195
Views
15
CrossRef citations to date
0
Altmetric
Review

Intracellular immune dysfunction in myalgic encephalomyelitis/chronic fatigue syndrome: state of the art and therapeutic implications

, PhD & , PhD
Pages 281-289 | Published online: 13 Feb 2008

Bibliography

  • Gerrity TR, Papanicolaou DA, Amsterdam JD, et al. Immunologic aspects of chronic fatigue syndrome. Neuroimmunomodulation 2004;11:351-7
  • Natelson BH, Haghighi MH, Ponzio NM. Evidence for the presence of immune dysfunction in chronic fatigue syndrome. Clin Diagn Lab Immunol 2002;9:747-52
  • Van Middendorp H, Geenen R, Kuis W, et al. Psychological adjustment of adolescent girls with chronic fatigue syndrome. Pediatrics 2001;107:1-8
  • Demitrack MA. Chronic fatigue syndrome and fibromyalgia: dilemmas in diagnosis and clinical management. Psych Clin North Am 1998;21:671-92
  • Player MR, Torrence PF. The 2-5A system: modulation of viral and cellular processes through acceleration of RNA degradation. Pharmacol Ther 1998;78:55-113
  • Silverman RH. Implications for RNase L in prostate cancer biology. Biochemistry 2003;42:1805-12
  • Nijs J, De Meirleir K. Impairments of the 2-5A synthetase/RNase L pathway in chronic fatigue syndrome. In Vivo 2005;9:1013-22
  • Malathi K, Dong B, Gale M Jr, Silverman RH. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 2007;448:816-20
  • Iordanov MS, Wong J, Bell JC, Magun BE. Activation of NF-κB by double-stranded RNA (dsRNA) in the absence of protein kinase R and RNase L demonstrates the existence of two separate dsRNA-triggered antiviral programs. Mol Cell Biol 2001;21:61-72
  • De Meirleir K, Bisbal C, Campine I, et al. A 37 kDa 2-5A binding protein as a potential biochemical marker for Chronic Fatigue Syndrome. Am J Med 2000;108:99-105
  • Suhadolnik RJ, Reichenbach NL, Hitzges P, et al. Upregulation of the 2-5A synthetase/RNase L antiviral pathway associated with chronic fatigue syndrome. Clin Infect Dis 1994;18:S96-104
  • Suhadolnik RJ, Peterson DL, Cheney PR, et al. Biochemical dysregulation of the 2-5A synthetase/RNase L antiviral defense pathway in chronic fatigue syndrome. J Chronic Fatigue Syndr 1999;5:223-42
  • Frémont M, El Bakkouri K, Vaeyens F, et al. 2′,5′-Oligoadenylate size is critical to protect RNase L against proteolytic cleavage in chronic fatigue syndrome. Exp Mol Path 2005;78:239-46
  • Demettre E, Bastide L, D'Haese A, et al. Ribonuclease L proteolysis in peripheral blood mononuclear cells of Chronic Fatigue Syndrome patients. J Biol Chem 2002;277:35746-51
  • Englebienne P, Herst CV, De Smet K, D'Haese A, De Meirleir K. Interactions between RNase L ankyrin-like domain and ABC transporters as a possible origin for pain, ion transport, CNS and immune disorders of chronic fatigue immune dysfunction syndrome. J Chronic Fatigue Syndr 2001;8:83-9
  • Meeus M, Nijs J, McGregor N, et al. Unravelling intracellular immune dysfunctions in chronic fatigue syndrome: interactions between protein kinase R activity, RNase L cleavage, and elastase activity and their clinical relevance. In Vivo 2008:In Press
  • Shetzline SE, Martinand-Mari C, Reichenbach NL, et al. Structural and functional features of the 37-kDa 2-5A-dependent RNase L in chronic fatigue syndrome. J Interferon Cytokine Res 2002;22:443-56
  • Tiev KP, Briant M, Ziani M, et al. Variability of the RNase L isoform ratio (37 kilodaltons/83 kilodaltons) in diagnosis of chronic fatigue syndrome. Clin Diagn Lab Immunol 2005;12:366
  • Frémont M, Vaeyens F, Herst CV, et al. 37-kilodalton/83-kilodalton RNase L isoform ratio in peripheral blood mononuclear cells: analytical performance and relevance for chronic fatigue syndrome. Clin Diagn Lab Immunol 2005;12:1259-60
  • Kumar S, Mitnik C, Valente G, et al. Expansion and molecular evolution of the interferon-induced 2′-5′ oligoadenylate synthetase gene family. Mol Biol Evol 2000;17:738-50
  • Marie I, Blanco J, Rebouillat D, et al. 69-kDa and 100-kDa isoforms of interferon-induced (2′-5′) oligoadenylate synthetase exhibit differential catalytic parameters. Eur J Biochem 1997;248:558-66
  • Hartmann R, Norby PL, Martensen PM, et al. Activation of 2′-5′ oligoadenylate synthetase by single-stranded and double-stranded RNA aptamers. J Biol Chem 1998;273:3236-46
  • Sarkar SN, Bandyopadhyay S, Ghosh A, et al. Enzymatic characteristics of recombinant medium isozyme of 2′-5′ oligoadenylate synthetase. J Biol Chem 1999;274:1848-55
  • Maes M, Mihaylova I, Leunis JC. Increased serum IgA and IgM against LPS of enterobacteria in chronic fatigue syndrome (CFS): indication for the involvement of Gram-negative enterobacteria in the etiology of CFS and for the presence of an increased gut-intestinal permeability. J Affect Disord 2007;99(1-3):237-40
  • Suhadolnik RJ, Peterson DL, O'Brien K, et al. Biochemical evidence for a novel low molecular weight 2-5A-dependent RNase L in Chronic Fatigue Syndrome. J Interferon Cytokine Res 1997;17:377-85
  • Suhadolnik RJ, Reichenbach NL, Hitzdes P, et al. Changes in the 2-5A synthetase/RNase L antiviral pathway in a controlled clinical trial with poly(I)-poly(C12U) in chronic fatigue syndrome. In Vivo 1994;8:599-604
  • Ikuta K, Yamada T, Shimomura T, et al. Diagnostic evaluation of 2′,5′-oligoadenylate synthetase activities and antibodies against Epstein-Barr virus and Coxiella burnetti in patients with chronic fatigue syndrome in Japan. Microbes Infect 2003;5:1096-102
  • Vojdani A, Choppa PC, Lapp CW. Downregulation of RNase L inhibitor correlates with upregulation of interferon-induced proteins (2-5A synthetase and RNase L) in patients with chronic fatigue immune dysfunction syndrome. J Clin Lab Immunol 1998;50:1-16
  • Gow JW, Simpson K, Behan PO, et al. Antiviral pathway in patients with chronic fatigue syndrome and acute infection. Clin Infect Dis 2001;32:2080-1
  • Shetzline SE, Suhadolnik RJ. Additions and corrections – characterization of a 2′,5′-oligoadenylate (2-5A)-dependent 37-kDa RNase L. Azido photoaffinity labeling and 2-5A-dependent activation. J Biol Chem 2001;276:23707-11
  • Kennedy G, Spence V, Underwood C, Belch JJF. Increased neutrophil apoptosis in chronic fatigue syndrome. J Clin Pathol 2004;57:891-3
  • Frémont M, D'Haese A, Roelens S, et al. Immune celle apoptosis and chronic fatigue syndrome. Chapter 6. In: Chronic Fatigue Syndrome. A Biological Approach. Englebienne P, De Meirleir K, editors, Boca Raton: CRC Press; 2002. p. 131-74
  • Englebienne P. RNase L in health and disease-What did we learn recently? J Chronic Fatigue Syndr 2003;11:97-109
  • Roelens S, Herst CV, D'Haese A, et al. G-actin cleavage parallels 2-5A-dependent RNase L cleavage in peripheral blood mononuclear cells – relevance to a possible serum-based screening test for dysregulations in the 2-5A pathway. J Chronic Fatigue Syndr 2001;8:63-82
  • Frémont M, Vaeyens F, Herst CV, et al. Antiviral pathway deregulation of chronic fatigue syndrome induces nitric oxide production in immune cells that precludes a resolution of the inflammatory response. J Chronic Fatigue Syndr 2006;13:17-28
  • Nijs J, Meeus M, De Meirleir K, et al. Chronic fatigue syndrome: intracellular immune deregulations as a possible etiology for abnormal exercise response. Med Hypotheses 2004;62:759-65
  • Maes M, Mihaylova I, Bosmans F. Not in the mind of neurasthenic lazybones but in the cell nucleus: patients with chronic fatigue syndrome have increased production of nuclear factor kappa beta. Neuro Endocrinol Lett 2007;28:456-62
  • Maes M, Mihaylova I, Kubera M, Bosmans F. Not in the mind but in the cell: increased production of cyclo-oxygenase-2 and inducible NO synthase in chronic fatigue syndrome. Neuro Endocrinol Lett 2007;28:463-9
  • Paludan SR, Ellermann-Eriksen S, Mogensen SC. NF-κB activation is responsible for the synergistic effect of herpes simplex virus type 2 infection on interferon-γ-induced nitric oxide production in macrophages. J Gen Virol 1998;79:2785-93
  • Kurup RK, Kurup PA. Hypothalamic digoxin, cerebral chemical dominance and myalgic encephalomyelitis. Int J Neurosci 2003;113:683-701
  • Pall ML. Common etiology of posttraumatic stress disorder, fibromyalgia, chronic fatigue syndrome and multiple chemical sensitivity via elevated nitric oxide/peroxynitrite. Med Hypothesis 2001;57(2):139-45
  • Siegel SD, Antoni MH, Fletcher MA, et al. Impaired natural immunity, cognitive dysfunction, and physical symptoms in patients with chronic fatigue syndrome: preliminary evidence for a subgroup? J Psychosom Res 2006;60:559-66
  • Nijs J, Demanet C, McGregor NR, et al. Monitoring a hypothetical channelopathy in chronic fatigue syndrome: preliminary observations. J Chronic Fatigue Syndr 2003;11:117-33
  • Nijs J, De Meirleir K, Coomans D, et al. Deregulation of the 2,5A synthetase RNase L antiviral pathway by Mycoplasma spp. in subsets of chronic fatigue syndrome. J Chronic Fatigue Syndr 2003;11:37-50
  • Hickie I, Davenport T, Wakefield D, et al. Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: prospective cohort study. BMJ 2006;333:575
  • Vernon SD, Whistler T, Cameron B, et al. Preliminary evidence of mitochondrial dysfunction associated with post-infective fatigue after acute infection with Epstein Barr virus. BMC Infect Dis 2006;6:15
  • Manu P. Chronic fatigue syndrome: the fundamentals still apply. Am J Med 2000;108:172-3
  • Nijs J, De Becker P, De Meirleir K, et al. Associations between bronchial hyperresponsiveness and immune cell parameters in patients with chronic fatigue syndrome. Chest 2003;123:998-1007
  • Snell CR, Vanness JM, Strayer DR, Stevens SR. Physical performance and prediction of 2-5A Synthetase/RNase L antiviral pathway activity in patients with chronic fatigue syndrome. In Vivo 2002;16:107-10
  • Snell CR, Vanness JM, Strayer DR, Stevens SR. Exercise capacity and immune function in male and female patients with chronic fatigue syndrome (CFS). In Vivo 2005;19:387-90
  • Nijs J, Meeus M, McGregor NR, et al. Chronic fatigue syndrome: exercise performance related to immune dysfunction. Med Sci Sports Exerc 2005;37:1647-54
  • Edmonds M, McGuire H, Price J. Exercise therapy for chronic fatigue syndrome. Cochrane Database Syst Rev 2004;3:CD003200
  • Jammes Y, Steinberg JG, Mambrini O, et al. Chronic fatigue syndrome: assessment of increased oxidative stress and altered muscle excitability in response to incremental exercise. J Intern Med 2005;257:299-310
  • Lapp CW. Exercise limits in chronic fatigue syndrome. Am J Med 1997;103:83-4
  • Bazelmans E, Blijenberg G, Voeten MJM, et al. Impact of a maximal exercise test on symptoms and activity in chronic fatigue syndrome. J Psychosom Res 2005;59:201-8
  • Black CD, O'Conner PJ, McCully KK. Increased daily physical activity and fatigue symptoms in chronic fatigue syndrome. Dynam Med 2005;4:3
  • Knoop H, Bleijenberg G, Gielissen MFM, et al. Is a full recovery possible after cognitive behavioural therapy in chronic fatigue syndrome? Psychother Psychosom 2007;76:171-6
  • Sorensen B, Streib JE, Strand M, et al. Complement activation in a model of chronic fatigue syndrome. J Allergy Clin Immunol 2003;12:397-403
  • Ohashi K, Yamamoto Y, Natelson BH. Activity rhythm degrades after strenuous exercise in chronic fatigue syndrome. Physiol Behav 2002;77:39-44
  • Hawk C, Jason LA, Torres-Harding S. Differential diagnosis of chronic fatigue syndrome and major depressive disorder. Int J Behav Med 2006;13:244-51
  • Whistler T, Jones JF, Unger ER, Vernon SD. Exercise responsive genes measured in peripheral blood of women with chronic fatigue syndrome and matched control subjects. BMC Physiol 2005;5:5
  • Ushijima H, Rytik PG, Schacke H, et al. Mode of action of the anti-AIDS compound poly(I).poly(CU) (Ampligen): activator of 2′,5′-oligoadenylate synthetase and double-stranded RNA-dependent kinase. J Interferon Res 1993;13(2):161-71
  • Ablashi DV, Berneman ZN, Williams M, et al. Ampligen inhibits human herpesvirus-6 in vitro. In Vivo 1994;8(4):587-91
  • Ueno Y, Okatani S, Yamada Y, et al. Synthesis of double-headed 2-5A-antisense chimeras and their ability to activate human RNase L. Nucleic Acids Res Suppl 2003;3:63-4
  • Kitade Y, Wakana M, Tsuboi T, et al. 2-methyladenosine-substituted 2′,5′-oligoadenylates: conformations, 2-5A binding and catalytic activities with human ribonuclease L. Bioorg Med Chem Lett 2000;10(4):329-31
  • Dessislava ID, Reichenbach N, Yang X, et al. Inhibition of HIV-1 replication in CD4+ and CD14+ cells purified from HIV-1-infected individuals by the 2-5A agonist immunomodulator, 2-5ANB. AIDS Res Hum Retroviruses 2007;23(1):123-34
  • Thakur CS, Jha BK, Dong B, et al. Small molecule activators of RNase L with broad spectrum antiviral activity. Proc Natl Acad Sci USA 2007;104(23):9585-90
  • Shapiro SD. Neutrophil elastase. Path clearer, pathogen killer, or just pathologic? Am J Respir Cell Mol Biol 2002;26:266-8
  • Donta ST, Engel CC Jr, Collins JF, et al. Benefits and harms of doxycycline treatment for Gulf War veterans' illnesses: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 2004;14:85-94

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.