343
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Novel ways to target brain tumour metabolism

, &
Pages 1227-1239 | Published online: 02 Jun 2011

Bibliography

  • Auffray C, Chen Z, Hood L. Systems medicine: the future of medical genomics and healthcare. Genome Med 2009;1:2
  • Chin L, Gray JW. Translating insights from the cancer genome into clinical practice. Nature 2008;452:553-63
  • Ohgaki H. Epidemiology of brain tumors. Methods Mol Biol 2009;472:323-42
  • Louis DN, Ohgaki H, Wiestler OD, The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007;114:97-109
  • Beroukhim R, Getz G, Nghiemphu L, Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci USA 2007;104:20007-12
  • Ruano Y, Mollejo M, Ribalta T, Identification of novel candidate target genes in amplicons of Glioblastoma multiforme tumors detected by expression and CGH microarray profiling. Mol Cancer 2006;5:39
  • Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008;455:1061-8
  • Parsons DW, Jones S, Zhang X, An integrated genomic analysis of human glioblastoma multiforme. Science 2008;321:1807-12
  • de Tayrac M, Aubry M, Saikali S, A 4-gene signature associated with clinical outcome in high-grade gliomas. Clin Cancer Res 2011;17:317-27
  • Verhaak RG, Hoadley KA, Purdom E, Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010;17:98-110
  • Brennan C, Momota H, Hambardzumyan D, Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS One 2009;4:e7752
  • Colman H, Zhang L, Sulman EP, A multigene predictor of outcome in glioblastoma. Neuro Oncol 2010;12:49-57
  • Phillips HS, Kharbanda S, Chen R, Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 2006;9:157-73
  • Noushmehr H, Weisenberger DJ, Diefes K, Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 2010;17:510-22
  • Hegi ME, Diserens AC, Gorlia T, MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005;352:997-1003
  • Mellinghoff IK, Wang MY, Vivanco I, Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 2005;353:2012-24
  • Stupp R, Mason WP, van den Bent MJ, Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005;352:987-96
  • Gan HK, Kaye AH, Luwor RB. The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci 2009;16:748-54
  • Huang PH, Xu AM, White FM. Oncogenic EGFR signaling networks in glioma. Sci Signal 2009;2(87):re6
  • Neyns B, Sadones J, Joosens E, Stratified Phase II trial of cetuximab in patients with recurrent high-grade glioma. Ann Oncol 2009;20:1596-603
  • van den Bent MJ, Brandes AA, Rampling R, Randomized Phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. J Clin Oncol 2009;27:1268-74
  • Wen PY, Yung WK, Lamborn KR, Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99-08. Clin Cancer Res 2006;12:4899-907
  • Mercer RW, Tyler MA, Ulasov IV, Lesniak MS. Targeted therapies for malignant glioma: progress and potential. BioDrugs 2009;23:25-35
  • Vredenburgh JJ, Desjardins A, Herndon JE 2nd. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 2007;25:4722-9
  • Norden AD, Drappatz J, Muzikansky A, An exploratory survival analysis of anti-angiogenic therapy for recurrent malignant glioma. J Neurooncol 2009;92:149-55
  • National Cancer Institute (NCI). Temozolomide and Radiation Therapy With or Without Bevacizumab in Treating Patients With Newly Diagnosed Glioblastoma. ClinicalTrials.gov. NCT00884741. Available from: http://clinicaltrials.gov/ct2/show/NCT00884741?term=RTOG+0825&rank=1
  • Hoffmann-La Roche. A Study of avastin (bevacizumab) in combination with temozolomide and radiotherapy in patients with newly diagnosed glioblastoma. ClinicalTrials.gov. NCT00943826. Available from: http://clinicaltrials.gov/ct2/show/NCT00943826?term=BO+21990&rank=1
  • Norden AD, Young GS, Setayesh K, Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 2008;70:779-87
  • Keunen O, Johansson M, Oudin A, Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci USA 2011;108:3749-54
  • Hartmann C, Meyer J, Balss J, Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 2009;118:469-74
  • Yan H, Parsons DW, Jin G, IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009;360:765-73
  • Mardis ER, Ding L, Dooling DJ, Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009;361:1058-66
  • Andrulis M, Capper D, Meyer J, IDH1 R132H mutation is a rare event in myeloproliferative neoplasmsas determined by a mutation specific antibody. Haematologica 2010;95:1797-8
  • Zhao S, Lin Y, Xu W, Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 2009;324:261-5
  • Dang L, White DW, Gross S, Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009;462:739-44
  • Reitman ZJ, Jin G, Karoly ED, Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc Natl Acad Sci USA 2010;108:3270-5
  • Ronnebaum SM, Ilkayeva O, Burgess SC, A pyruvate cycling pathway involving cytosolic NADP-dependent isocitrate dehydrogenase regulates glucose-stimulated insulin secretion. J Biol Chem 2006;281:30593-602
  • Baumann F, Leukel P, Doerfelt A, Lactate promotes glioma migration by TGF-beta2-dependent regulation of matrix metalloproteinase-2. Neuro Oncol 2009;11:368-80
  • Figueroa ME, Abdel-Wahab O, Lu C, Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010;18:553-67
  • Ito S, D'Alessio AC, Taranova OV, Role of Tet proteins in 5 mC to 5 hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010;466:1129-33
  • Tahiliani M, Koh KP, Shen Y, Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009;324:930-5
  • Xu W, Yang H, Liu Y, Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 2011;19:17-30
  • Kloosterhof NK, Bralten LB, Dubbink HJ, Isocitrate dehydrogenase-1 mutations: a fundamentally new understanding of diffuse glioma? Lancet Oncol 2011;12:83-91
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-74
  • King A, Gottlieb E. Glucose metabolism and programmed cell death: an evolutionary and mechanistic perspective. Curr Opin Cell Biol 2009;21:885-93
  • Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer 2011;11:85-95
  • Baysal BE, Ferrell RE, Willett-Brozick JE, Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 2000;287:848-51
  • Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006;3:177-85
  • Christofk HR, Vander Heiden MG, Harris MH, The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008;452:230-3
  • Semenza GL, Jiang BH, Leung SW, Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 1996;271:32529-37
  • Tennant DA, Duran RV, Boulahbel H, Gottlieb E. Metabolic transformation in cancer. Carcinogenesis 2009;30:1269-80
  • Warburg O. Metabolism of tumours. Biochem Zeitschr 1923;142:317-33
  • Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer 2004;4:891-9
  • Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009;324:1029-33
  • Astuti D, Latif F, Dallol A, Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 2001;69:49-54
  • Selak MA, Armour SM, MacKenzie ED, Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 2005;7:77-85
  • Tomlinson IP, Alam NA, Rowan AJ, Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 2002;30:406-10
  • Yang Y, Valera VA, Padilla-Nash HM, UOK 262 cell line, fumarate hydratase deficient (FH–/FH–) hereditary leiomyomatosis renal cell carcinoma: in vitro and in vivo model of an aberrant energy metabolic pathway in human cancer. Cancer Genet Cytogenet 2009;196:45-55
  • Smith TA. Mammalian hexokinases and their abnormal expression in cancer. Br J Biomed Sci 2000;57:170-8
  • Wolf A, Agnihotri S, Micallef J, Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med 2011;208:313-26
  • Gottlob K, Majewski N, Kennedy S, Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 2001;15:1406-18
  • Mathupala SP, Ko YH, Pedersen PL. Hexokinase-2 bound to mitochondria: cancer's stygian link to the “Warburg Effect” and a pivotal target for effective therapy. Semin Cancer Biol 2009;19:17-24
  • Pastorino JG, Shulga N, Hoek JB. Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem 2002;277:7610-18
  • Ko YH, Smith BL, Wang Y, Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun 2004;324:269-75
  • Ganapathy-Kanniappan S, Vali M, Kunjithapatham R, 3-bromopyruvate: a new targeted antiglycolytic agent and a promise for cancer therapy. Curr Pharm Biotechnol 2010;11:510-17
  • Paggi MG, Carapella CM, Fanciulli M, Effect of lonidamine on human malignant gliomas: biochemical studies. J Neurooncol 1988;6:203-9
  • Kim JH, Alfieri AA, Kim SH, Young CW. Potentiation of radiation effects on two murine tumors by lonidamine. Cancer Res 1986;46:1120-3
  • Carapella CM, Paggi MG, Cattani F, The potential role of lonidamine (LND) in the treatment of malignant glioma. Phase II study. J Neurooncol 1989;7:103-8
  • Oudard S, Carpentier A, Banu E, Phase II study of lonidamine and diazepam in the treatment of recurrent glioblastoma multiforme. J Neurooncol 2003;63:81-6
  • Marcondes MC, Sola-Penna M, Zancan P. Clotrimazole potentiates the inhibitory effects of ATP on the key glycolytic enzyme 6-phosphofructo-1-kinase. Arch Biochem Biophys 2010;497:62-7
  • Penso J, Beitner R. Clotrimazole and bifonazole detach hexokinase from mitochondria of melanoma cells. Eur J Pharmacol 1998;342:113-17
  • Liu H, Li Y, Raisch KP. Clotrimazole induces a late G1 cell cycle arrest and sensitizes glioblastoma cells to radiation in vitro. Anticancer Drugs 2010;21:841-9
  • Khalid MH, Tokunaga Y, Caputy AJ, Walters E. Inhibition of tumor growth and prolonged survival of rats with intracranial gliomas following administration of clotrimazole. J Neurosurg 2005;103:79-86
  • Yalcin A, Telang S, Clem B, Chesney J. Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer. Exp Mol Pathol 2009;86:174-9
  • Zancan P, Sola-Penna M, Furtado CM, Da Silva D. Differential expression of phosphofructokinase-1 isoforms correlates with the glycolytic efficiency of breast cancer cells. Mol Genet Metab 2010;100:372-8
  • Dominguez JE, Graham JF, Cummins CJ, Enzymes of glucose metabolism in cultured human gliomas: neoplasia is accompanied by altered hexokinase, phosphofructokinase, and glucose-6-phosphate dehydrogenase levels. Metab Brain Dis 1987;2:17-30
  • Zhang X, Varin E, Allouche S, Effect of citrate on malignant pleural mesothelioma cells: a synergistic effect with cisplatin. Anticancer Res 2009;29:1249-54
  • Mazurek S, Boschek CB, Hugo F, Eigenbrodt E. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol 2005;15:300-8
  • Mazurek S. Pyruvate kinase type M2: a key regulator within the tumour metabolome and a tool for metabolic profiling of tumours. Ernst Schering Found Symp Proc 2007;(4):99-124
  • Vander Heiden MG, Locasale JW, Swanson KD, Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 2010;329:1492-9
  • Hitosugi T, Kang S, Vander Heiden MG, Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal 2009;2(97):ra73
  • Christofk HR, Vander Heiden MG, Wu N, Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 2008;452:181-6
  • Michelakis ED, Sutendra G, Dromparis P, Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2010;2(31):, 31ra4
  • Michelakis ED, Webster L, Mackey JR. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer 2008;99:989-94
  • Bonnet S, Archer SL, Allalunis-Turner J, A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 2007;11:37-51
  • Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 2006;9:425-34
  • Le A, Cooper CR, Gouw AM, Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 2010;107:2037-42
  • Pinheiro C, Reis RM, Ricardo S, Expression of monocarboxylate transporters 1, 2, and 4 in human tumours and their association with CD147 and CD44. J Biomed Biotechnol 2010:427694: Published online May 4 2010, doi: 10.1155/2010/427694
  • Schneiderhan W, Scheler M, Holzmann KH, CD147 silencing inhibits lactate transport and reduces malignant potential of pancreatic cancer cells in in vivo and in vitro models. Gut 2009;58:1391-8
  • Sonveaux P, Vegran F, Schroeder T, Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 2008;118:3930-42
  • Haapasalo JA, Nordfors KM, Hilvo M, Expression of carbonic anhydrase IX in astrocytic tumors predicts poor prognosis. Clin Cancer Res 2006;12:473-7
  • Jarvela S, Parkkila S, Bragge H, Carbonic anhydrase IX in oligodendroglial brain tumors. BMC Cancer 2008;8:1
  • Nordfors K, Haapasalo J, Korja M, The tumour-associated carbonic anhydrases CA II, CA IX and CA XII in a group of medulloblastomas and supratentorial primitive neuroectodermal tumours: an association of CA IX with poor prognosis. BMC Cancer 2010;10:148
  • Robertson N, Potter C, Harris AL. Role of carbonic anhydrase IX in human tumor cell growth, survival, and invasion. Cancer Res 2004;64:6160-5
  • Chiche J, Ilc K, Laferriere J, Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res 2009;69:358-68
  • Das A, Banik NL, Ray SK. Modulatory effects of acetazolomide and dexamethasone on temozolomide-mediated apoptosis in human glioblastoma T98G and U87MG cells. Cancer Invest 2008;26:352-8
  • Ahlskog JK, Dumelin CE, Trussel S, In vivo targeting of tumor-associated carbonic anhydrases using acetazolamide derivatives. Bioorg Med Chem Lett 2009;19:4851-6
  • Volker HU, Hagemann C, Coy J, Expression of transketolase-like 1 and activation of Akt in grade IV glioblastomas compared with grades II and III astrocytic gliomas. Am J Clin Pathol 2008;130:50-7
  • Szutowicz A, Kwiatkowski J, Angielski S. Lipogenetic and glycolytic enzyme activities in carcinoma and nonmalignant diseases of the human breast. Br J Cancer 1979;39:681-7
  • Turyn J, Schlichtholz B, Dettlaff-Pokora A, Increased activity of glycerol 3-phosphate dehydrogenase and other lipogenic enzymes in human bladder cancer. Horm Metab Res 2003;35:565-9
  • Hatzivassiliou G, Zhao F, Bauer DE, ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 2005;8:311-21
  • Gansler TS, Hardman W 3rd, Hunt DA, Increased expression of fatty acid synthase (OA-519) in ovarian neoplasms predicts shorter survival. Hum Pathol 1997;28:686-92
  • Swinnen JV, Roskams T, Joniau S, Overexpression of fatty acid synthase is an early and common event in the development of prostate cancer. Int J Cancer 2002;98:19-22
  • Zhao W, Kridel S, Thorburn A, Fatty acid synthase: a novel target for antiglioma therapy. Br J Cancer 2006;95:869-78
  • DeBerardinis RJ, Mancuso A, Daikhin E, Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 2007;104:19345-50
  • DeBerardinis RJ, Cheng T. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 2010;29:313-24
  • Ram Z, Samid D, Walbridge S, Growth inhibition, tumor maturation, and extended survival in experimental brain tumors in rats treated with phenylacetate. Cancer Res 1994;54:2923-7
  • Chang SM, Kuhn JG, Robins HI, Phase II study of phenylacetate in patients with recurrent malignant glioma: a North American Brain Tumor Consortium report. J Clin Oncol 1999;17:984-90

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.