239
Views
16
CrossRef citations to date
0
Altmetric
Reviews

Threonine peptidases as drug targets against malaria

, &
Pages 365-378 | Published online: 01 Feb 2011

Bibliography

  • WHO Report 2009. Global Health Risks- Mortality and burden of disease attributable to selected major risks
  • Cox-Singh J, Davis TM, Lee KS, Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clin Infect Dis 2008;46:165-71
  • Noedl H, Se Y, Schaecher K, Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 2008;359:2619-20
  • Noedl H, Socheat D, Satimai W. Artemisinin-resistant malaria in Asia. N Engl J Med 2009;361:540-1
  • Dondorp AM, Nosten F, Yi P, Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 2009;361:455-67
  • Mordmuller B, Kremsner PG. Malarial parasites vs. antimalarials: neverending rumble in the jungle. Curr Mol Med 2006;6:247-51
  • Drag M, Salvesen GS. Emerging principles in protease-based drug discovery. Nat Rev Drug Discov 2010;9:690-701
  • Liu J, Gluzman IY, Drew ME, Goldberg DE. The role of Plasmodium falciparum food vacuole plasmepsins. J Biol Chem 2005;280:1432-7
  • Omara-Opyene AL, Moura PA, Sulsona CR, Genetic disruption of the Plasmodium falciparum digestive vacuole plasmepsins demonstrates their functional redundancy. J Biol Chem 2004;279:54088-96
  • Moura PA, Dame JB, Fidock DA. Role of Plasmodium falciparum digestive vacuole plasmepsins in the specificity and antimalarial mode of action of cysteine and aspartic protease inhibitors. Antimicrob Agents Chemother 2009;53:4968-78
  • Sijwali PS, Rosenthal PJ. Gene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum. Proc Natl Acad Sci USA 2004;101:4384-9
  • Sijwali PS, Koo J, Singh N, Rosenthal PJ. Gene disruptions demonstrate independent roles for the four falcipain cysteine proteases of Plasmodium falciparum. Mol Biochem Parasitol 2006;150:96-106
  • Russo I, Babbitt S, Muralidharan V, Plasmepsin V licenses Plasmodium proteins for export into the host erythrocyte. Nature 2010;463:632-6
  • Boddey JA, Hodder AN, Gunther S, An aspartyl protease directs malaria effector proteins to the host cell. Nature 2010;463:627-31
  • Russo I, Oksman A, Vaupel B, Goldberg DE. A calpain unique to alveolates is essential in Plasmodium falciparum and its knockdown reveals an involvement in pre-S-phase development. Proc Natl Acad Sci USA 2009;106:1554-9
  • Yeoh S, O'Donnell RA, Koussis K, Subcellular discharge of a serine protease mediates release of invasive malaria parasites from host erythrocytes. Cell 2007;131:1072-83
  • Miller SK, Good RT, Drew DR, A subset of Plasmodium falciparum SERA genes are expressed and appear to play an important role in the erythrocytic cycle. J Biol Chem 2002;277:47524-32
  • McCoubrie JE, Miller SK, Sargeant T, Evidence for a common role for the serine-type Plasmodium falciparum serine repeat antigen proteases: implications for vaccine and drug design. Infect Immun 2007;75:5565-74
  • Mordmuller B, Fendel R, Kreidenweiss A, Plasmodia express two threonine-peptidase complexes during asexual development. Mol Biochem Parasitol 2006;148:79-85
  • Gille C, Goede A, Schloetelburg C, A Comprehensive view on proteasomal sequences: implications for the evolution of the proteasome. J Mol Biol 2003;326:1437-48
  • Couvreur B, Wattiez R, Bollen A, Eubacterial HslV and HslU subunits homologs in primordial eukaryotes. Mol Biol Evol 2002;19:2110-17
  • Lowe J, Stock D, Jap B, Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 1995;268:533-9
  • Glickman MH, Rubin DM, Fried VA, The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol Cell Biol 1998;18:3149-62
  • Groll M, Ditzel L, Lowe J, Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 1997;386:463-71
  • Hershko A, Ciechanover A. The ubiquitin system for protein degradation. Annu Rev Biochem 1992;61:761-807
  • Nandi D, Tahiliani P, Kumar A, Chandu D. The ubiquitin-proteasome system. J Biosci 2006;31:137-55
  • Petroski MD. The ubiquitin system, disease, and drug discovery. BMC Biochem 2008;9(Suppl 1):S7
  • Kreidenweiss A, Kremsner PG, Mordmuller B. Comprehensive study of proteasome inhibitors against Plasmodium falciparum laboratory strains and field isolates from Gabon. Malar J 2008;7:187
  • Czesny B, Goshu S, Cook JL, The proteasome inhibitor epoxomicin has potent Plasmodium falciparum gametocytocidal activity. Antimicrob Agents Chemother 2009;53:4080-5
  • Reynolds JM, El Bissati K, Brandenburg J, Antimalarial activity of the anticancer and proteasome inhibitor bortezomib and its analog ZL3B. BMC Clin Pharmacol 2007;7:13
  • Lindenthal C, Weich N, Chia YS, The proteasome inhibitor MLN-273 blocks exoerythrocytic and erythrocytic development of Plasmodium parasites. Parasitology 2005;131:37-44
  • Hatabu T, Hagiwara M, Taguchi N, Plasmodium falciparum: the fungal metabolite gliotoxin inhibits proteasome proteolytic activity and exerts a plasmodicidal effect on P. falciparum. Exp Parasitol 2006;112:179-83
  • Gantt SM, Myung JM, Briones MR, Proteasome inhibitors block development of Plasmodium spp. Antimicrob Agents Chemother 1998;42:2731-8
  • Prudhomme J, McDaniel E, Ponts N, Marine actinomycetes: a new source of compounds against the human malaria parasite. PLoS One 2008;3(6):e2335
  • McNaught KS, Olanow CW. Proteasome inhibitor-induced model of Parkinson's disease. Ann Neurol 2006;60:243-7
  • Waring P, Beaver J. Gliotoxin and related epipolythiodioxopiperazines. Gen Pharmacol 1996;27:1311-16
  • Chauhan D, Catley L, Li G, A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 2005;8:407-19
  • Richardson PG, Sonneveld P, Schuster MW, Reversibility of symptomatic peripheral neuropathy with bortezomib in the phase III APEX trial in relapsed multiple myeloma: impact of a dose-modification guideline. Br J Haematol 2009;144:895-903
  • Kropff M, Bisping G, Wenning D, Proteasome inhibition in multiple myeloma. Eur J Cancer 2006;42:1623-39
  • Singh AV, Palladino MA, Lloyd GK, Pharmacodynamic and efficacy studies of the novel proteasome inhibitor NPI-0052 (marizomib) in a human plasmacytoma xenograft murine model. Br J Haematol 2010;149:550-9
  • Sala F, Marangon E, Bagnati R, Development and validation of a high-performance liquid chromatography-tandem mass spectrometry method for the determination of the novel proteasome inhibitor CEP-18770 in human plasma and its application in a clinical pharmacokinetic study. J Mass Spectrom 2010. [Epub ahead of print]
  • Groll M, Huber R, Potts BC. Crystal structures of Salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of beta-lactone ring opening and a mechanism for irreversible binding. J Am Chem Soc 2006;128:5136-41
  • Groll M, Schellenberg B, Bachmann AS, A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature 2008;452:755-8
  • Groll M, Gotz M, Kaiser M, TMC-95-based inhibitor design provides evidence for the catalytic versatility of the proteasome. Chem Biol 2006;13:607-14
  • Groll M, Koguchi Y, Huber R, Kohno J. Crystal structure of the 20 S proteasome:TMC-95A complex: a non-covalent proteasome inhibitor. J Mol Biol 2001;311:543-8
  • Groll M, Kim K B, Kairies N, Crystal structure of epoxomicin:20 S proteasome reveals a molecular basis for selectivity of alpha0, beta0-epoxyketone proteasome inhibitors. J Am Chem Soc 2000;122:1237-8
  • Groll M, Berkers CR, Ploegh HL, Ovaa H. Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure 2006;14:451-6
  • Rohrwild M, Coux O, Huang HC, HslV-HslU: a novel ATP-dependent protease complex in Escherichia coli related to the eukaryotic proteasome. Proc Natl Acad Sci USA 1996;93:5808-13
  • Bochtler M, Ditzel L, Groll M, The proteasome. Annu Rev Biophys Biomol Struct 1999;28:295-317
  • Groll M, Bochtler M, Brandstetter H, Molecular machines for protein degradation. Chembiochem 2005;6:222-56
  • Ruiz-Gonzalez MX, Marin I. Proteasome-related HslU and HslV genes typical of eubacteria are widespread in eukaryotes. J Mol Evol 2006;63:504-12
  • Tschan S, Kreidenweiss A, Stierhof YD, Mitochondrial localization of the threonine peptidase PfHslV, a ClpQ ortholog in Plasmodium falciparum. Int J Parasitol 2010;40:1517-23
  • Seong IS, Oh JY, Yoo SJ, ATP-dependent degradation of SulA, a cell division inhibitor, by the HslVU protease in Escherichia coli. FEBS Lett 1999;456:211-14
  • Khattar MM. Overexpression of the hslVU operon suppresses SOS-mediated inhibition of cell division in Escherichia coli. FEBS Lett 1997;414:402-4
  • Missiakas D, Schwager F, Betton JM, Identification and characterization of HsIV HsIU (ClpQ ClpY) proteins involved in overall proteolysis of misfolded proteins in Escherichia coli. EMBO J 1996;15:6899-909
  • Kanemori M, Nishihara K, Yanagi H, Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli. J Bacteriol 1997;179:7219-25
  • Li Z, Lindsay ME, Motyka SA, Identification of a bacterial-like HslVU protease in the mitochondria of Trypanosoma brucei and its role in mitochondrial DNA replication. PLoS Pathog 2008;4:e1000048
  • Fry M, Pudney M. Site of action of the antimalarial hydroxynaphthoquinone, 2-[trans-4-(4′-chlorophenyl) cyclohexyl]-3-hydroxy-1,4-naphthoquinone (566C80). Biochem Pharmacol 1992;43:1545-53
  • Kessl JJ, Hill P, Lange BB, Molecular basis for atovaquone resistance in Pneumocystis jirovecii modeled in the cytochrome bc(1) complex of Saccharomyces cerevisiae. J Biol Chem 2004;279:2817-24
  • Terpos E, Roussou M, Dimopoulos MA. Bortezomib in multiple myeloma. Expert Opin Drug Metab Toxicol 2008;4:639-54
  • Adams J, Palombella VJ, Sausville EA, Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 1999;59:2615-22
  • Piva R, Ruggeri B, Williams M, CEP-18770: A novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib. Blood 2008;111:2765-75
  • Kupperman E, Lee EC, Cao Y, Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Res 2010;70:1970-80
  • Williamson MJ, Blank JL, Bruzzese FJ, Comparison of biochemical and biological effects of ML858 (salinosporamide A) and bortezomib. Mol Cancer Ther 2006;5:3052-61
  • O'Connor OA, Stewart AK, Vallone M, A phase 1 dose escalation study of the safety and pharmacokinetics of the novel proteasome inhibitor carfilzomib (PR-171) in patients with hematologic malignancies. Clin Cancer Res 2009;15:7085-91
  • Zhou HJ, Aujay MA, Bennett MK, Design and synthesis of an orally bioavailable and selective peptide epoxyketone proteasome inhibitor (PR-047). J Med Chem 2009;52:3028-38
  • Kuhn DJ, Chen Q, Voorhees PM, Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood 2007;110:3281-90
  • Chenna R, Sugawara H, Koike T, Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 2003;31:3497-500

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.