bortezomib) with or without irinotecan in patients (pts) with advanced gastric adenocarcinomas (AGA). Proc. Am. Soc. Clin. Oncol. (2007):(Abstract 45).
  • SCHMID P, REGIERER A, KIEWE P et al.: Bortezomib and capecitabine in patients with metastatic breast cancer previously treated with taxanes and/or anthracyclines: final results of a Phase I/II study. Proc. Am. J. Clin. Oncol. (2007) S18:1072.
  • WANG M, ZHOU Y, ZHANG L et al.: Use of bortezomib in B-cell non-Hodgkin's lymphoma. Expert Rev. Anticancer Ther. (2006) 6(7):983-991.
  • BELCH A, KOUROUKIS CT, CRUMP M et al.: A Phase II study of bortezomib in mantle cell lymphoma: the National cancer institute of Canada clinical trials group trial IND.150. Ann. Oncol. (2007) 18(1):116-121.
  • ARMAND JP, BURNETT AK, DRACH J et al.: The emerging role of targeted therapy for hematologic malignancies: update on bortezomib and tipifarnib. Oncologist (2007) 12(3):281-290.
  • BLUM KA, JOHNSON JL, NIEDZWIECKI D et al.: Single agent bortezomib in the treatment of relapsed and refractory Hodgkin lymphoma: cancer and leukemia group B protocol 50206. Leuk. Lymphoma (2007) 48(7):1313-1319.
  • KANE RC, FARRELL AT, SRIDHARA R et al.: United States food and drug administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clin. Cancer Res. (2006) 12(10):2955-2960.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.