19
Views
0
CrossRef citations to date
0
Altmetric
Miscellaneous

Emerging therapeutic targets in parasitic protozoa

, &
Pages 57-85 | Published online: 25 Feb 2005

Bibliography

  • CROFT SL: The current status of antiparasite chemotherapy. Parasitology (1997) 114(Suppl.):S3–S15.
  • ••This supplement to Parasitology contains a collection of excellent articles derived from aBritish Society of Parasitology Symposium in London, 1996. Many of the articles have been quoted in this review and give a deeper insight into some areas merely touched on here. See [1, 25, 32, 68, 99, 115, 1421.
  • KASPER LH, BUZONIGATEL D: Some opportunistic parasitic infections in AIDS: candidiasis, pneumocystosis, cryptosporidiosis, toxoplasmosis. Parasitol. Today (1998) 14:150–156.
  • DAMIAN RT: Parasite immune evasion and exploitation: reflections and projections. Parasitology (1997) 115 (Suppl.):S169–S175.
  • FOSTER S: Economic prospects for a new antimalarial drug. Trans. R. Soc. Trop. Med. Hyg. (1994) 88\(Suppl. 1):55–56.
  • KRISHNA S, WHITE NJ: Pharmacokinetics of quinine, chloroquine and amodiaquine-clinical implications. Clin. Pharmacokinetics (1996) 30:263–299.
  • WHITE NJ, NOSTEN F: Advances in chemotherapy and prophylaxis of malaria. Curr. Opin. Infect. Dis. (1993) 6:323–330.
  • SU XZ, KIRKMAN LA, FUJIOKA H, WELLEMS TE: Complex polymorphisms in an approximately 330 kDa protein are linked to chloroquine-resistant Plasmodium fakiparum in Southeast Asia and Africa. Cell (1997) 91:593–603.
  • ••The work from WeItems' laboratory culminating in this genetic discovery of the chloroquinelocus is seminal to the field. However, recent data, not yet published, suggest that the mutations reported in the CG2 gene may not alone confer resistance.
  • ROSENTHAL PJ, MESHNICK SR: Hemoglobin catabolism and iron utilization by malaria parasites. Mol. Biochem. Parasitol. (1996) 83:131–139.
  • WARD SA, BRAY PG, HAWLEY SR: Quinoline resistance mechanisms in Plasmodium fakiparum: the debate goes on. Parasitology (1997) 114(Suppl.):5125–5136.
  • RIDLEY RG: Malaria: dissecting chloroquine resistance. Curr. Biol. (1998) 8:R346–R349.
  • SIMS P, WANG P, HYDE JE: On the efficacy of antifolate antimalarial combinations in Africa. Parasitol. Today (1998) 14: 136–137.
  • VARIOUS: Artemisinin. Roy. Soc. Trop. Med. Hyg. (1994) 88\(Suppl. 1):1–64.
  • PEPIN J, MILORD F: The treatment of human African trypanosomiasis. Adv. Parasitol. (1994) 33:1–47.
  • BARRETT MP, FAIRLAMB AH: The biochemical basis of arsenical-diamidine cross-resistance in African trypanosomes. Parasitol. Today (In press).
  • VANGOMPEL A, VERVOORT T: Chemotherapy of leishmaniasis and trypanosomiasis. Curr. Opin. Infect. Dis. (1997) 10:469–474.
  • COUKELL AJ, BROGDEN RN: Liposomal amphotericin B-therapeutic use in the management of fungal infections and visceral leishmaniasis. Drugs (1998) 55:585–612.
  • YOSHIDA N, SCHENKMAN S: American trypanosomiasis. Curr. Opin. Infect. Dis. (1997) 10:351–356.
  • HABERKORN A: Chemotherapy of human and animal coccidioses-state and perspectives. Parasitol. Res. (1996) 82:193–199.
  • GUTTERIDGE WE: Chemotherapy. In: Modern Parasitology. Cox FEG (Ed.), Blackwell, Oxford (1993):219–242.
  • CAMPBELL WC, REW RS: Chemotherapy of Parasitic Diseases. Plenum, New York (1986):655.
  • FREEMAN CD, KLUTMAN NE, LAMP KC: Metronidazole-a therapeutic review and update. Drugs (1997) 54:679–708.
  • KATIYAR SK, GORDON VR, MCLAUGHLIN GL, EDLIND TD: Antiprotozoal activities of benzimidazoles and correlations with 13-tubulin sequence. Antimicrob. Agents Chemother. (1994) 38:2086–2090.
  • http: //www.dbbm.fiocruz.br/genome/parasite-genome/pgsummary.html
  • KELLY JM: Genetic transformation of parasitic protozoa. Adv. Parasitol. (1997) 39:227–270.
  • WANG CC: Validating targets for antiparasite chemotherapy. Parasitology (1997)114(Suppl.):S31–S44.
  • BARRETT MP, COOMBS GH, MOTTRAM JC: Recent advances in identifying and validating drug targets in trypanosomes and leishmania. Trends Microbiol. (In press).
  • BELL A: Microtubule inhibitors as potential antimalarial agents. Parasitol. Today (1998) 14:234–240.
  • VIAL H, ANCELIN ML, CALAS M et al.: Plasmodium phospholipid metabolism: a target for the development of novel antimalarial drugs. Ann. Trop. Med. Parasitol. (1997) 91 (Suppl.):S87–S90.
  • KIRK K, STRANGE K: Functional properties and physiological roles of organic solute channels. Ann. Rev. Physiol. (1998) 60:719–739.
  • ANCELIN ML, CALAS M, BOMPART J et al.: Antimalarial activity of 77 phospholipid polarhead analogs: close correlation between inhibition of phospholipid metabolism and in vitro Plasmodium falciparum growth. Blood (1998) 91:1426–1437.
  • RAMOS H, VALDIVIESO E, GAMARGO M, DAGGER F, COHEN BE: Amphotericin-B killsunicellular leishmanias by forming aqueous pores permeable to small cations and anions. J. Memb. Biol. (1996) 152:65–75.
  • URBINA JA: Lipid biosynthesis pathways as chemotherapeutic targets in kinetoplastidparasites. Parasitololgy (1997) 114(Suppl.):591–599.
  • URBINA JA, PAYARES G, MOLINA J et al.: Cure of short-and long-term experimental Chagas' disease using D0870. Science (1996) 273:969–971.
  • CROFT SL, SNOWDON D, YARDLEY V: The activities of four anticancer alkyllsophospholipids against Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei. J. Antimicrob. Chemother. (1996) 38:1041–1047.
  • WELBURN SC, BARCINSKI MA, WILLIAMS GT: Programmed cell death in trypanosomatids. Parasitol. Today (1997) 13:22–26.
  • FIELD H, FIELD MC: Tandem duplication of rah genes followed by sequence divergence and acquisition of distinct functions in Trypanosoma ', meet J. Biol. Chem. (1998) 272:10498–10505.
  • GRANT KM, HASSAN P, ANDERSON JM, MOTTRAM JC: The crk3 gene of Leishmania mexicana encodes a stage-regulated cdc2-related histone H1 kinase that associates with pl2cks1. J. Biol. Chem. (1998) 273:10153–10159.
  • MARTIN W, MULLER M: The hydrogen hypothesis for the first eukaryote. Nature (1998) 392:37–41.
  • SHAPIRO TA, ENGLUND PT: The structure and replication of kinetoplast DNA. Ann. Rev. Microbiol. (1995) 49:117–143.
  • STUART K, ALLEN TE, HEIDMANN S, SEIWERT SD: RNA editing in kinetoplastid protozoa. Microbiol. Mol. Biol. Rev. (1997) 61:105–120.
  • ••One of many excellent reviews covering the extraordinary process of RNA editing.
  • SHAPIRO TA: Inhibition of topoisomerases in African trypanosomes. Acta Trop. (1993) 54:251–260.
  • WILKES JM, MULUGETA W, WELLS C, PEREGRINE AS: Modulation of mitochondrial electrical potential: a candidate mechanism for drug resistance in African trypanosomes. Biochem. J. (1997) 326:755–761.
  • WILSON RJM, WILLIAMSON DH: Extrachromosomal DNA in the Apicomplexa. Microbiol. Mol. Biol. Rev. (1997) 61:1–16.
  • •An excellent review covering an expanding field of interest.
  • VAIDYA AB, LASHGARI MS, POLOGE LG, MORRISEY J: Structural features of Plasmodium cytochrome b that may underlie susceptibility to 8-aminoquinolines and hydroxynaphthoquinones. Mol. Biochem. Parasitol. (1993) 58:33–42.
  • HACKSTEIN JHP, MACKENSTEDT U, MEHLHORN H et al.: Parasitic apicomplexans harbor a chlorophyll a-D1 complex, the potential target for therapeutic triazines. Parasitol. Res. (1995) 81:207–216.
  • BECKERS CJM, ROOS DS, DONALD RGK et al.: Inhibition of cytoplasmic and organellar protein synthesis in Toxoplasma gondii: implications for the target of macrolide antibiotics. J. Clin. Invest. (1995) 95:367–376.
  • FICHERA ME, BHOPALE MK, ROOS DS: In vitro assays elucidate peculiar kinetics of clindamycin action against Toxoplasma gondii. Antimicrob. Agents Chemother. (1995) 39:1530–1537.
  • GARDNER MJ, WILLIAMSON DH, WILSON JM: A circular DNA in malaria parasites encodes an RNA polymerase like that of prokaryotes and chloroplasts. Mol. Biochem. Parasitol. (1991) 44:115–123.
  • FICHERA ME, ROOS DS: A plastid organelle as a drug target in apicomplexan parasites. Nature (1997) 390:407–409.
  • ROBERTS F, ROBERTS CW, JOHNSON JJ et al.: Evidence for the shikimate pathway in apicomplexan parasites. Nature (1998) 393:801–805.
  • ••A recent paper showing the presence of the shikimate pathway in apicomplexan parasitesand pointing to a possible widespread antimicrobial target.
  • OPPERDOES FR: Compartmentation of carbohydrate metabolism in trypanosomes. Ann. Rev. Microbiol. (1987) 41:127–151.
  • COOMBS GH, DENTON H, BROWN SMA, THONG KW: Biochemistry of the coccidia. Adv. Parasitol. (1997) 39:141–226.
  • ••The definitive review on coccidian biochemistry.
  • COOMBS GH, MULLER M: Energy metabolism of anaerobic protozoa. In: Biochemistry and Molecular Biology of Parasites. Marr JJ, Muller M (Eds.), Academic Press, London (1995) 33–47.
  • COOMBS GH: Cryptosporidium parvum: biochemical peculiarities and drug targets. Parasitol. Today (In press).
  • VIAL H: Recent developments and rationale towards new strategies for malarial chemotherapy. Parasite (1996) 3:3–23.
  • •An excellent overview of Plasmodium biochemistry from the perspective of potential drug targets.
  • CLAYTON CE, MICHELS P: Metabolic compartmentation in African trypanosomes. Parasitol. Today (1996) 12:465–471.
  • •A recent summary of our understanding of the compartmentalisation of different aspects of trypanosomatid glucose metabolism and description of the glycosome. See also [51] for an older, but excellent, historical perspective.
  • EISENTHAL R, CORNISH-BOWDEN A: Prospects for antiparasitic drugs-the case of Trypanosoma brucei, the causative agent of African sleeping sickness. J. Biol. Chem. (1998) 273:5500–5505.
  • POLLAKIS G, GRADY RW, DIECK HA, CLARKSON AB: Competition between inhibitors of the trypanosome alternative coddase (TAO) and reduced coenzyme Q(9). Biochem. Pharmacol. (1995) 50:1207–1210.
  • CLARKSON AB, BROHN FH: Trypanosomiasis: an approach to chemotherapy by the inhibition of carbohydrate metabolism. Science (1976) 194:204–206.
  • BRINGAUD F, BALTZ D, BALTZ T: Functional and molecular characterization of a glycosomal PPI-dependent enzyme in trypanosomatids: pyruvate, phosphate dikinase. Proc. Natl. Acad. Sci. USA (1998) 95:7963–7968.
  • CAZZULO JJ: Aerobic fermentation of glucose by trypanosomatids. FASEB J. (1992) 6:3153–3161.
  • CAZZULO JJ: Intermediate metabolism in Trypanosoma cruzi. J. Bioenerg. Biomemb. (1994)26:157–165.
  • TIELENS AGM, VAN HELLEMOND JJ: Differences in energy metabolism between trypanosomatidae. Parasitol. Today (1998) 14:265–271.
  • ••This review summarises other aspects of glucose metabolism in trypanosomatids which tendto get overlooked in a great deal of literature focusing on the glycosome.
  • BZICK DJ, FOX BA, GONYER K: Expression of Plasmodium falciparum lactate dehydrogenase in Escherichia coli. Mol. Biochem. Parasitol. (1993) 59:155–166.
  • YANG SM, PARMLEY SF: A bradyzoite stage specifically expressed gene of Toxoplasma gondii encodes a polypeptide homologous to lactate dehydrogenase. Mol. Biochem. Parasitol. (1995) 73:291–294.
  • DENTON H, BROWN SMA, ROBERTS CW et al.: Comparison of the phosphofructokinase and pyruvate kinase activites of Cryptosporidium parvum, Eimeria tenella and Toxoplasma Mol. Biochem. Parasitol. (1996) 76:23–29.
  • PENG ZY, MANSOUR JM, ARAUJO F et al.: Some phosphonic analogs as inhibitors of pyrophosphate-dependent phosphofructokinase, a novel target in Toxoplasma Biochem. Pharmacol. (1995) 49:105–113.
  • SCHMATZ DM: The mannitol cycle in Eimeria. Parasitology (1997) 114 (Suppl.):S81–S89.
  • ••Well-written summary of an unusual aspect of biochemistry in coccidia.
  • LIBERATOR P, ANDERSON J, FEIGLIN M et al.: Molecular cloning and functionalexpression of mannitol-1-phosphatase from the apicomplexan parasite Eimeria tenella. J. Biol. Chem. (1998) 273:4237–4244.
  • MULLER M: Energy metabolism of protozoa without mitochondria. Ann. Rev. Microbiol. (1988) 42:465–488.
  • BARRETT MP: The pentose phosphate pathway and parasitic protozoa. Parasitol. Today (1997) 13:11–16.
  • ROSEMEYER MA: The biochemistry of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and glutathione reductase. Cell. Biochem. Funct. (1987) 5:79–95.
  • HANAU S, RIPPA M, BERTELLI M, DALLOCCHIO F, BARRETT MP: 6-Phosphogluconate dehydrogenase from Trypanosoma brucei: kinetic analysis and inhibition by trypanocidal drugs. Eur. J. Biochem. (1996) 240:592–599.
  • PARKIN DW: Purine-specific nucleoside ribohydrolase from Trypanosoma brucei brucei-purification, specificity and kinetic mechanism. J. Biol. Chem. (1998) 271:21713–21719.
  • HASSAN HF, COOMBS GH: Purine and pyrimidine metabolism in parasitic protozoa. FEMS Microbiol. Rev. (1988) 54:47–84.
  • ULLMAN B, CARTER D: Hypoxanthine-guanine phosphoribosyltransferase as a therapautic target in protozoal infections. Infect. Agents Dis. (1995) 4:29–40.
  • HWANG H-Y, ULLMAN B: Genetic analysis of purine metabolism in Leishmania donovani. J. Biol. Chem. (1997) 272:19488–19496.
  • ••A very good technical study into the effects of removing genes encoding some enzymes ofpurine metabolism from Leishmania. Results are not always as expected!
  • BERENS RL, KRUG EC, MARR JJ: Purine and pyrimidine metabolism. In: Biochemistry and Molecular Biology of Parasites. Marr JJ, Muller M (Eds.), Academic Press, London (1995):89–117.
  • WHITBY FG, LUECKE H, KUHN P et al.: Crystal structure of Tritrichomonas foetus inosine-5'-monophosphate dehydrogenase and the enzyme-product complex. Biochemistry (1997) 36:10666–10674.
  • BECK JT, WANG CC: The hypoxanthine-guanine-xanthine phosphoribosyltransferase from Tritrichomonas foetus has unique properties. Mol. Biochem. Parasitol. (1993) 60:187–194.
  • SOMOZA JR, CHIN MS, FOCIA PJ, WANG CC, FLETTERICK RJ: Crystal structure of the hypoxanthine-guanine-xanthine phosphoribosyltransferase from the protozoan parasite Tritrichomonas foetus. Biochemistry (1996) 35:7032–7040.
  • MUNAGALA NR, CHIN MS, WANG CC: Steady-state kinetics of the hypoxanthine-guanine-xanthine phosphoribosyltransferase from Tritrichomonas foetus: the role of threonine-47. Biochemistry (1998) 37:4045–4051.
  • MARR JJ: Purine metabolism in parasitic protozoa and its relationship to chemotherapy. In: Biochemical Protozoology. Coombs GH, North MJ (Eds.), Taylor & Francis, London (1991):524–536.
  • LESTER SJ, KENYON JE: Use of allopurinol to treat visceral leishmaniasis in a dog. J. Am. Vet. Med. Assoc. (1996) 209:615–617.
  • HAMMOND DJ, GUTTERIDGE WE, OPPERDOES FR: A novel location for two enzymes of de novo pyrimidine biosynthesis in trypanosomes and Leishmania. FEBS Lett. (1981) 28:27–29.
  • SEYMOUR KK, LYONS SD, PHILLIPS L, RIECKMANN KH, CHRISTOPHERSON RI: Cytotoxic effects of inhibitors of de novo pyrimidine biosynthesis upon Plasmodium falciparum. Biochemistry (1994) 33:5268–5274.
  • HUDSON AT: Atovaquone -a novel broad-spectrum anti-infective drug. Parasitol. Today (1993) 9:66–68.
  • KRUNGKRAI J: Purification, characterization and localization of mitochondrial dihydroorotate dehydrogenase in Plasmodium falciparum, human malaria parasite. Biochem. Biophys. Acta (1995) 1243:351–360.
  • IVANETICH KM, SANTI DV: Bifunctional thymidylate synthase-dihydrofolate reductase in protozoa. FASEB J. (1990) 4:1591–1597.
  • FOOTE SJ, GALATIS D, COWMAN AF: Amino acids in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum involved in cycloguanil resistance differ from those involved in pyrimethamine resistance. Proc. Natl. Acad. Sci. USA (1990) 87:3014–3017.
  • HEKMATNEJAD M, RATHOD PK: Plasmodium falciparum: kinetic interactions of WR99210 with pyrimethamine-sensitive and pyrimethamine-resistant dihydrofolate reductase. Exp. Parasitol. (1997) 87:222–228.
  • TRIGLIA T, MENTING JGT, WILSON C, COWMAN AF: Mutations in dihydropteroate synthase are responsible for sulfone and sulfonamide resistance in Plasmodium falciparum. Proc. Natl. Acad. Sci. USA (1997) 94:13944–13949.
  • BROOKS DR, WANG P, READ M et al.: Sequence variation of the hydroxymethyl-dihydropterin-pyrophosphokinase-dihydropteroate synthase gene in lines of the human malaria parasite, Plasmodium falciparum, with differing resistance to sulfadoxine. Eur. J. Biochem. (1994) 224:397–405.
  • NARE B, HARDY LW, BEVERLEY SM: The roles of pteridine reductase 1 and dihydrofolate reductase-thymidylate synthase in pteridine metabolism in the protozoan parasite Leishmania major. J. Biol. Chem. (1997) 272:13883–13891.
  • NARE B, LUBA J, HARDY LW, BEVERLEY SM: New approaches to Leishmania chemotherapy: pteridine reductase 1 (PTR1) as a target and modulator of antifolate sensitivity. Parasitology (1997) 114 (Suppl.):S101–S110.
  • ••Another of the collection of articles in the Parasitologysupplement bringing us up to date withinformation on the status of antifolate chemotherapy aimed at Leishmania.
  • DARKINRATTRAY SJ, GURNETT AM, MYERS RW et al.: Apicidin-a novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc. Natl. Acad. Sci. USA (1996) 93:13143–13147.
  • SINGH SB, ZINK DL, POLISHOOK JD et al.: Apicidins-novel cyclic tetrapeptides as coccidiostats and antimalarial agents from Fusarium pallidoroseum. Tetrahedron Lett. (1996) 37:8077–8080.
  • VANHAMME L, PAYS E: Control of gene-expression in trypanosomes. Microbiol. Rev. (1995) 59:223–240.
  • TOULME JJ, BOURGET C, COMPAGNO D, YURCHENKO L: Control of gene expression in viruses and protozoan parasites by antisense oligonucleotides. Parasitology (1997) 114(Suppl.):S45–S59.
  • MEHLOTRA RK: Antioxidant defense mechanisms in parasitic protozoa. Crit. Rev. Microbiol. (1996) 22:295–314.
  • BEUTLER E: G6PD deficiency. Blood (1994) 84:3613–3636.
  • ATAMNA H, PASCARMONA G, GINSBURG H: Hexose-monophosphate shunt activity in intact Plasmodium falciparum-infected erythrocytes and in free parasites. Mol. Biochem. Parasitol. (1994) 67:79–89.
  • O'BRIEN E, KURDIHAIDAR B, WANACHIWANAWIN W et al.: Cloning of the glucose-6-phosphate-dehydrogenase gene from Plasmodium falciparum. Mol. Biochem. Parasitol. (1994) 64:313–326.
  • BHISUTTHIBBAN J, PAN X-Q, HOSSLER PA et al.: The Plasmodium falciparum translationally controlled tumor protein homolog and its reaction with the antimalarial drug artemisinin. J. Biol. Chem. (1998) 273:16192–16198.
  • FLECK SL, ROBINSON BL, PETERS W: The chemotherapy of rodent malaria 54. Combinations of Tenozan B07' (Fenozan-50F), a difluorinated 3, 3'-spirocyclopentane 1, 2, 4-trioxane, with other drugs against drug-sensitive and drug-resistant parasites. Ann. Trop. Med. Parasitol. (1997) 91:33–39.
  • JAMES ER: Superoxide dismutase. Parasitol. Today (1994) 10:481–484.
  • FARBER PM, ARSCOTT LD, WILLIAMS CH, BECKER K, SCHIRMER RH: Recombinant Plasmodium falciparum glutathione reductase is inhibited by the antimalarial dye methylene blue. FEBS Lett. (1998) 422:311–314.
  • MULLER S, GILBERGER TW, FARBER PM et al.: Recombinant putative glutathione-reductase of Plasmodium falciparum exhibits thioredoxin reductase activity. Mol. Biochem. Parasitol. (1996) 80:215–219.
  • GILBERGER TW, WALTER RD, MULLER S: Identification and characterization of the functional amino acids at the active site of the large thioredoxin reductase from Plasmodium falciparum. J. Biol. Chem. (1997) 272:29584–29589.
  • GILBERGER TW, BERGMANN B, WALTER RD, MULLER S: The role of the C-terminus for catalysis of the large thioredoxin reductase from Plasmodium falciparum. FEBS Lett. (1998) 425:407–410.
  • LUERSEN K, WALTER RD, MULLER S: Glutathione depletion caused by buthionine sulfoximine has an antimalarial effect. 1st COST-B9 Congress on Antiprotozoal Chemotherapy. Granada, Spain (1998).
  • FAIRLAMB AH, CERAMI A: Metabolism and functions of trypanothione in the Kinetoplastida. Ann. Rev. Microbiol. (1992) 46:695–729.
  • ••An excellent review outlining the historical aspects of the discovery and general backgroundto trypanothione. See [117] for an update.
  • DUMAS C, OUELLETTE M, TOVAR J et al.: Disruption of the trypanothione reductase gene of Leishmania decreases its ability to survive oxidative stress in macrophages. EMBO J. (1997) 16:2590–2598.
  • TOVAR J, WILKINSON S, MOTTRAM JC, FAIRLAMB AH: Evidence that trypanothione reductase is an essential enzyme in Leishmania by targeted replacement of the tryA gene locus. Mol. Microbiol. (1998) 29:653–660.
  • HUNTER WN: A structure-based approach to drug discovery; crystallography and implications for the development of antiparasite drugs. Parasitology (1997) 114(Suppl.):S17–S29.
  • SMITH K, NADEAU K, BRADLEY M, WALSH C, FAIRLAMB AH: Purification of glutathionylspermidine and trypanothione synthetases from Crithidia fasciculata. Protein Sci. (1992) 1:874–883.
  • TETAUD E, MANAI F, BARRETT MP et al.: Cloning and characterization of the two enzymes responsible for trypanothione biosynthesis in Crithidia fasciculata. J. Biol. Chem. (1998) 273:19383–19390.
  • MCGONIGLE S, DALTON JP, JAMES ER: Peridoxins: a new antioxidant family. Parasitol. Today (1998) 14:139–145.
  • SPIES HSC, STEENKAM DJ: Thiols of intracellular pathogens-identification of ovothiol-A in Leishmania donovani and structural-analysis of a novel thiol from Mycobacterium bovis. Eur. J. Biochem. (1994) 224:203–213.
  • STEENKAMP DJ, SPIES HSC: Identification of a major low molecular mass thiol of the trypanosomatid Crithidia fasciculata as ovothiol A-facile isolation and structural-analysis of the bimane derivative. Eur. J. Biochem. (1994) 223:43–50.
  • BROWN DM, UP CROFT JA, UP CROFT P: Free radical detoxification in Giardia duodenalis. Mol. Biochem. Parasitol. (1995) 72:47–56.
  • PAGE-SHARP M, BEHM CA, SMITH GD: Tritrichomonas foetus and Trichomonas vaginalis: the pattern of inactivation of hydrogenase activity by oxygen and activities of catalase and ascorbate peroxidase. Microbiology (1996) 142:207–211.
  • ELLIS JE, YARLETT N, COLE D, HUMPHREYS MJ, LLOYD D: Antioxidant defences in the microaerophilic protozoan Trichomonas vaginalis: comparison of metronidazole-resistant and sensitive strains. J. Gen. Microbiol. (1994) 140:2489–2494.
  • BROWN DM, UPCROFT JA, UP CROFT P: Cysteine is the major low-molecular weight thiol in Giardia duodenalis. Mol. Biochem. Parasitol. (1993) 61:155–158.
  • LUJAN HD, NASH TE: The uptake and metabolism of cysteine by Giardia lamblia trophozoites. J. Euk. Microbiol. (1994) 41:169–175.
  • MILORD F, PEPIN J, LOKO L, ETHIER L, MPIA B: Efficacy and toxicity of eflornithine for treatment of Trypanosoma brucei gambiense sleeping sickness. Lancet (1992) 340:652–655.
  • MCCANN PP, PEGG AE: Ornithine decarboxylase as an enzyme target for therapy. Pharmacol. Ther. (1992) 54:195–215.
  • GHODA L, PHILLIPS MA, BASS KE, WANG CC, COFFINO P: Trypanosome ornithine decarboxylase is stable because it lacks sequences found in the carboxyl terminus of the mouse enzyme which target the latter for intracellular degradation. J. Biol. Chem. (1990) 265:11823–11826.
  • ITEN M, METT H, EVANS A et al.: Alterations in ornithine decarboxylase characteristics account for tolerance of Trypanosoma brucei rhodesiense to D, L-alpha-difluoromethylornithine. Antimicrob. Agents Chemother. (1997) 41:1922–1925.
  • YARLETT N, MARTINEZ MP, MOHARRAMI MA, TACHEZY J: The contribution of the arginine dihydrolase pathway to energy metabolism by Trichomonas vaginalis. Mol. Biochem. Parasitol. (1996) 78:117–125.
  • YARLETT N, BACCHI C: Polyamine metabolism in anaerobic protozoa. In: Biochemical Protozoology. Coombs GH, North MJ (Eds.), Taylor & Francis, London (1991) :458–468.
  • KEITHLY JS, ZHU G, UPTON SJ et al.: Polyamine biosynthesis in Cryptosporidium parvum and its implications for chemotherapy. Mol. Biochem. Parasitol. (1997) 88:35–42.
  • ROSENTHAL PJ: Proteases of malaria parasites: new targets for chemotherapy. Emerging Infect. Dis. (1998) 4:49–57.
  • FRANCIS SE, SULLIVAN DJ, GOLDBERG DE: Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Ann. Rev. Microbiol. (1997) 51:97–123.
  • FRANCIS SE, GLUZMAN IY, OKSMAN A, BANERJEE D, GOLBERG DE: Characterisation of native falcipain, an enzyme involved in Plasmodium falciparum hemoglobin degradation. Mol. Biochem. Parasitol. (1996) 83:189–200.
  • FRANCIS SE, GLUZMAN if, OKSMAN A et al.: Molecular characterisation and inhibition of a Plasmodium falciparum aspartic hemoglobinase. EMBO J. (1994) 13:306–317.
  • MOON RP, BUR D, LOETSCHER H et al.: Studies on plasmepsins land II from the malarial parasite Plasmodium falciparum and their exploitation as drug targets. Adv. Exp. Med. Biol. (1998) 436:397–406.
  • ••Good up-to-date account of progress in our understanding of these critical enzymes.
  • SELZER PM, CHEN XW, CHAN VJ et al.: Leishmania major molecular modeling of cysteine proteases and prediction of new nonpeptide inhibitors. Exp. Parasitol. (1997) 87:212–221.
  • ENGEL JC, DOYLE PS, PALMER J et al.: Cysteine protease inhibitors alter Golgi complex ultrastructure and function in Trypanosoma cruzi. J. Cell Sci. (1998) 111:597–606.
  • MOTTRAM JC, BROOKS DR, COOMBS GH: Roles of cysteine proteinases of trypanosomes and Leishmania in host-parasite interactions. Curr. Opin. Microbiol. (1998) 1:455–460.
  • MOTTRAM JC, SOUZA AE, HUTCHISON JE et al.: Evidence from disruption of the lmcpb gene array of Leishmania mexicana that cysteine proteinases are virulence factors. Proc. Natl. Acad. Sri. USA (1996) 93:6008–6013.
  • COOMBS GH, MOTTRAM JC: Parasite proteinases and amino acid metabolism: possibilities for chemotherapeutic exploitation. Parasitology (1997) 114(Suppl.):S61–S80.
  • ••Excellent review covering most of what is known on proteinases and key aspects of aminoacid metabolism in protozoa.
  • VIEIRA LL, LAFUENTE E, GAMARRO F, CABANTCHIK ZI: An amino acid channel activated by hypotonically induced swelling of Leishmania major promastigotes. Biochem. J. (1996) 319:691–697.
  • PEGG AE, MCCANN PP: S-Adenosylmethionine decarboxylase as an enzyme target for therapy. Pharmacol. Ther. (1992) 56:359–377.
  • SUFRIN JR, MESHNICK SR, SPIESS AJ et al.: Methionine recycling pathways and antimalarial drug design. Antimicrob. Agents Chemother. (1995) 39:2511–2515.
  • RISCOE MK, TOWER PA, PEYTON DH, FERRO AJ, FITCHEN JH: Methionine recycling as a target for antiprotozoal drug development. In: Biochemical Protozoology. Coombs GH, North MJ (Eds.), Taylor & Francis, London (1991):450–457.
  • BERGER BJ, DAI WW, WANG H, STARK RE, CERAMI A: Aromatic amino-acid transamination and methionine recycling in trypanosomatids. Proc. Natl. Acad. Sci. USA (1996) 93:4126–4130.
  • LOCKWOOD BC, COOMBS GH: Purification and characterisation of methionine y-lyase from Trichomonas vaginalis. Biochem. J. (1991) 279:675–682.
  • TETAUD E, BARRETT MP, BRINGAUD F, BALTZ T: Kinetoplastid glucose transporters. Biochem. J. (1997) 325:569–580.
  • ••A review summarising more or less all that is known on the trypanosomatid glucosetransporters and covering general features of why transporters are of great importance to protozoa.
  • MCCONVILLE MJ, FERGUSON MAJ: The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eucaryotes. Biochem. J. (1993) 294:305–324.
  • SMITH TK, SHARMA DK, CROSSMAN A et al.: Parasite and mammalian GPI biosyntheticpathways can be distinguished using synthetic substrate analogues. EMBO J. (1997) 16:6667–6675.
  • GOLDBERG DE, SHARMA V, OKSAMN A et al.: Probing the chloroquine resistance locus of Plasmodium falciparum with a novel class of multidentate met al(III) coordination complexes. J. Biol. Chem. (1997) 272:6567–6572.
  • CARTER NS, FAIRLAMB AH: Arsenical-resistant trypanosomes lack an unusual adenosine transporter. Nature (1993) 361:173–176.
  • DE KONING HP, WATSON CJ, JARVIS SM: Characterization of a nucleoside/proton symporter in procyclic Trypanosoma brucei brucei. J. Biol. Chem. (1998) 273:9486–9494.
  • PENNY JI, HALL ST, WOODROW CJ et al.: Expression of substrate-specific transporters encoded by Plasmodium fakiparum in Xenopus laevis oocytes. Mol. Biochem. Parasitol. (1998) 93:81–89.
  • SALIBA KJ, HORNER HA, KIRK K: Transport and metabolism of the essential vitamin pantothenic acid in human erythrocytes infected with the malaria parasite Plasmodium fakiparum. J. Biol. Chem. (1998) 273:10190–10195.
  • KIRK K, HORNER HA, ELFORD BC, ELLORY JC, NEWBOLD CI: Transport of diverse substrates into malaria-infected erythrocytes via a pathway showing functional-characteristics of a chloride channel. J. Biol. Chem. (1994) 269:3339–3347.
  • GERO AM, KIRK K: Nutrient transport pathways in Plasmodium-infected erythrocytes: what and where are they? Parasitol. Today (1994) 10:395–399.
  • HALDAR K: Ducts, channels and transporters in Plasmodium-infected erythrocytes. Parasitol Today (1994) 10:393–395.
  • COOMBS GH, VICKERMAN K, SLEIGH MA, WARREN A: Evolutionary Relationships among Protozoa. Kluwer, Dortrecht (1990464.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.