436
Views
52
CrossRef citations to date
0
Altmetric
Review

Selective Raf inhibition in cancer therapy

, , &
Pages 1587-1609 | Published online: 18 Nov 2007

Bibliography

  • KORC M, CHANDRASEKAR B, YAMANAKA Y et al.: Overexpression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increases in the levels of epidermal growth factor and transforming growth factor-α. J. Clin. Invest. (1992) 90(4):1352-1360.
  • YAMANAKA Y: The immunohistochemical expressions of epidermal growth factors, epidermal growth factor receptors and c-erbB-2 oncoprotein in human pancreatic cancer. Nippon Ika Daigaku Zasshi (1992) 59(1):51-61.
  • BURTNESS B: Her signaling in pancreatic cancer. Expert Opin. Biol. Ther. (2007) 7(6):823-829.
  • SHARMA SV, BELL DW, SETTLEMAN J, HABER DA: Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer (2007) 7(3):169-181.
  • ASTSATUROV I, COHEN RB, HARARI P: Targeting epidermal growth factor receptor signaling in the treatment of head and neck cancer. Expert Rev. Anticancer Ther. (2006) 6(9):1179-1193.
  • KUMAR R: Commentary: targeting colorectal cancer through molecular biology. Semin. Oncol. (2005) 32(6 Suppl. 9):S37-S39.
  • NICHOLAS MK, LUKAS RV, JAFRI NF, FAORO L, SALGIA R: Epidermal growth factor receptor-mediated signal transduction in the development and therapy of gliomas. Clin. Cancer Res. (2006) 12(24):7261-7270.
  • MOASSER MM: Targeting the function of the HER2 oncogene in human cancer therapeutics. Oncogene (2007) 26(46):6577-6592.
  • MOASSER MM: The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene (2007) 26(45):6469-6487.
  • MALUMBRES M, BARBACID M: RAS oncogenes: the first 30 years. Nat. Rev. Cancer (2003) 3(6):459-465.
  • LIM KH, BAINES AT, FIORDALISI JJ et al.: Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell (2005) 7(6):533-545.
  • LIM KH, O'HAYER K, ADAM SJ et al.: Divergent roles for RalA and RalB in malignant growth of human pancreatic carcinoma cells. Curr. Biol. (2006) 16(24):2385-2394.
  • SHAW RJ, CANTLEY LC: Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature (2006) 441(7092):424-430.
  • ROBERTS PJ, DER CJ: Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene (2007) 26(22):3291-3310.
  • BROSE MS, VOLPE P, FELDMAN M et al.: BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res. (2002) 62(23):6997-7000.
  • DAVIES H, BIGNELL GR, COX C et al.: Mutations of the BRAF gene in human cancer. Nature (2002) 417(6892):949-954.
  • FORBES S, CLEMENTS J, DAWSON E et al.: Cosmic 2005. Br. J. Cancer (2006) 94(2):318-322.
  • ZEBISCH A, STABER PB, DELAVAR A et al.: Two transforming C-RAF germ-line mutations identified in patients with therapy-related acute myeloid leukemia. Cancer Res. (2006) 66(7):3401-3408.
  • HEIDECKER G, HULEIHEL M, CLEVELAND JL et al.: Mutational activation of c-raf-1 and definition of the minimal transforming sequence. Mol. Cell. Biol. (1990) 10(6):2503-2512.
  • FRANSEN K, KLINTENAS M, OSTERSTROM A et al.: Mutation analysis of the BRAF, ARAF and RAF-1 genes in human colorectal adenocarcinomas. Carcinogenesis (2004) 25(4):527-533.
  • EMUSS V, GARNETT M, MASON C, MARAIS R: Mutations of C-RAF are rare in human cancer because C-RAF has a low basal kinase activity compared with B-RAF. Cancer Res. (2005) 65(21):9719-9726.
  • TRAN NH, WU X, FROST JA: B-Raf and Raf-1 are regulated by distinct autoregulatory mechanisms. J. Biol. Chem. (2005) 280(16):16244-16253.
  • GIROUX S, TREMBLAY M, BERNARD D et al.: Embryonic death of Mek1-deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta. Curr. Biol. (1999) 9(7):369-372.
  • HOOD JD, BEDNARSKI M, FRAUSTO R et al.: Tumor regression by targeted gene delivery to the neovasculature. Science (2002) 296(5577):2404-2407.
  • MURPHY DA, MAKONNEN S, LASSOUED W et al.: Inhibition of tumor endothelial ERK activation, angiogenesis, and tumor growth by sorafenib (BAY43-9006). Am. J. Pathol. (2006) 169(5):1875-1885.
  • ZHU WH, MACINTYRE A, NICOSIA RF: Regulation of angiogenesis by vascular endothelial growth factor and angiopoietin-1 in the rat aorta model: distinct temporal patterns of intracellular signaling correlate with induction of angiogenic sprouting. Am. J. Pathol. (2002) 161(3):823-830.
  • ILAN N, MAHOOTI S, MADRI JA: Distinct signal transduction pathways are utilized during the tube formation and survival phases of in vitro angiogenesis. J. Cell Sci. (1998) 111(Part 24):3621-3631.
  • HOOD JD, FRAUSTO R, KIOSSES WB, SCHWARTZ MA, CHERESH DA: Differential αv integrin-mediated Ras-ERK signaling during two pathways of angiogenesis. J. Cell Biol. (2003) 162(5):933-943.
  • GUPTA K, KSHIRSAGAR S, LI W et al.: VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects on MAPK/ERK and SAPK/JNK signaling. Exp. Cell Res. (1999) 247(2):495-504.
  • YU Y, SATO JD: MAP kinases, phosphatidylinositol 3-kinase, and p70 S6 kinase mediate the mitogenic response of human endothelial cells to vascular endothelial growth factor. J. Cell Physiol. (1999) 178(2):235-246.
  • KOLCH W: Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat. Rev. Mol. Cell Biol. (2005) 6(11):827-837.
  • KOLCH W: Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem. J. (2000) 351(Part 2):289-305.
  • MCPHILLIPS F, MULLEN P, MACLEOD KG et al.: Raf-1 is the predominant Raf isoform that mediates growth factor-stimulated growth in ovarian cancer cells. Carcinogenesis (2006) 27(4):729-739.
  • GALABOVA-KOVACS G, KOLBUS A, MATZEN D et al.: ERK and beyond: insights from B-Raf and Raf-1 conditional knockouts. Cell Cycle (2006) 5(14):1514-1518.
  • CHEN J, FUJII K, ZHANG L, ROBERTS T, FU H: Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proc. Natl. Acad. Sci. USA (2001) 98(14):7783-7788.
  • GALMICHE A, FUELLER J: RAF kinases and mitochondria. Biochim. Biophys. Acta (2006).
  • DASGUPTA P, SUN J, WANG S et al.: Disruption of the Rb–Raf-1 interaction inhibits tumor growth and angiogenesis. Mol. Cell. Biol. (2004) 24(21):9527-9541.
  • FUHRMANN G, LEISSER C, ROSENBERGER G et al.: Cdc25A phosphatase suppresses apoptosis induced by serum deprivation. Oncogene (2001) 20(33):4542-4553.
  • GALAKTIONOV K, JESSUS C, BEACH D: Raf1 interaction with Cdc25 phosphatase ties mitogenic signal transduction to cell cycle activation. Genes Dev. (1995) 9(9):1046-1058.
  • WANG HG, TAKAYAMA S, RAPP UR, REED JC: Bcl-2 interacting protein, BAG-1, binds to and activates the kinase Raf-1. Proc. Natl. Acad. Sci. USA (1996) 93(14):7063-7068.
  • HAUGHN L, HAWLEY RG, MORRISON DK, VON BOEHMER H, HOCKENBERY DM: BCL-2 and BCL-XL restrict lineage choice during hematopoietic differentiation. J. Biol. Chem. (2003) 278(27):25158-25165.
  • WANG HG, RAPP UR, REED JC: Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell (1996) 87(4):629-638.
  • CARAGLIA M, MARRA M, VISCOMI C et al.: The farnesyltransferase inhibitor R115777 (ZARNESTRA(R)) enhances the pro-apoptotic activity of interferon-α through the inhibition of multiple survival pathways. Int. J. Cancer (2007) 121(10):2317-2330.
  • ALAVI AS, ACEVEDO L, MIN W, CHERESH DA: Chemoresistance of endothelial cells induced by basic fibroblast growth factor depends on Raf-1-mediated inhibition of the proapoptotic kinase, ASK1. Cancer Res. (2007) 67(6):2766-2772.
  • O'NEILL E, RUSHWORTH L, BACCARINI M, KOLCH W: Role of the kinase MST2 in suppression of apoptosis by the proto-oncogene product Raf-1. Science (2004) 306(5705):2267-2270.
  • LAMBERTI A, LONGO O, MARRA M et al.: C-Raf antagonizes apoptosis induced by IFN-α in human lung cancer cells by phosphorylation and increase of the intracellular content of elongation factor 1A. Cell Death Differ. (2007) 14(5):952-962.
  • JANOSCH P, KIESER A, EULITZ M et al.: The Raf-1 kinase associates with vimentin kinases and regulates the structure of vimentin filaments. FASEB J. (2000) 14(13):2008-2021.
  • EHRENREITER K, PIAZZOLLA D, VELAMOOR V et al.: Raf-1 regulates Rho signaling and cell migration. J. Cell Biol. (2005) 168(6):955-964.
  • KU NO, FU H, OMARY MB: Raf-1 activation disrupts its binding to keratins during cell stress. J. Cell Biol. (2004) 166(4):479-485.
  • WAN PT, GARNETT MJ, ROE SM et al.: Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell (2004) 116(6):855-867.
  • TERADA T, ITO Y, SHIROUZU M et al.: Nuclear magnetic resonance and molecular dynamics studies on the interactions of the Ras-binding domain of Raf-1 with wild-type and mutant Ras proteins. J. Mol. Biol. (1999) 286(1):219-232.
  • MOTT HR, CARPENTER JW, ZHONG S et al.: The solution structure of the Raf-1 cysteine-rich domain: a novel ras and phospholipid binding site. Proc. Natl. Acad. Sci. USA (1996) 93(16):8312-8317.
  • WILLIAMS JG, DRUGAN JK, YI GS et al.: Elucidation of binding determinants and functional consequences of Ras/Raf-cysteine-rich domain interactions. J. Biol. Chem. (2000) 275(29):22172-22179.
  • MONIA BP, SASMOR H, JOHNSTON JF et al.: Sequence-specific antitumor activity of a phosphorothioate oligodeoxyribonucleotide targeted to human C-raf kinase supports an antisense mechanism of action in vivo. Proc. Natl. Acad. Sci. USA (1996) 93(26):15481-15484.
  • MONIA BP, JOHNSTON JF, GEIGER T, MULLER M, FABBRO D: Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase. Nat. Med. (1996) 2(6):668-675.
  • BRITTEN RA, PERDUE S, ESHPETER A, MERRIAM D: Raf-1 kinase activity predicts for paclitaxel resistance in TP53mut, but not TP53wt human ovarian cancer cells. Oncol. Rep. (2000) 7(4):821-825.
  • MULLEN P, MCPHILLIPS F, MONIA BP, SMYTH JF, LANGDON SP: Comparison of strategies targeting Raf-1 mRNA in ovarian cancer. Int. J. Cancer (2006) 118(6):1565-1571.
  • GEIGER T, MULLER M, MONIA BP, FABBRO D: Antitumor activity of a C-raf antisense oligonucleotide in combination with standard chemotherapeutic agents against various human tumors transplanted subcutaneously into nude mice. Clin. Cancer Res. (1997) 3(7):1179-1185.
  • ISLAM A, HANDLEY SL, THOMPSON KS, AKHTAR S: Studies on uptake, sub-cellular trafficking and efflux of antisense oligodeoxynucleotides in glioma cells using self-assembling cationic lipoplexes as delivery systems. J. Drug Target. (2000) 7(5):373-382.
  • GOKHALE PC, MCRAE D, MONIA BP et al.: Antisense raf oligodeoxyribonucleotide is a radiosensitizer in vivo. Antisense Nucleic Acid Drug Dev. (1999) 9(2):191-201.
  • RUDIN CM, HOLMLUND J, FLEMING GF et al.: Phase I trial of ISIS 5132, an antisense oligonucleotide inhibitor of c-raf-1, administered by 24-h weekly infusion to patients with advanced cancer. Clin. Cancer Res. (2001) 7(5):1214-1220.
  • CUNNINGHAM CC, HOLMLUND JT, SCHILLER JH et al.: A Phase I trial of c-Raf kinase antisense oligonucleotide ISIS 5132 administered as a continuous intravenous infusion in patients with advanced cancer. Clin. Cancer Res. (2000) 6(5):1626-1631.
  • O'DWYER PJ, STEVENSON JP, GALLAGHER M et al.: c-raf-1 depletion and tumor responses in patients treated with the c-raf-1 antisense oligodeoxynucleotide ISIS 5132 (CGP 69846A). Clin. Cancer Res. (1999) 5(12):3977-3982.
  • STEVENSON JP, YAO KS, GALLAGHER M et al.: Phase I clinical/pharmacokinetic and pharmacodynamic trial of the c-raf-1 antisense oligonucleotide ISIS 5132 (CGP 69846A). J. Clin. Oncol. (1999) 17(7):2227-2236.
  • TOLCHER AW, REYNO L, VENNER PM et al.: A randomized Phase II and pharmacokinetic study of the antisense oligonucleotides ISIS 3521 and ISIS 5132 in patients with hormone-refractory prostate cancer. Clin. Cancer Res. (2002) 8(8):2530-2535.
  • OZA AM, ELIT L, SWENERTON K et al.: Phase II study of CGP 69846A (ISIS 5132) in recurrent epithelial ovarian cancer: an NCIC clinical trials group study (NCIC IND.116) Gynecol. Oncol. (2003) 89(1):129-133.
  • CRIPPS MC, FIGUEREDO AT, OZA AM et al.: Phase II randomized study of ISIS 3521 and ISIS 5132 in patients with locally advanced or metastatic colorectal cancer: a National cancer institute of Canada clinical trials group study. Clin. Cancer Res. (2002) 8(7):2188-2192.
  • GOKHALE PC, ZHANG C, NEWSOME JT et al.: Pharmacokinetics, toxicity, and efficacy of ends-modified raf antisense oligodeoxyribonucleotide encapsulated in a novel cationic liposome. Clin. Cancer Res. (2002) 8(11):3611-3621.
  • PEI J, ZHANG C, GOKHALE PC et al.: Combination with liposome-entrapped, ends-modified raf antisense oligonucleotide (LErafAON) improves the anti-tumor efficacies of cisplatin, epirubicin, mitoxantrone, docetaxel and gemcitabine. Anticancer Drugs (2004) 15(3):243-253.
  • MEWANI RR, TANG W, RAHMAN A et al.: Enhanced therapeutic effects of doxorubicin and paclitaxel in combination with liposome-entrapped ends-modified raf antisense oligonucleotide against human prostate, lung and breast tumor models. Int. J. Oncol. (2004) 24(5):1181-1188.
  • RUDIN CM, MARSHALL JL, HUANG CH et al.: Delivery of a liposomal c-raf-1 antisense oligonucleotide by weekly bolus dosing in patients with advanced solid tumors: a Phase I study. Clin. Cancer Res. (2004) 10(21):7244-7251.
  • DRITSCHILO A, HUANG CH, RUDIN CM et al.: Phase I study of liposome-encapsulated c-raf antisense oligodeoxyribonucleotide infusion in combination with radiation therapy in patients with advanced malignancies. Clin. Cancer Res. (2006) 12(4):1251-1259.
  • KASID U, DRITSCHILO A: RAF antisense oligonucleotide as a tumor radiosensitizer. Oncogene (2003) 22(37):5876-5884.
  • SOLDATENKOV VA, DRITSCHILO A, WANG FH et al.: Inhibition of Raf-1 protein kinase by antisense phosphorothioate oligodeoxyribonucleotide is associated with sensitization of human laryngeal squamous carcinoma cells to γ radiation. Cancer J. Sci. Am. (1997) 3(1):13-20.
  • SHARMA A, TRIVEDI NR, ZIMMERMAN MA et al.: Mutant V599EB-Raf regulates growth and vascular development of malignant melanoma tumors. Cancer Res. (2005) 65(6):2412-2421.
  • LIU D, LIU Z, CONDOURIS S, XING M: BRAF V600E maintains proliferation, transformation, and tumorigenicity of BRAF-mutant papillary thyroid cancer cells. J. Clin. Endocrinol. Metab. (2007) 92(6):2264-2271.
  • PAL A, AHMAD A, KHAN S et al.: Systemic delivery of RafsiRNA using cationic cardiolipin liposomes silences Raf-1 expression and inhibits tumor growth in xenograft model of human prostate cancer. Int. J. Oncol. (2005) 26(4):1087-1091.
  • LENG Q, MIXSON AJ: Small interfering RNA targeting Raf-1 inhibits tumor growth in vitro and in vivo. Cancer Gene Ther. (2005) 12(8):682-690.
  • FABIAN MA, BIGGS WH III, TREIBER DK et al.: A small molecule-kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol. (2005) 23(3):329-336.
  • LYONS JF, WILHELM S, HIBNER B, BOLLAG G: Discovery of a novel Raf kinase inhibitor. Endocr. Relat. Cancer (2001) 8(3):219-225.
  • WILHELM SM, CARTER C, TANG L et al.: BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. (2004) 64(19):7099-7109.
  • LEE JT, MCCUBREY JA: BAY-43-9006 Bayer/Onyx. Curr. Opin. Investig. Drugs (2003) 4(6):757-763.
  • DAVIES SP, REDDY H, CAIVANO M, COHEN P: Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. (2000) 351(Part 1):95-105.
  • CARLOMAGNO F, ANAGANTI S, GUIDA T et al.: BAY 43-9006 inhibition of oncogenic RET mutants. J. Natl. Cancer Inst. (2006) 98(5):326-334.
  • CHANG YS, ADNANE J, TRAIL PA et al.: Sorafenib (BAY 43-9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models. Cancer Chemother. Pharmacol. (2007) 59(5):561-574.
  • YU C, BRUZEK LM, MENG XW et al.: The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43-9006. Oncogene (2005) 24(46):6861-6869.
  • PANKA DJ, WANG W, ATKINS MB, MIER JW: The Raf inhibitor BAY 43-9006 (sorafenib) induces caspase-independent apoptosis in melanoma cells. Cancer Res. (2006) 66(3):1611-1619.
  • RAHMANI M, DAVIS EM, BAUER C, DENT P, GRANT S: Apoptosis induced by the kinase inhibitor BAY 43-9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation. J. Biol. Chem. (2005) 280(42):35217-35227.
  • LIU L, CAO Y, CHEN C et al.: Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. (2006) 66(24):11851-11858.
  • STRUMBERG D, CLARK JW, AWADA A et al.: Safety, pharmacokinetics, and preliminary antitumor activity of sorafenib: a review of four Phase I trials in patients with advanced refractory solid tumors. Oncologist (2007) 12(4):426-437.
  • VERONESE ML, MOSENKIS A, FLAHERTY KT et al.: Mechanisms of hypertension associated with BAY 43-9006. J. Clin. Oncol. (2006) 24(9):1363-1369.
  • ESCUDIER B, EISEN T, STADLER WM et al.: Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. (2007) 356(2):125-134.
  • ABOU-ALFA GK, SCHWARTZ L, RICCI S et al.: Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J. Clin. Oncol. (2006) 24(26):4293-4300.
  • LLOVET J, RICCI S, MAZZAFERRO V et al.: Sorafenib improves survival in advanced hepatocellular carcinoma (HCC): results of a Phase III randomized placebo-controlled trial (SHARP trial). Chicago, USA. Am. Soc. Clin. Oncol. (2007).
  • FECHER LA, CUMMINGS SD, KEEFE MJ, ALANI RM: Toward a molecular classification of melanoma. J. Clin. Oncol. (2007) 25(12):1606-1620.
  • EISEN T, AHMAD T, FLAHERTY KT et al.: Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis. Br. J. Cancer (2006) 95(5):581-586.
  • ADNANE L, TRAIL PA, WILHELM S: Sorafenib (BAY 43-9006) antagonizes Raf function not only by inhibiting Raf kinase activity but also by sequestering Raf protein into non-functional complexes. Philadelphia, PA, USA. Am. Assoc. Cancer Res. Natl. Cancer Inst. (2005).
  • RYAN CW, GOLDMAN BH, LARA PN Jr et al.: Sorafenib with interferon α-2b as first-line treatment of advanced renal carcinoma: a Phase II study of the Southwest oncology group. J. Clin. Oncol. (2007) 25(22):3296-3301.
  • GOLLOB JA, RATHMELL WK, RICHMOND TM et al.: Phase II trial of sorafenib plus interferon α-2b as first- or second-line therapy in patients with metastatic renal cell cancer. J. Clin. Oncol. (2007) 25(22):3288-3295.
  • SALA E, MOLOGNI L, GAMACORTI-PASSERINI C: New selective B-RAF inhibitor leads to re-differentiation and growth arrest through up-regulation of p21CIP/WAF in anaplastic thyroid carcinoma cell lines. Los Angeles, USA. AACR 98th Meeting (2007).
  • HALL-JACKSON CA, EYERS PA, COHEN P et al.: Paradoxical activation of Raf by a novel Raf inhibitor. Chem. Biol. (1999) 6(8):559-568.
  • VAN GOMPEL JJ, KUNNIMALAIYAAN M, HOLEN K, CHEN H: ZM336372, a Raf-1 activator, suppresses growth and neuroendocrine hormone levels in carcinoid tumor cells. Mol. Cancer Ther. (2005) 4(6):910-917.
  • KAPPES A, VACCARO A, KUNNIMALAIYAAN M, CHEN H: ZM336372, a Raf-1 activator, inhibits growth of pheochromocytoma cells. J. Surg. Res. (2006) 133(1):42-45.
  • HOUBEN R, ORTMANN S, SCHRAMA D et al.: Activation of the MAP kinase pathway induces apoptosis in the merkel cell carcinoma cell line UISO. J. Invest. Dermatol. (2007) 127(9):2116-2122.
  • SHEN M, WU A, AQUILA B, LYNE P, DREW L: Linking molecular characteristics to the pharmacological response of a panel of cancer cell lines to the BRAF inhibitor, AZ628. Los Angeles, USA. AACR 98th Meeting (2007).
  • TSAI J, ZHANG J, BREMER R et al.: Development of a novel inhibitor of oncogenic B-Raf. Washington, DC, USA. AACR 97th Meeting (2006).
  • AMIRI P, AIKAWA ME, DOVE J et al.: CHIR-265 is a potent selective inhibitor of c-Raf/B-Raf/mutB-Raf that effectively inhibits proliferation and survival of cancer cell lines with Ras/Raf pathway mutations. Washington, DC, USA. AACR 97th Meeting (2006).
  • SATHORNSUMETEE S, HJELMELAND AB, KEIR ST et al.: AAL881, a novel small molecule inhibitor of RAF and vascular endothelial growth factor receptor activities, blocks the growth of malignant glioma. Cancer Res. (2006) 66(17):8722-8730.
  • MITSIADES CS, NEGRI J, MCMULLAN C et al.: Targeting BRAFV600E in thyroid carcinoma: therapeutic implications. Mol. Cancer Ther. (2007) 6(3):1070-1078.
  • OUYANG B, KNAUF JA, SMITH EP et al.: Inhibitors of Raf kinase activity block growth of thyroid cancer cells with RET/PTC or BRAF mutations in vitro and in vivo. Clin. Cancer Res. (2006) 12(6):1785-1793.
  • LU Y, SAKAMURI S, CHEN QZ et al.: Solution phase parallel synthesis and evaluation of MAPK inhibitory activities of close structural analogues of a Ras pathway modulator. Bioorg. Med. Chem. Lett. (2004) 14(15):3957-3962.
  • KATO-STANKIEWICZ J, HAKIMI I, ZHI G et al.: Inhibitors of Ras/Raf-1 interaction identified by two-hybrid screening revert Ras-dependent transformation phenotypes in human cancer cells. Proc. Natl. Acad. Sci. USA (2002) 99(22):14398-14403.
  • SKOBELEVA N, MENON S, WEBER L, GOLEMIS EA, KHAZAK V: In vitro and in vivo synergy of MCP compounds with mitogen-activated protein kinase pathway- and microtubule-targeting inhibitors. Mol. Cancer Ther. (2007) 6(3):898-906.
  • CAMPBELL PM, GROEHLER AL, LEE KM et al.: K-Ras promotes growth transformation and invasion of immortalized human pancreatic cells by Raf and phosphatidylinositol 3-kinase signaling. Cancer Res. (2007) 67(5):2098-2106.
  • NECKERS L: Heat shock protein 90: the cancer chaperone. J. Biosci. (2007) 32(3):517-530.
  • GRBOVIC OM, BASSO AD, SAWAI A et al.: V600E B-Raf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors. Proc. Natl. Acad. Sci. USA (2006) 103(1):57-62.
  • WORKMAN P, BURROWS F, NECKERS L, ROSEN N: Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann. NY Acad. Sci. (2007):(In Press).
  • MIYATA Y: Hsp90 inhibitor geldanamycin and its derivatives as novel cancer chemotherapeutic agents. Curr. Pharm. Des. (2005) 11(9):1131-1138.
  • HEATH EI, GASKINS M, PITOT HC et al.: A Phase II trial of 17-allylamino17- demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer. Clin. Prostate Cancer (2005) 4(2):138-141.
  • RONNEN EA, KONDAGUNTA GV, ISHILL N et al.: A Phase II trial of 17-(allylamino)-17-demethoxygeldanamycin in patients with papillary and clear cell renal cell carcinoma. Invest. New Drugs (2006) 24(6):543-546.
  • WEIGEL BJ, BLANEY SM, REID JM et al.: A Phase I study of 17-allylaminogeldanamycin in relapsed/refractory pediatric patients with solid tumors: a children's oncology group study. Clin. Cancer Res. (2007) 13(6):1789-1793.
  • KASIBHATLA SR, HONG K, BIAMONTE MA et al.: Rationally designed high-affinity 2-amino-6-halopurine heat shock protein 90 inhibitors that exhibit potent antitumor activity. J. Med. Chem. (2007) 50(12):2767-2778.
  • BALI P, PRANPAT M, BRADNER J et al.: Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J. Biol. Chem. (2005) 280(29):26729-26734.
  • KOVACS JJ, MURPHY PJ, GAILLARD S et al.: HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell (2005) 18(5):601-607.
  • MURPHY PJ, MORISHIMA Y, KOVACS JJ, YAO TP, PRATT WB: Regulation of the dynamics of hsp90 action on the glucocorticoid receptor by acetylation/deacetylation of the chaperone. J. Biol. Chem. (2005) 280(40):33792-33799.
  • MITSIADES CS, MITSIADES NS, MCMULLAN CJ et al.: Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc. Natl. Acad. Sci. USA (2004) 101(2):540-545.
  • HIDESHIMA T, BRADNER JE, WONG J et al.: Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc. Natl. Acad. Sci. USA (2005) 102(24):8567-8572.
  • ADJEI AA: The role of mitogen-activated ERK-kinase inhibitors in lung cancer therapy. Clin. Lung Cancer (2005) 7(3):221-223.
  • YEH TC, MARSH V, BERNAT BA et al.: Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin. Cancer Res. (2007) 13(5):1576-1583.
  • RINEHART J, ADJEI AA, LORUSSO PM et al.: Multicenter Phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J. Clin. Oncol. (2004) 22(22):4456-4462.
  • SOLIT DB, GARRAWAY LA, PRATILAS CA et al.: BRAF mutation predicts sensitivity to MEK inhibition. Nature (2006) 439(7074):358-362.
  • PAO W, WANG TY, RIELY GJ et al.: KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med. (2005) 2(1):E17.
  • EBERHARD DA, JOHNSON BE, AMLER LC et al.: Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J. Clin. Oncol. (2005) 23(25):5900-5909.
  • LI S, SCHMITZ KR, JEFFREY PD et al.: Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell (2005) 7(4):301-311.
  • FORD S, GARRETT CR, CLARK EA et al.: Expression of epiregulin and amphiregulin and K-RAS mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab (Erbitux®). AACR Annual Meeting (2007) (Abstract # 5670).
  • GRAVALOS C, SASTRE J, ARANDA E et al.: Analysis of potential predictive factors of clinical benefit in patients (pts) with metastatic colorectal cancer (MCRC) treated with single-agent cetuximab as first-line treatment. ASCO Meeting Abstracts (2007) 25(18 Suppl.):4120.
  • JIMENO A, KULESZA P, WHEELHOUSE J et al.: Dual EGFR and mTOR targeting in squamous cell carcinoma models, and development of early markers of efficacy. Br. J. Cancer (2007) 96(6):952-959.
  • BENVENUTI S, SARTORE-BIANCHI A, DI NICOLANTONIO F et al.: Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res. (2007) 67(6):2643-2648.
  • MORONI M, VERONESE S, BENVENUTI S et al.: Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to anti-EGFR treatment in colorectal cancer: a cohort study. Lancet Oncol. (2005) 6(5):279-286.
  • LIEVRE A, BACHET JB, LE CORRE D et al.: KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. (2006) 66(8):3992-3995.
  • BABA I, SHIRASAWA S, IWAMOTO R et al.: Involvement of deregulated epiregulin expression in tumorigenesis in vivo through activated Ki-Ras signaling pathway in human colon cancer cells. Cancer Res. (2000) 60(24):6886-6889.
  • FRIESS T, SCHEUER W, HASMANN M: Combination treatment with erlotinib and pertuzumab against human tumor xenografts is superior to monotherapy. Clin. Cancer Res. (2005) 11(14):5300-5309.
  • REID A, VIDAL L, SHAW H, DE BONO J: Dual inhibition of ErbB1 (EGFR/HER1) and ErbB2 (HER2/neu). Eur. J. Cancer (2007) 43(3):481-489.
  • BARNES CJ, OHSHIRO K, RAYALA SK, EL-NAGGAR AK, KUMAR R: Insulin-like growth factor receptor as a therapeutic target in head and neck cancer. Clin. Cancer Res. (2007) 13(14):4291-4299.
  • HUANG S, ARMSTRONG EA, BENAVENTE S, CHINNAIYAN P, HARARI PM: Dual-agent molecular targeting of the epidermal growth factor receptor (EGFR): combining anti-EGFR antibody with tyrosine kinase inhibitor. Cancer Res. (2004) 64(15):5355-5362.
  • CARAGLIA M, TAGLIAFERRI P, MARRA M et al.: EGF activates an inducible survival response via the RAS⟶ Erk-1/2 pathway to counteract interferon-α-mediated apoptosis in epidermoid cancer cells. Cell Death Differ. (2003) 10(2):218-229.
  • ZHONG W, STERNBERG PW: Genome-wide prediction of C. elegans genetic interactions. Science (2006) 311(5766):1481-1484.
  • EDDY SR: Genetics. Total information awareness for worm genetics. Science (2006) 311(5766):1381-1382.
  • IHLE NT, PAINE-MURRIETA G, BERGGREN MI et al.: The phosphatidylinositol-3-kinase inhibitor PX-866 overcomes resistance to the epidermal growth factor receptor inhibitor gefitinib in A-549 human non-small cell lung cancer xenografts. Mol. Cancer Ther. (2005) 4(9):1349-1357.
  • EDWARDS LA, VERREAULT M, THIESSEN B et al.: Combined inhibition of the phosphatidylinositol 3-kinase/Akt and Ras/mitogen-activated protein kinase pathways results in synergistic effects in glioblastoma cells. Mol. Cancer Ther. (2006) 5(3):645-654.
  • UETZ P, STAGLJAR I: The interactome of human EGF/ErbB receptors. Mol. Syst. Biol. (2006) 2:2006 0006.
  • SCHULZE WX, DENG L, MANN M: Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol. Syst. Biol. (2005) 1:2005 0008.
  • GANDHI TK, ZHONG J, MATHIVANAN S et al.: Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat. Genet. (2006) 38(3):285-293.
  • BANDYOPADHYAY S, SHARAN R, IDEKER T: Systematic identification of functional orthologs based on protein network comparison. Genome Res. (2006) 16(3):428-435.
  • KELLEY BP, YUAN B, LEWITTER F et al.: PathBLAST: a tool for alignment of protein interaction networks. Nucleic Acids Res. (2004) 32(Web Server Issue):W83-W88.
  • MAK HC, DALY M, GRUEBEL B, IDEKER T: CellCircuits: a database of protein network models. Nucleic Acids Res. (2007) 35(Database Issue):D538-D545.
  • SHANNON P, MARKIEL A, OZIER O et al.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. (2003) 13(11):2498-2504.
  • SHARAN R, IDEKER T: Modeling cellular machinery through biological network comparison. Nat. Biotechnol. (2006) 24(4):427-433.
  • ORTON RJ, STURM OE, VYSHEMIRSKY V et al.: Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem. J. (2005) 392(Part 2):249-261.
  • GOH KI, CUSICK ME, VALLE D et al.: The human disease network. Proc. Natl. Acad. Sci. USA (2007) 104(21):8685-8690.
  • LAGE K, KARLBERG EO, STORLING ZM et al.: A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat. Biotechnol. (2007) 25(3):309-316.
  • SJOBLOM T, JONES S, WOOD LD et al.: The consensus coding sequences of human breast and colorectal cancers. Science (2006) 314(5797):268-274.
  • RHODES DR, CHINNAIYAN AM: Integrative analysis of the cancer transcriptome. Nat. Genet. (2005) 37(Suppl.):S31-S37.
  • RHODES DR, KALYANA-SUNDARAM S, MAHAVISNO V et al.: Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia (2007) 9(2):166-180.
  • WELLBROCK C, KARASARIDES M, MARAIS R: The RAF proteins take centre stage. Nat. Rev. Mol. Cell Biol. (2004) 5(11):875-885.
  • CARAGLIA M, TASSONE P, MARRA M et al.: Targeting Raf-kinase: molecular rationales and translational issues. Ann. Oncol. (2006) 17(Suppl. 7):VII124-VII127.
  • SCHRECK R, RAPP UR: Raf kinases: oncogenesis and drug discovery. Int. J. Cancer (2006) 119(10):2261-2271.
  • BEERAM M, PATNAIK A, ROWINSKY EK: Raf: a strategic target for therapeutic development against cancer. J. Clin. Oncol. (2005) 23(27):6771-6790.
  • LEICHT DT, BALAN V, KAPLUN A et al.: Raf kinases: function, regulation and role in human cancer. Biochim. Biophys. Acta (2007) 1773(8):1196-1212.
  • GARNETT MJ, RANA S, PATERSON H, BARFORD D, MARAIS R: Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol. Cell (2005) 20(6):963-969.
  • AUST DE, HAASE M, DOBRYDEN L et al.: Mutations of the BRAF gene in ulcerative colitis-related colorectal carcinoma. Int. J. Cancer (2005) 115(5):673-677.
  • SASAO S, HIYAMA T, TANAKA S et al.: Clinicopathologic and genetic characteristics of gastric cancer in young male and female patients. Oncol. Rep. (2006) 16(1):11-15.
  • LEE SH, LEE JW, SOUNG YH et al.: BRAF and KRAS mutations in stomach cancer. Oncogene (2003) 22(44):6942-6945.
  • ABROSIMOV A, SAENKO V, ROGOUNOVITCH T et al.: Different structural components of conventional papillary thyroid carcinoma display mostly identical BRAF status. Int. J. Cancer (2007) 120(1):196-200.
  • KIMURA ET, NIKIFOROVA MN, ZHU Z et al.: High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. (2003) 63(7):1454-1457.
  • RUSINEK D, GUBALA E: BRAF initiating mutations in the papillary thyroid carcinoma. Endokrynol. Pol. (2006) 57(4):438-444.
  • KUMAGAI A, NAMBA H, AKANOV Z et al.: Clinical implications of pre-operative rapid BRAF analysis for papillary thyroid cancer. Endocr. J. (2007) 54(3):399-405.
  • NIKIFOROVA MN, KIMURA ET, GANDHI M et al.: BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J. Clin. Endocrinol. Metab. (2003) 88(11):5399-5404.
  • EDLUNDH-ROSE E, EGYHAZI S, OMHOLT K et al.: NRAS and BRAF mutations in melanoma tumours in relation to clinical characteristics: a study based on mutation screening by pyrosequencing. Melanoma Res. (2006) 16(6):471-478.
  • UGUREL S, THIRUMARAN RK, BLOETHNER S et al.: B-RAF and N-RAS mutations are preserved during short time in vitro propagation and differentially impact prognosis. PLoS One (2007) 2:E236.
  • TANNAPFEL A, SOMMERER F, BENICKE M et al.: Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma. Gut (2003) 52(5):706-712.
  • WEBER A, LANGHANKI L, SOMMERER F et al.: Mutations of the BRAF gene in squamous cell carcinoma of the head and neck. Oncogene (2003) 22(30):4757-4759.
  • SOMMERER F, VIETH M, MARKWARTH A et al.: Mutations of BRAF and KRAS2 in the development of Barrett's adenocarcinoma. Oncogene (2004) 23(2):554-558.
  • MAYR D, HIRSCHMANN A, LOHRS U, DIEBOLD J: KRAS and BRAF mutations in ovarian tumors: a comprehensive study of invasive carcinomas, borderline tumors and extraovarian implants. Gynecol. Oncol. (2006) 103(3):883-887.
  • SIEBEN NL, MACROPOULOS P, ROEMEN GM et al.: In ovarian neoplasms, BRAF, but not KRAS, mutations are restricted to low-grade serous tumours. J. Pathol. (2004) 202(3):336-340.
  • FLAVIN R, SMYTH P, CROTTY P et al.: BRAF T1799A mutation occurring in a case of malignant struma ovarii. Int. J. Surg. Pathol. (2007) 15(2):116-120.
  • KNOBBE CB, REIFENBERGER J, REIFENBERGER G: Mutation analysis of the Ras pathway genes NRAS, HRAS, KRAS and BRAF in glioblastomas. Acta Neuropathol. (Berl.) (2004) 108(6):467-470.
  • BASTO D, TROVISCO V, LOPES JM et al.: Mutation analysis of B-RAF gene in human gliomas. Acta Neuropathol. (Berl.) (2005) 109(2):207-210.
  • LEE JW, SOUNG YH, PARK WS et al.: BRAF mutations in acute leukemias. Leukemia (2004) 18(1):170-172.
  • CHRISTIANSEN DH, ANDERSEN MK, DESTA F, PEDERSEN-BJERGAARD J: Mutations of genes in the receptor tyrosine kinase (RTK)/RAS-BRAF signal transduction pathway in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia (2005) 19(12):2232-2240.
  • LEE JW, YOO NJ, SOUNG YH et al.: BRAF mutations in non-Hodgkin's lymphoma. Br. J. Cancer (2003) 89(10):1958-1960.
  • GUSTAFSSON B, ANGELINI S, SANDER B et al.: Mutations in the BRAF and N-ras genes in childhood acute lymphoblastic leukaemia. Leukemia (2005) 19(2):310-312.
  • BERGER DH, JARDINES LA, CHANG H, RUGGERI B: Activation of Raf-1 in human pancreatic adenocarcinoma. J. Surg. Res. (1997) 69(1):199-204.
  • CALLANS LS, NAAMA H, KHANDELWAL M, PLOTKIN R, JARDINES L: Raf-1 protein expression in human breast cancer cells. Ann. Surg. Oncol. (1995) 2(1):38-42.
  • KERKHOFF E, FEDOROV LM, SIEFKEN R et al.: Lung-targeted expression of the c-Raf-1 kinase in transgenic mice exposes a novel oncogenic character of the wild-type protein. Cell Growth Differ. (2000) 11(4):185-190.
  • GRAZIANO SL, PFEIFER AM, TESTA JR et al.: Involvement of the RAF1 locus, at band 3p25, in the 3p deletion of small-cell lung cancer. Genes Chromosomes Cancer (1991) 3(4):283-293.
  • HWANG YH, CHOI JY, KIM S et al.: Over-expression of c-raf-1 proto-oncogene in liver cirrhosis and hepatocellular carcinoma. Hepatol. Res. (2004) 29(2):113-121.
  • KORSHUNOV A, NEBEN K, WROBEL G et al.: Gene expression patterns in ependymomas correlate with tumor location, grade, and patient age. Am. J. Pathol. (2003) 163(5):1721-1727.
  • JEUKEN J, VAN DEN BROECKE C, GIJSEN S, BOOTS-SPRENGER S, WESSELING P: RAS/RAF pathway activation in gliomas: the result of copy number gains rather than activating mutations. Acta Neuropathol. (Berl.) (2007) 114(2):121-133.
  • PATEL BK, KASID U: Nucleotide sequence analysis of c-raf-1 cDNA and promoter from a radiation-resistant human squamous carcinoma cell line: deletion within exon 17. Mol. Carcinog. (1993) 8(1):7-12.
  • PATEL BK, RAY S, WHITESIDE TL, KASID U: Correlation of constitutive activation of raf-1 with morphological transformation and abrogation of tyrosine phosphorylation of distinct sets of proteins in human squamous carcinoma cells. Mol. Carcinog. (1997) 18(1):1-6.
  • IKEDA S, SUMII H, AKIYAMA K et al.: Amplification of both c-myc and c-raf-1 oncogenes in a human osteosarcoma. Jpn J. Cancer Res. (1989) 80(1):6-9.
  • NAGY B, GALIMBERTI S, BENEDETTI E et al.: RAF-1 over-expression does condition survival of patients affected by aggressive mantle cell lymphoma. Leuk. Res. (2007).
  • COUDERT B, ANTHONEY A, FIEDLER W et al.: Phase II trial with ISIS 5132 in patients with small-cell (SCLC) and non-small cell (NSCLC) lung cancer. A European organization for research and treatment of cancer (EORTC) early clinical studies group report. Eur. J. Cancer (2001) 37(17):2194-2198.
  • HINGORANI SR, JACOBETZ MA, ROBERTSON GP, HERLYN M, TUVESON DA: Suppression of BRAF(V599E) in human melanoma abrogates transformation. Cancer Res. (2003) 63(17):5198-5202.
  • HJELMELAND AB, LATTIMORE KP, FEE BE et al.: The combination of novel low molecular weight inhibitors of RAF (LBT613) and target of rapamycin (RAD001) decreases glioma proliferation and invasion. Mol. Cancer Ther. (2007) 6(9):2449-2457.
  • SHADAD FN, RAMANATHAN RK: 17-Dimethylaminoethylamino-17-demethoxygeldanamycin in patients with advanced-stage solid tumors and lymphoma: a Phase I study. Clin. Lymphoma Myeloma (2006) 6(6):500-501.
  • DUVIC M, TALPUR R, NI X et al.: Phase II trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood (2007) 109(1):31-39.
  • MOLIFE R, FONG P, SCURR M et al.: HDAC inhibitors and cardiac safety. Clin. Cancer Res. (2007) 13(3):1068; author reply 1068-1069.
  • ATADJA P, GAO L, KWON P et al.: Selective growth inhibition of tumor cells by a novel histone deacetylase inhibitor, NVP-LAQ824. Cancer Res. (2004) 64(2):689-695.
  • KNOX JJ, FIGLIN RA, STADLER WM et al.: The advanced renal cell carcinoma sorafenib (ARCCS) expanded access trial in North America: safety and efficacy. ASCO Meeting Abstracts, J. Clin. Oncol. (2007) 25(18 Suppl.):5011.
  • MCDERMOTT DF, SOSMAN JA, HODI FS et al.: Randomized Phase II study of dacarbazine with or without sorafenib in patients with advanced melanoma. ASCO Meeting Abstracts (2007) 25(18 Suppl.):8511.
  • GATZEMEIER U, BLUMENSCHEIN G, FOSELLA F et al.: Phase II trial of single-agent sorafenib in patients with advanced non-small cell lung carcinoma. ASCO Meeting Abstracts, J. Clin. Oncol. (2006) 24(18 Suppl.):7002.
  • WILLIAMSON SK, MOON J, HUANG CH et al.: A Phase II trial of sorafenib in patients with recurrent and/or metastatic head and neck squamous cell carcinoma (HNSCC): a Southwest oncology group (SWOG) trial. 2007 ASCO Annual Meeting Proceedings Part I. J. Clin. Oncol. (2007) 25(S18 Suppl.):6044.
  • GUPTA V, PUTTASWAMY K, LASSOUED W et al.: Sorafenib targets BRAF and VEGFR in metastatic thyroid carcinoma. ASCO Meeting Abstracts (2007) 25(18 Suppl.):6019.
  • D'ADAMO DR, KEOHAN M, SCHUETZE S et al.: Clinical results of a Phase II study of sorafenib in patients (pts) with non-GIST sarcomas (CTEP study #7060). ASCO Meeting Abstracts, J. Clin. Oncol. (2007) 25(18 Suppl.):10001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.