199
Views
25
CrossRef citations to date
0
Altmetric
Review

Is DARPP-32 a potential therapeutic target?

, , , , , , , & , MD PhD show all
Pages 1649-1661 | Published online: 18 Nov 2007

Bibliography

  • GREENGARD P, ALLEN PB, NAIRN AC: Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron (1999) 23(3):435-447.
  • BELKHIRI A, ZAIKA A, PIDKOVKA N, KNUUTILA S, MOSKALUK C, EL-RIFAI W: DARPP-32: a novel antiapoptotic gene in upper gastrointestinal carcinomas. Cancer Res. (2005) 65(15):6583-6592.
  • FIENBERG AA, HIROI N, MERMELSTEIN PG et al.: DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science (1998) 281(5378):838-842.
  • NAIRN AC, SVENNINGSSON P, NISHI A, FISONE G, GIRAULT JA, GREENGARD P: The role of DARPP-32 in the actions of drugs of abuse. Neuropharmacology (2004) 47(1):14-23.
  • NISHI A, SNYDER GL, GREENGARD P: Bidirectional regulation of DARPP-32 phosphorylation by dopamine. J. Neurosci. (1997) 17(21):8147-8155.
  • SVENNINGSSON P, NISHI A, FISONE G, GIRAULT JA, NAIRN AC, GREENGARD P: DARPP-32: an integrator of neurotransmission. Annu. Rev. Pharmacol. Toxicol. (2004) 44:269-296.
  • HEMMINGS HC Jr, NAIRN AC, GREENGARD P: DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated neuronal phosphoprotein. II. Comparison of the kinetics of phosphorylation of DARPP-32 and phosphatase inhibitor 1. J. Biol. Chem. (1984) 259(23):14491-14497.
  • HEMMINGS HC Jr, NAIRN AC, ASWAD DW, GREENGARD P: DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. II. Purification and characterization of the phosphoprotein from bovine caudate nucleus. J. Neurosci. (1984) 4(1):99-110.
  • HEMMINGS HC Jr, WILLIAMS KR, KONIGSBERG WH, GREENGARD P: DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated neuronal phosphoprotein. I. Amino acid sequence around the phosphorylated threonine. J. Biol. Chem. (1984) 259(23):14486-14490.
  • KURIHARA T, LEWIS RM, EISLER J, GREENGARD P: Cloning of cDNA for DARPP-32, a dopamine- and cyclic AMP-regulated neuronal phosphoprotein. J. Neurosci. (1988) 8(2):508-517.
  • OUIMET CC, MILLER PE, HEMMINGS HC Jr, WALAAS SI, GREENGARD P: DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization. J. Neurosci. (1984) 4(1):111-124.
  • SVENNINGSSON P, FIENBERG AA, ALLEN PB et al.: Dopamine D(1) receptor-induced gene transcription is modulated by DARPP-32. J. Neurochem. (2000) 75(1):248-257.
  • WALAAS SI, GREENGARD P: DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. I. Regional and cellular distribution in the rat brain. J. Neurosci. (1984) 4(1):84-98.
  • WILLIAMS KR, HEMMINGS HC Jr, LOPRESTI MB, KONIGSBERG WH, GREENGARD P: DARPP-32, a dopamine- and cyclic AMP-regulated neuronal phosphoprotein. Primary structure and homology with protein phosphatase inhibitor-1. J. Biol. Chem. (1986) 261(4):1890-1903.
  • FERNANDEZ E, SCHIAPPA R, GIRAULT JA, NOVERE NL: DARPP-32 is a robust integrator of dopamine and glutamate signals. PLoS Comput. Biol. (2006) 2(12):E176.
  • GIRAULT JA, HEMMINGS HC Jr, WILLIAMS KR, NAIRN AC, GREENGARD P: Phosphorylation of DARPP-32, a dopamine- and cAMP-regulated phosphoprotein, by casein kinase II. J. Biol. Chem. (1989) 264(36):21748-21759.
  • BIBB JA, SNYDER GL, NISHI A et al.: Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature (1999) 402(6762):669-671.
  • BOGUSH A, PEDRINI S, PELTA-HELLER J et al.: AKT and CDK5/p35 mediate brain-derived neurotrophic factor induction of DARPP-32 in medium size spiny neurons in vitro.J. Biol. Chem. (2007) 282(10):7352-7359.
  • LIU F, MA XH, ULE J et al.: Regulation of cyclin-dependent kinase 5 and casein kinase 1 by metabotropic glutamate receptors. Proc. Natl. Acad. Sci. USA (2001) 98(20):11062-11068.
  • SVENNINGSSON P, LINDSKOG M, LEDENT C et al.: Regulation of the phosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa in vivo by dopamine D1, dopamine D2, and adenosine A2A receptors. Proc. Natl. Acad. Sci. USA (2000) 97(4):1856-1860.
  • SNYDER GL, FIENBERG AA, HUGANIR RL, GREENGARD P: A dopamine/D1 receptor/protein kinase A/dopamine- and cAMP-regulated phosphoprotein (Mr 32 kDa)/protein phosphatase-1 pathway regulates dephosphorylation of the NMDA receptor. J. Neurosci. (1998) 18(24):10297-10303.
  • VALJENT E, PASCOLI V, SVENNINGSSON P et al.: Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc. Natl. Acad. Sci. USA (2005) 102(2):491-496.
  • NISHI A, SNYDER GL, NAIRN AC, GREENGARD P: Role of calcineurin and protein phosphatase-2A in the regulation of DARPP-32 dephosphorylation in neostriatal neurons. J. Neurochem. (1999) 72(5):2015-2021.
  • SOHRABJI F, LEWIS DK: Estrogen–BDNF interactions: implications for neurodegenerative diseases. Front. Neuroendocrinol. (2006) 27(4):404-414.
  • LEZCANO N, MRZLJAK L, EUBANKS S, LEVENSON R, GOLDMAN-RAKIC P, BERGSON C: Dual signaling regulated by calcyon, a D1 dopamine receptor interacting protein. Science (2000) 287(5458):1660-1664.
  • FOUBISTER V: Do all paths lead to DARPP-32? Drug Discov. Today (2002) 7(21):1068-1070.
  • ALBERT KA, HEMMINGS HC Jr, ADAMO AI et al.: Evidence for decreased DARPP-32 in prefrontal cortex of patients with schizophrenia. Arch. Gen. Psychiatry (2002) 59(8):705-712.
  • POZZI L, HAKANSSON K, USIELLO A et al.: Opposite regulation by typical and atypical anti-psychotics of ERK1/2, CREB and Elk-1 phosphorylation in mouse dorsal striatum. J. Neurochem. (2003) 86(2):451-459.
  • SURMEIER DJ, EBERWINE J, WILSON CJ, CAO Y, STEFANI A, KITAI ST: Dopamine receptor subtypes colocalize in rat striatonigral neurons. Proc. Natl. Acad. Sci. USA (1992) 89(21):10178-10182.
  • SCHIFFMANN SN, JACOBS O, VANDERHAEGHEN JJ: Striatal restricted adenosine A2 receptor (RDC8) is expressed by enkephalin but not by substance P neurons: an in situ hybridization histochemistry study. J. Neurochem. (1991) 57(3):1062-1067.
  • BEAULIEU JM, SOTNIKOVA TD, YAO WD et al.: Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc. Natl. Acad. Sci. USA (2004) 101(14):5099-5104.
  • PAPAKOSTAS GI: Dopaminergic-based pharmacotherapies for depression. Eur. Neuropsychopharmacol. (2006) 16(6):391-402.
  • GUITART X, NESTLER EJ: Chronic administration of lithium or other antidepressants increases levels of DARPP-32 in rat frontal cortex. J. Neurochem. (1992) 59(3):1164-1167.
  • SVENNINGSSON P, TZAVARA ET, WITKIN JM, FIENBERG AA, NOMIKOS GG, GREENGARD P: Involvement of striatal and extrastriatal DARPP-32 in biochemical and behavioral effects of fluoxetine (Prozac). Proc. Natl. Acad. Sci. USA (2002) 99(5):3182-3187.
  • SVENNINGSSON P, TZAVARA ET, LIU F, FIENBERG AA, NOMIKOS GG, GREENGARD P: DARPP-32 mediates serotonergic neurotransmission in the forebrain. Proc. Natl. Acad. Sci. USA (2002) 99(5):3188-3193.
  • ROSEN Y, REZNIK I, SLUVIS A, KAPLAN D, MESTER R: The significance of the nitric oxide in electro-convulsive therapy: a proposed neurophysiological mechanism. Med. Hypotheses (2003) 60(3):424-429.
  • ABRAMS R: ECT and psychotic depression 18. Am. J. Psychiatry (1998) 155(2):306-307.
  • UK ECT REVIEW GROUP: Efficacy and safety of electroconvulsive therapy in depressive disorders: a systematic review and meta-analysis. Lancet (2003) 361(9360):799-808.
  • BARICHELLO T, BONATTO F, FEIER G et al.: No evidence for oxidative damage in the hippocampus after acute and chronic electroshock in rats. Brain Res. (2004) 1014(1-2):177-183.
  • ZARRINDAST MR, SAHEBGHARANI M, BURNHAM WM: The effect of electroconvulsive shock seizures on behaviour induced by dopaminergic agonists and on immobility in the Porsolt test. Eur. Neuropsychopharmacol. (2004) 14(6):509-514.
  • FUKUI R, SVENNINGSSON P, MATSUISHI T et al.: Effect of methylphenidate on dopamine/DARPP signalling in adult, but not young, mice. J. Neurochem. (2003) 87(6):1391-1401.
  • HIROI N, FIENBERG AA, HAILE CN et al.: Neuronal and behavioral abnormalities in striatal function in DARPP-32-mutant mice 22. Eur. J. Neurosci. (1999) 11(3):1114-1118.
  • BEAULIEU JM, SOTNIKOVA TD, GAINETDINOV RR et al.: Paradoxical striatal cellular signaling responses to psychostimulants in hyperactive mice. J. Biol. Chem. (2006) 281(43):32072-32080.
  • VALJENT E, PASCOLI V, SVENNINGSSON P et al.: Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc. Natl. Acad. Sci. USA (2005) 102(2):491-496.
  • ZACHARIOU V, BOLANOS CA, SELLEY DE et al.: An essential role for DeltaFosB in the nucleus accumbens in morphine action. Nat. Neurosci. (2006) 9(2):205-211.
  • ZHANG Y, SVENNINGSSON P, PICETTI R et al.: Cocaine self-administration in mice is inversely related to phosphorylation at Thr34 (protein kinase A site) and Ser130 (kinase CK1 site) of DARPP-32. J. Neurosci. (2006) 26(10):2645-2651.
  • CASH R, RAISMAN R, PLOSKA A, AGID Y: Dopamine D-1 receptor and cyclic AMP-dependent phosphorylation in Parkinson's disease. J. Neurochem. (1987) 49(4):1075-1083.
  • NALLY RE, MCNAMARA FN, CLIFFORD JJ et al.: Topographical assessment of ethological and dopamine receptor agonist-induced behavioral phenotype in mutants with congenic DARPP-32 ‘knockout’. Neuropsychopharmacology (2003) 28(12):2055-2063.
  • LECLERC S, GARNIER M, HOESSEL R et al.: Indirubins inhibit glycogen synthase kinase-3 beta and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer's disease. A property common to most cyclin-dependent kinase inhibitors? J. Biol. Chem. (2001) 276(1):251-260.
  • NAPOLITANO M, CENTONZE D, GUBELLINI P et al.: Inhibition of mitochondrial complex II alters striatal expression of genes involved in glutamatergic and dopaminergic signaling: possible implications for Huntington's disease. Neurobiol. Dis. (2004) 15(2):407-414.
  • BIBB JA, YAN Z, SVENNINGSSON P et al.: Severe deficiencies in dopamine signaling in presymptomatic Huntington's disease mice. Proc. Natl. Acad. Sci. USA (2000) 97(12):6809-6814.
  • SVENNINGSSON P, NAIRN AC, GREENGARD P: DARPP-32 mediates the actions of multiple drugs of abuse. AAPS J. (2005) 7(2):E353-E360.
  • FISONE G, BORGKVIST A, USIELLO A: Caffeine as a psychomotor stimulant: mechanism of action. Cell Mol. Life Sci. (2004) 61(7-8):857-872.
  • BORGKVIST A, FISONE G: Psychoactive drugs and regulation of the cAMP/PKA/DARPP-32 cascade in striatal medium spiny neurons. Neurosci. Biobehav. Rev. (2007) 31(1):79-88.
  • LINDSKOG M, SVENNINGSSON P, POZZI L et al.: Involvement of DARPP-32 phosphorylation in the stimulant action of caffeine. Nature (2002) 418(6899):774-778.
  • ANDERSSON M, USIELLO A, BORGKVIST A et al.: Cannabinoid action depends on phosphorylation of dopamine- and cAMP-regulated phosphoprotein of 32 kDa at the protein kinase A site in striatal projection neurons. J. Neurosci. (2005) 25(37):8432-8438.
  • HERKENHAM M, LYNN AB, LITTLE MD et al.: Cannabinoid receptor localization in brain. Proc. Natl. Acad. Sci. USA (1990) 87(5):1932-1936.
  • ABADJI V, LUCAS-LENARD JM, CHIN C, KENDALL DA: Involvement of the carboxyl terminus of the third intracellular loop of the cannabinoid CB1 receptor in constitutive activation of Gs. J. Neurochem. (1999) 72(5):2032-2038.
  • GLASS M, FELDER CC: Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a Gs linkage to the CB1 receptor. J. Neurosci. (1997) 17(14):5327-5333.
  • GEORGES F, STINUS L, BLOCH B, LE MC: Chronic morphine exposure and spontaneous withdrawal are associated with modifications of dopamine receptor and neuropeptide gene expression in the rat striatum. Eur. J. Neurosci. (1999) 11(2):481-490.
  • SCHOFFELMEER AN, HANSEN HA, STOOF JC, MULDER AH: Blockade of D-2 dopamine receptors strongly enhances the potency of enkephalins to inhibit dopamine-sensitive adenylate cyclase in rat neostriatum: involvement of delta- and mu-opioid receptors. J. Neurosci. (1986) 6(8):2235-2239.
  • ZHU H, LEE M, GUAN F et al.: DARPP-32 phosphorylation opposes the behavioral effects of nicotine. Biol. Psychiatry (2005) 58(12):981-989.
  • HOGG RC, BERTRAND D: Partial agonists as therapeutic agents at neuronal nicotinic acetylcholine receptors. Biochem. Pharmacol. (2007) 73(4):459-468.
  • MASKOS U: Emerging concepts: novel integration of in vivo approaches to localize the function of nicotinic receptors. J. Neurochem. (2007) 100(3):596-602.
  • HAMADA M, HIGASHI H, NAIRN AC, GREENGARD P, NISHI A: Differential regulation of dopamine D1 and D2 signaling by nicotine in neostriatal neurons. J. Neurochem. (2004) 90:1094-1103.
  • RON D, JURD R: The “ups and downs” of signaling cascades in addiction. Sci. STKE (2005) 2005(309):RE14.
  • RISINGER FO, FREEMAN PA, GREENGARD P, FIENBERG AA: Motivational effects of ethanol in DARPP-32 knock-out mice. J. Neurosci. (2001) 21(1):340-348.
  • FURNESS JB, COSTA M: Types of nerves in the enteric nervous system. Neuroscience (1980) 5(1):1-20.
  • PHILLIPS RJ, HARGRAVE SL, RHODES BS, ZOPF DA, POWLEY TL: Quantification of neurons in the myenteric plexus: an evaluation of putative pan-neuronal markers. J. Neurosci. Methods (2004) 133(1-2):99-107.
  • GRUNDY D, SCHEMANN M: Enteric nervous system. Curr. Opin. Gastroenterol. (2006) 22(2):102-110.
  • REIS HJ, MASSENSINI AR, PRADO MA, GOMEZ RS, GOMEZ MV, ROMANO-SILVA MA: Calcium channels coupled to depolarization-evoked glutamate release in the myenteric plexus of guinea-pig ileum. Neuroscience (2000) 101(1):237-242.
  • REIS HJ, BISCARO FV, GOMEZ MV, ROMANO-SILVA MA: Depolarization-evoked GABA release from myenteric plexus is partially coupled to L-, N-, and P/Q-type calcium channels. Cell Mol. Neurobiol. (2002) 22(5-6):805-811.
  • GERSHON MD: Review article: serotonin receptors and transporters – roles in normal and abnormal gastrointestinal motility. Aliment. Pharmacol. Ther. (2004) 20(7):3-14.
  • IZZO AA, COUTTS AA: Cannabinoids and the digestive tract. Handb. Exp. Pharmacol. (2005) (168):573-598.
  • LECCI A, CAPRIATI A, ALTAMURA M, MAGGI CA: Tachykinins and tachykinin receptors in the gut, with special reference to NK2 receptors in human. Auton. Neurosci. (2006) (126-127):232-249.
  • COOKE HJ: Role of the “little brain” in the gut in water and electrolyte homeostasis. FASEB J. (1989) 3(2):127-138.
  • FURNESS JB, MORRIS JL, GIBBINS IL, COSTA M: Chemical coding of neurons and plurichemical transmission. Annu. Rev. Pharmacol. Toxicol. (1989) (29):289-306.
  • VASINA V, BARBARA G, TALAMONTI L et al.: Enteric neuroplasticity evoked by inflammation. Auton. Neurosci. (2006) (126-127):264-272.
  • GIARONI C, DE PF, COSENTINO M, LECCHINI S, FRIGO G: Plasticity in the enteric nervous system. Gastroenterology (1999) 117(6):1438-1458.
  • LOMAX AE, FERNANDEZ E, SHARKEY KA: Plasticity of the enteric nervous system during intestinal inflammation. Neurogastroenterol. Motil. (2005) 17(1):4-15.
  • FURNESS JB: Types of neurons in the enteric nervous system. J. Auton. Nerv. Syst. (2000) 81(1-3):87-96.
  • HUANG EJ, REICHARDT LF: Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. (2001) (24):677-736.
  • CHEN Z, SUNTRES Z, PALMER J et al.: Cyclic AMP signaling contributes to neural plasticity and hyperexcitability in AH sensory neurons following intestinal Trichinella spiralis-induced inflammation. Int. J. Parasitol. (2007) 37(7):743-761.
  • FILOGAMO G, CRACCO C: Models of neuronal plasticity and repair in the enteric nervous system: a review. Ital. J. Anat. Embryol. (1995) 100(1):185-195.
  • HAGL CI, THIL O, HOLLAND-CUNZ S et al.: Proteome analysis of isolated myenteric plexus reveals significant changes in protein expression during postnatal development. Auton. Neurosci. (2005) 122(1-2):1-8.
  • EBIHARA Y, MIYAMOTO M, FUKUNAGA A et al.: DARPP-32 expression arises after a phase of dysplasia in oesophageal squamous cell carcinoma. Br. J. Cancer (2004) 91(1):119-123.
  • EL-RIFAI W, SMITH MF Jr, LI G et al.: Gastric cancers overexpress DARPP-32 and a novel isoform, t-DARPP. Cancer Res. (2002) 62(14):4061-4064.
  • LI L, MIYAMOTO M, EBIHARA Y et al.: DRD2/DARPP-32 expression correlates with lymph node metastasis and tumor progression in patients with esophageal squamous cell carcinoma. World J. Surg. (2006) 30(9):1672-1679.
  • WANG MS, PAN Y, LIU N, GUO C, HONG L, FAN D: Overexpression of DARPP-32 in colorectal adenocarcinoma. Int. J. Clin. Pract. (2005) 59(1):58-61.
  • SHIMA H, HATANO Y, CHUN YS et al.: Identification of PP1 catalytic subunit isotypes PP1 gamma 1, PP1 delta and PP1 alpha in various rat tissues. Biochem. Biophys. Res. Commun. (1993) 192(3):1289-1296.
  • MEISTER B, ASKERGREN J, TUNEVALL G, HEMMINGS HC Jr, GREENGARD P: Identification of a dopamine- and 3′5′-cyclic adenosine monophosphate-regulated phosphoprotein of 32 kD (DARPP-32) in parathyroid hormone-producing cells of the human parathyroid gland. J. Endocrinol. Invest. (1991) 14(8):655-661.
  • BECKLER A, MOSKALUK CA, ZAIKA A et al.: Overexpression of the 32-kilodalton dopamine and cyclic adenosine 3′,5′-monophosphate-regulated phosphoprotein in common adenocarcinomas. Cancer (2003) 98(7):1547-1551.
  • VARIS A, ZAIKA A, PUOLAKKAINEN P et al.: Coamplified and overexpressed genes at ERBB2 locus in gastric cancer. Int. J. Cancer (2004) 109(4):548-553.
  • GARCIA-JIMENEZ C, ZABALLOS MA, SANTISTEBAN P: DARPP-32 (dopamine and 3′,5′-cyclic adenosine monophosphate-regulated neuronal phosphoprotein) is essential for the maintenance of thyroid differentiation. Mol. Endocrinol. (2005) 19(12):3060-3072.
  • PIMENTA FJ, HORTA MC, VIDIGAL PV et al.: Decreased expression of DARPP-32 in oral premalignant and malignat lesions. Anticancer Res. (2007) 27(4B):2339-2343.
  • HANSEN C, GREENGARD P, NAIRN AC, ANDERSSON T, VOGEL WF: Phosphorylation of DARPP-32 regulates breast cancer cell migration downstream of the receptor tyrosine kinase DDR1. Exp. Cell Res. (2006) 312(20):4011-4018.
  • LI ZS, FURNESS JB: Immunohistochemical localisation of cholinergic markers in putative intrinsic primary afferent neurons of the guinea-pig small intestine. Cell Tissue Res. (1998) 294(1):35-43.
  • NEUNLIST M, REICHE D, MICHEL K et al.: The enteric nervous system: region and target specific projections and neurochemical codes. Eur. J. Morphol. (1999) 37(4-5):233-240.
  • GALLIGAN JJ, LE PARD KJ, SCHNEIDER DA, ZHOU X: Multiple mechanisms of fast excitatory synaptic transmission in the enteric nervous system. J. Auton. Nerv. Syst. (2000) 81(1-3):97-103.
  • LI ZS, PHAM TD, TAMIR H, CHEN JJ, GERSHON MD: Enteric dopaminergic neurons: definition, developmental lineage, and effects of extrinsic denervation. J. Neurosci. (2004) 24(6):1330-1339.
  • LEIBL MA, OTA T, WOODWARD MN et al.: Expression of endothelin 3 by mesenchymal cells of embryonic mouse caecum.Gut (1999) 44(2):246-252.
  • GERSHON MD: 5-HT (serotonin) physiology and related drugs. Curr. Opin. Gastroenterol. (2000) 16(2):113-120.
  • REIS HJ, VANDEN BERGHE P, ROMANO-SILVA MA,SMITH TK: GABA-induced calcium signaling in cultured enteric neurons is reinforced by activation of cholinergic pathways. Neuroscience (2006) 139(2):485-494.
  • KIRCHGESSNER AL: Glutamate in the enteric nervous system. Curr. Opin. Pharmacol. (2001) 1(6):591-596.
  • LIU MT, ROTHSTEIN JD, GERSHON MD, KIRCHGESSNER AL: Glutamatergic enteric neurons. J. Neurosci. (1997) 17(12):4764-4784.
  • STEELE PA, BROOKES SJ, COSTA M: Immunohistochemical identification of cholinergic neurons in the myenteric plexus of guinea-pig small intestine. Neuroscience (1991) 45(1):227-239.
  • COOKE HJ: Neurotransmitters in neuronal reflexes regulating intestinal secretion. Ann. N Y Acad. Sci. (2000) 915:77-80.
  • KRANTIS A: GABA in the mammalian enteric nervous system. News Physiol. Sci. (2000) 15:284-290.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.