224
Views
11
CrossRef citations to date
0
Altmetric
Review

Molecular mechanisms of cellular senescence and immortalization of human cells

Pages 1623-1637 | Published online: 18 Nov 2007

Bibliography

  • HAYFLICK L, MOOHEAD PS: The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. (1965) 37:614-636.
  • BERTHET C, KLARMANN KD, HILTON MB et al.: Combined loss of Cdk2 and Cdk4 results in embryonic lethality and Rb hypophosphorylation. Dev. Cell (2006) 10(5):563-573.
  • SANTAMARIA D, BARRIERE C, CERQUEIRA A et al.: Cdk1 is sufficient to drive the mammalian cell cycle. Nature (2007) 448(7155):811-815.
  • BERTHET C, KALDIS P: Cell-specific responses to loss of cyclin-dependent kinases. Oncogene (2007) 26(31):4469-4477.
  • MORRIS M, HEPBURN P, WYNFORD-THOMAS D: Sequential extension of proliferative lifespan in human fibroblasts induced by over-expression of CDK4 or 6 and loss of p53 function. Oncogene (2002) 21(27):4277-4288.
  • OLOVNIKOV AM: A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J. Theor. Biol. (1973) 41(1):181-190.
  • DE LANGE T: Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. (2005) 19(18):2100-2110.
  • BODNAR AG, OUELLETTE M, FROLKIS M et al.: Extension of life-span by introduction of telomerase into normal human cells. Science (1998) 279(5349):349-352.
  • SHERR CJ, DEPINHO RA: Cellular senescence: mitotic clock or culture shock? Cell (2000) 102(4):407-410.
  • SERRANO M, LIN AW, MCCURRACH ME, BEACH D, LOWE SW: Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell (1997) 88(5):593-602.
  • SHAY JW, WRIGHT WE: Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis (2005) 26(5):867-874.
  • WANG Y, BLANDINO G, GIVOL D: Induced p21waf expression in H1299 cell line promotes cell senescence and protects against cytotoxic effect of radiation and doxorubicin. Oncogene (1999) 18(16):2643-2649.
  • BUNZ F, HWANG PM, TORRANCE C et al.: Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J. Clin. Invest. (1999) 104(3):263-269.
  • WENDT J, RADETZKI S, VON HAEFEN C et al.: Induction of p21CIP/WAF-1 and G2 arrest by ionizing irradiation impedes caspase-3-mediated apoptosis in human carcinoma cells. Oncogene (2006) 25(7):972-980.
  • TIAN H, WITTMACK EK, JORGENSEN TJ: p21WAF1/CIP1 antisense therapy radiosensitizes human colon cancer by converting growth arrest to apoptosis. Cancer Res. (2000) 60(3):679-684.
  • PARRINELLO S, SAMPER E, KRTOLICA A et al.: Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat. Cell Biol. (2003) 5(8):741-747.
  • PACKER L, FUEHR K: Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature (1977) 267(5610):423-425.
  • ZHU J, WOODS D, MCMAHON M, BISHOP JM: Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. (1998) 12(19):2997-3007.
  • SHARPLESS NE, BARDEESY N, LEE KH et al.: Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature (2001) 413(6851):86-91.
  • KRIMPENFORT P, QUON KC, MOOI WJ, LOONSTRA A, BERNS A: Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature (2001) 413(6851):83-86.
  • KOMORI H, ENOMOTO M, NAKAMURA M, IWANAGA R, OHTANI K: Distinct E2F-mediated transcriptional program regulates p14ARF gene expression. EMBO J. (2005) 24(21):3724-3736.
  • SREERAMANENI R, CHAUDHRY A, MCMAHON M, SHERR CJ, INOUE K: Ras-Raf-Arf signaling critically depends on the Dmp1 transcription factor. Mol. Cell Biol. (2005) 25(1):220-232.
  • WEI W, HEMMER RM, SEDIVY JM: Role of p14(ARF) in replicative and induced senescence of human fibroblasts. Mol. Cell Biol. (2001) 21(20):6748-6757.
  • COLLADO M, GIL J, EFEYAN A et al.: Tumour biology: senescence in premalignant tumours. Nature (2005) 436(7051:642.
  • TUVESON DA, SHAW AT, WILLIS NA et al.: Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell (2004) 5(4):375-387.
  • COURTOIS-COX S, GENTHER WILLIAMS SM, RECZEK EE et al.: A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell (2006) 10(6):459-472.
  • KORTLEVER RM, HIGGINS PJ, BERNARDS R: Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat. Cell Biol. (2006) 8(8):877-884.
  • DI MICCO R, FUMAGALLI M, CICALESE A et al.: Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature (2006) 444(7119):638-642.
  • BARTKOVA J, REZAEI N, LIONTOS M et al.: Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature (2006) 444(7119):633-637.
  • TAKAHASHI A, OHTANI N, YAMAKOSHI K et al.: Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat. Cell Biol. (2006) 8(11):1291-1297.
  • BRUCE JL, HURFORD RK Jr, CLASSON M, KOH J, DYSON N: Requirements for cell cycle arrest by p16INK4a. Mol. Cell (2000) 6(3):737-742.
  • SAGE J, MULLIGAN GJ, ATTARDI LD et al.: Targeted disruption of the three Rb-related genes leads to loss of G(1) control and immortalization. Genes Dev. (2000) 14(23):3037-3050.
  • SAGE J, MILLER AL, PEREZ-MANCERA PA, WYSOCKI JM, JACKS T: Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature (2003) 424(6945):223-228.
  • SEBASTIAN T, MALIK R, THOMAS S, SAGE J, JOHNSON PF: C/EBPβ cooperates with RB:E2F to implement Ras(V12)-induced cellular senescence. EMBO J. (2005) 24(18):3301-3312.
  • CARR J, MACKIE RM: Point mutations in the N-ras oncogene in malignant melanoma and congenital naevi. Br. J. Dermatol. (1994) 131(1):72-77.
  • DAVIES H, BIGNELL GR, COX C et al.: Mutations of the BRAF gene in human cancer. Nature (2002) 417(6892):949-954.
  • POLLOCK PM, HARPER UL, HANSEN KS et al.: High frequency of BRAF mutations in nevi. Nat. Genet. (2003) 33(1):19-20.
  • CHEN Z, TROTMAN LC, SHAFFER D et al.: Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature (2005) 436(7051):725-730.
  • LAZZERINI DENCHI E, ATTWOOLL C, PASINI D, HELIN K: Deregulated E2F activity induces hyperplasia and senescence-like features in the mouse pituitary gland. Mol. Cell Biol. (2005) 25(7):2660-2672.
  • GREENBERG RA, CHIN L, FEMINO A et al.: Short dysfunctional telomeres impair tumorigenesis in the INK4a(δ2/3) cancer-prone mouse. Cell (1999) 97(4):515-525.
  • FELDSER DM, GREIDER CW: Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell (2007) 11(5):461-469.
  • COSME-BLANCO W, SHEN MF, LAZAR AJ et al.: Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep. (2007) 8(5):497-503.
  • XUE W, ZENDER L, MIETHING C et al.: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature (2007) 445(7128):656-660.
  • VENTURA A, KIRSCH DG, MCLAUGHLIN ME et al.: Restoration of p53 function leads to tumour regression in vivo. Nature (2007) 445(7128):661-665.
  • MARTINS CP, BROWN-SWIGART L, EVAN GI: Modeling the therapeutic efficacy of p53 restoration in tumors. Cell (2006) 127(7):1323-1334.
  • HAQ R, BRENTON JD, TAKAHASHI M et al.: Constitutive p38HOG mitogen-activated protein kinase activation induces permanent cell cycle arrest and senescence. Cancer Res. (2002) 62(17):5076-5082.
  • IWASA H, HAN J, ISHIKAWA F: Mitogen-activated protein kinase p38 defines the common senescence-signalling pathway. Genes Cells (2003) 8(2):131-144.
  • SUN P, YOSHIZUKA N, NEW L et al.: PRAK is essential for ras-induced senescence and tumor suppression. Cell (2007) 128(2):295-308.
  • ODA K, ARAKAWA H, TANAKA T et al.: p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell (2000) 102(6):849-862.
  • BULAVIN DV, SAITO S, HOLLANDER MC et al.: Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J. (1999) 18(23):6845-6854.
  • D'ORAZI G, CECCHINELLI B, BRUNO T et al.: Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat. Cell Biol. (2002) 4(1):11-19.
  • FERBEYRE G, DE STANCHINA E, QUERIDO E et al.: PML is induced by oncogenic ras and promotes premature senescence. Genes Dev. (2000) 14(16):2015-2027.
  • PEARSON M, CARBONE R, SEBASTIANI C et al.: PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature (2000) 406(6792):207-210.
  • BISCHOF O, KIRSH O, PEARSON M et al.: Deconstructing PML-induced premature senescence. EMBO J. (2002) 21(13):3358-3369.
  • SYKES SM, MELLERT HS, HOLBERT MA et al.: Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol. Cell (2006) 24(6):841-851.
  • TANG Y, LUO J, ZHANG W, GU W: Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol. Cell (2006) 24(6):827-839.
  • TYTECA S, VANDROMME M, LEGUBE G, CHEVILLARD-BRIET M, TROUCHE D: Tip60 and p400 are both required for UV-induced apoptosis but play antagonistic roles in cell cycle progression. EMBO J. (2006) 25(8):1680-1689.
  • LEGUBE G, LINARES LK, LEMERCIER C et al.: Tip60 is targeted to proteasome-mediated degradation by Mdm2 and accumulates after UV irradiation. EMBO J. (2002) 21(7):1704-1712.
  • SUN Y, JIANG X, CHEN S, FERNANDES N, PRICE BD: A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc. Natl. Acad. Sci. USA (2005) 102(37):13182-13187.
  • SQUATRITO M, GORRINI C, AMATI B: Tip60 in DNA damage response and growth control: many tricks in one HAT. Trends Cell Biol. (2006) 16(9):433-442.
  • PANTOJA C, SERRANO M: Murine fibroblasts lacking p21 undergo senescence and are resistant to transformation by oncogenic Ras. Oncogene (1999) 18(35):4974-4982.
  • HEROLD S, WANZEL M, BEUGER V et al.: Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol. Cell (2002) 10(3):509-521.
  • RANGARAJAN A, TALORA C, OKUYAMA R et al.: Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J. (2001) 20(13):3427-3436.
  • CARREIRA S, GOODALL J, AKSAN I et al.: Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature (2005) 433(7027):764-769.
  • DENG C, ZHANG P, HARPER JW, ELLEDGE SJ, LEDER P: Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell (1995) 82(4):675-684.
  • SEOANE J, LE HV, MASSAGUE J: Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature (2002) 419(6908):729-734.
  • WU S, CETINKAYA C, MUNOZ-ALONSO MJ et al.: Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene (2003) 22(3):351-360.
  • ZINDY F, EISCHEN CM, RANDLE DH et al.: Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. (1998) 12(15):2424-2433.
  • LU ZH, BOOKS JT, LEY TJ: YB-1 is important for late-stage embryonic development, optimal cellular stress responses, and the prevention of premature senescence. Mol. Cell Biol. (2005) 25(11):4625-4637.
  • SPARMANN A, VAN LOHUIZEN M: Polycomb silencers control cell fate, development and cancer. Nat. Rev. Cancer (2006) 6(11):846-856.
  • BRACKEN AP, DIETRICH N, PASINI D, HANSEN KH, HELIN K: Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. (2006) 20(9):1123-1136.
  • BRACKEN AP, KLEINE-KOHLBRECHER D, DIETRICH N et al.: The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. (2007) 21(5):525-530.
  • YANNONI YM, GAESTEL M, LIN LL: P66(ShcA) interacts with MAPKAP kinase 2 and regulates its activity. FEBS Lett. (2004) 564(1-2):205-211.
  • VONCKEN JW, NIESSEN H, NEUFELD B et al.: MAPKAP kinase 3pK phosphorylates and regulates chromatin association of the polycomb group protein Bmi1. J. Biol. Chem. (2005) 280(7):5178-5187.
  • GAESTEL M: MAPKAP kinases – MKs – two's company, three's a crowd. Nat. Rev. Mol. Cell Biol. (2006) 7(2):120-130.
  • MANKE IA, NGUYEN A, LIM D et al.: MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Mol. Cell (2005) 17(1):37-48.
  • PASSEGUE E, WAGNER EF: JunB suppresses cell proliferation by transcriptional activation of p16(INK4a) expression. EMBO J. (2000) 19(12):2969-2979.
  • OHTANI N, ZEBEDEE Z, HUOT TJ et al.: Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature (2001) 409(6823):1067-1070.
  • YEE AS, PAULSON EK, MCDEVITT MA et al.: The HBP1 transcriptional repressor and the p38 MAP kinase: unlikely partners in G1 regulation and tumor suppression. Gene (2004) 336(1):1-13.
  • ZHANG X, KIM J, RUTHAZER R et al.: The HBP1 transcriptional repressor participates in RAS-induced premature senescence. Mol. Cell Biol. (2006) 26(22):8252-8266.
  • VENTURA JJ, TENBAUM S, PERDIGUERO E et al.: p38α MAP kinase is essential in lung stem and progenitor cell proliferation and differentiation. Nat. Genet. (2007) 39(6):750-758.
  • VERSTEEGE I, SEVENET N, LANGE J et al.: Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature (1998) 394(6689):203-206.
  • BIEGEL JA, ZHOU JY, RORKE LB et al.: Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res. (1999) 59(1):74-79.
  • ROBERTS CW, GALUSHA SA, MCMENAMIN ME, FLETCHER CD, ORKIN SH: Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc. Natl. Acad. Sci. USA (2000) 97(25):13796-13800.
  • ROBERTS CW, LEROUX MM, FLEMING MD, ORKIN SH: Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. Cancer Cell (2002) 2(5):415-425.
  • CHAI J, CHARBONEAU AL, BETZ BL, WEISSMAN BE: Loss of the hSNF5 gene concomitantly inactivates p21CIP/WAF1 and p16INK4a activity associated with replicative senescence in A204 rhabdoid tumor cells. Cancer Res. (2005) 65(22):10192-10198.
  • ORUETXEBARRIA I, VENTURINI F, KEKARAINEN T et al.: P16INK4a is required for hSNF5 chromatin remodeler-induced cellular senescence in malignant rhabdoid tumor cells. J. Biol. Chem. (2004) 279(5):3807-3816.
  • SCHUETTENGRUBER B, CHOURROUT D, VERVOORT M, LEBLANC B, CAVALLI G: Genome regulation by polycomb and trithorax proteins. Cell (2007) 128(4):735-745.
  • NARITA M, NUNEZ S, HEARD E et al.: Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell (2003) 113(6):703-716.
  • ZHANG R, POUSTOVOITOV MV, YE X et al.: Formation of macroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev. Cell (2005) 8(1):19-30.
  • NARITA M, NARITA M, KRIZHANOVSKY V et al.: A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell (2006) 126(3):503-514.
  • MITSUI Y, SAKAGAMI H, MUROTA S, YAMADA M: Age-related decline in histone H1 fraction in human diploid fibroblast cultures. Exp. Cell Res. (1980) 126(2):289-298.
  • ROGAKOU EP, SEKERI-PATARYAS KE: Histone variants of H2A and H3 families are regulated during in vitro aging in the same manner as during differentiation. Exp. Gerontol. (1999) 34(6):741-754.
  • FUNAYAMA R, SAITO M, TANOBE H, ISHIKAWA F: Loss of linker histone H1 in cellular senescence. J. Cell Biol. (2006) 175(6):869-880.
  • FUNAYAMA R, ISHIKAWA F: Cellular senescence and chromatin structure. Chromosoma (2007):(In Press).
  • ZHANG R, CHEN W, ADAMS PD: Molecular dissection of formation of senescence-associated heterochromatin foci. Mol. Cell Biol. (2007) 27(6):2343-2358.
  • BRAIG M, LEE S, LODDENKEMPER C et al.: Oncogene-induced senescence as an initial barrier in lymphoma development. Nature (2005) 436(7051):660-665.
  • RASTOGI S, JOSHI B, DASGUPTA P et al.: Prohibitin facilitates cellular senescence by recruiting specific corepressors to inhibit E2F target genes. Mol. Cell Biol. (2006) 26(11):4161-4171.
  • KIYONO T, FOSTER SA, KOOP JI et al.: Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature (1998) 396(6706):84-88.
  • JARRARD DF, SARKAR S, SHI Y et al.: p16/pRb pathway alterations are required for bypassing senescence in human prostate epithelial cells. Cancer Res. (1999) 59(12):2957-2964.
  • ITAHANA K, ZOU Y, ITAHANA Y et al.: Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol. Cell Biol. (2003) 23(1):389-401.
  • HAGA K, OHNO S, YUGAWA T et al.: Efficient immortalization of primary human cells by p16INK4a-specific short hairpin RNA or Bmi-1, combined with introduction of hTERT. Cancer Sci. (2007) 98(2):147-154.
  • RAMIREZ RD, SHERIDAN S, GIRARD L et al.: Immortalization of human bronchial epithelial cells in the absence of viral oncoproteins. Cancer Res. (2004) 64(24):9027-9034.
  • JACOBS JJ, KIEBOOM K, MARINO S, DEPINHO RA, VAN LOHUIZEN M: The oncogene and polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature (1999) 397(6715):164-168.
  • GIL J, BERNARD D, MARTINEZ D, BEACH D: Polycomb CBX7 has a unifying role in cellular lifespan. Nat. Cell Biol. (2004) 6(1):67-72.
  • DIETRICH N, BRACKEN AP, TRINH E et al.: Bypass of senescence by the polycomb group protein CBX8 through direct binding to the INK4A-ARF locus. EMBO J. (2007) 26(6):1637-1648.
  • MARTIN GM: Genetic modulation of senescent phenotypes in Homo sapiens. Cell (2005) 120(4):523-532.
  • RAMIREZ RD, MORALES CP, HERBERT BS et al.: Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev. (2001) 15(4):398-403.
  • HERBERT BS, WRIGHT WE, SHAY JW: p16(INK4a) inactivation is not required to immortalize human mammary epithelial cells. Oncogene (2002) 21(51):7897-7900.
  • ZINDY F, QUELLE DE, ROUSSEL MF, SHERR CJ: Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene (1997) 15(2):203-211.
  • NIELSEN GP, STEMMER-RACHAMIMOV AO, SHAW J et al.: Immunohistochemical survey of p16INK4A expression in normal human adult and infant tissues. Lab. Invest. (1999) 79(9):1137-1143.
  • NYSTUL TG, SPRADLING AC: Breaking out of the mold: diversity within adult stem cells and their niches. Curr. Opin. Genet. Dev. (2006) 16(5):463-468.
  • ITO M, YANG Z, ANDL T et al.: Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature (2007) 447(7142):316-320.
  • WATKINS DN, BERMAN DM, BURKHOLDER SG et al.: Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature (2003) 422(6929):313-317.
  • BEACHY PA, KARHADKAR SS, BERMAN DM: Tissue repair and stem cell renewal in carcinogenesis. Nature (2004) 432(7015):324-331.
  • WATKINS DN, PEACOCK CD: Hedgehog signalling in foregut malignancy. Biochem. Pharmacol. (2004) 68(6):1055-1060.
  • PEACOCK CD, WANG Q, GESELL GS et al.: Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc. Natl. Acad. Sci. USA (2007) 104(10):4048-4053.
  • STECCA B, MAS C, CLEMENT V et al.: Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc. Natl. Acad. Sci. USA (2007) 104(14):5895-5900.
  • ATHAR M, TANG X, LEE JL, KOPELOVICH L, KIM AL: Hedgehog signalling in skin development and cancer. Exp. Dermatol. (2006) 15(9):667-677.
  • RADTKE F, CLEVERS H, RICCIO O: From gut homeostasis to cancer. Curr. Mol. Med. (2006) 6(3):275-289.
  • AKIYOSHI T, NAKAMURA M, KOGA K et al.: Gli1, downregulated in colorectal cancers, inhibits proliferation of colon cancer cells involving Wnt signalling activation. Gut (2006) 55(7):991-999.
  • SENGUPTA A, BANERJEE D, CHANDRA S et al.: Deregulation and cross talk among Sonic hedgehog, Wnt, Hox and Notch signaling in chronic myeloid leukemia progression. Leukemia (2007) 21(5):949-955.
  • KMITA M, TARCHINI B, ZAKANY J et al.: Early developmental arrest of mammalian limbs lacking HoxA/HoxD gene function. Nature (2005) 435(7045):1113-1116.
  • PRASAD NB, BIANKIN AV, FUKUSHIMA N et al.: Gene expression profiles in pancreatic intraepithelial neoplasia reflect the effects of Hedgehog signaling on pancreatic ductal epithelial cells. Cancer Res. (2005) 65(5):1619-1626.
  • GIL J, KERAI P, LLEONART M et al.: Immortalization of primary human prostate epithelial cells by c-Myc. Cancer Res. (2005) 65(6):2179-2185.
  • GILES RH, VAN ES JH, CLEVERS H: Caught up in a Wnt storm: Wnt signaling in cancer. Biochim. Biophys. Acta (2003) 1653(1):1-24.
  • SANSOM OJ, MENIEL VS, MUNCAN V et al.: Myc deletion rescues Apc deficiency in the small intestine. Nature (2007) 446(7136):676-679.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.