978
Views
29
CrossRef citations to date
0
Altmetric
Reviews

The therapeutic potential of the endocannabinoid system for Alzheimer's disease

, , &
Pages 407-420 | Published online: 27 Mar 2012

Bibliography

  • Zandi PP, Breitner JC, Anthony JC. Is pharmacological prevention of Alzheimer's a realistic goal? Expert Opin Pharmacother 2002;3:365-80
  • Gotz J, Ittner LM. Animal models of Alzheimer's disease and frontotemporal dementia. Nat Rev Neurosci 2008;9:532-44
  • Belbin O, Carrasquillo MM, Crump M, Investigation of 15 of the top candidate genes for late-onset Alzheimer's disease. Hum Genet 2011;129:273-82
  • LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer's disease. Nat Rev Neurosci 2007;8:499-509
  • Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 2006;12:1005-15
  • Naslund J, Haroutunian V, Mohs R, Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 2000;283:1571-7
  • Pomara N, Singh R, Deptula D, Glutamate and other CSF amino acids in Alzheimer's disease. Am J Psychiatry 1992;149:251-4
  • Schliebs R, Arendt T. The cholinergic system in aging and neuronal degeneration. Behav Brain Res 2011;221:555-63
  • Kidd M. Paired helical filaments in electron microscopy of Alzheimer's disease. Nature 1963;197:192-3
  • Kuret J, Chirita CN, Congdon EE, Pathways of tau fibrillization. Biochim Biophys Acta 2005;1739:167-78
  • Marchalant Y, Brothers HM, Wenk GL. Inflammation and aging: can endocannabinoids help? Biomed Pharmacother 2008;62:212-17
  • Streit WJ. Microglia and Alzheimer's disease pathogenesis. J Neurosci Res 2004;77:1-8
  • Monsonego A, Weiner HL. Immunotherapeutic approaches to Alzheimer's disease. Science 2003;302:834-8
  • Sastre M, Klockgether T, Heneka MT. Contribution of inflammatory processes to Alzheimer's disease: molecular mechanisms. Int J Dev Neurosci 2006;24:167-76
  • Barger SW, Basile AS. Activation of microglia by secreted amyloid precursor protein evokes release of glutamate by cystine exchange and attenuates synaptic function. J Neurochem 2001;76:846-54
  • Koppel J, Davies P. Targeting the endocannabinoid system in Alzheimer's disease. J Alzheimers Dis 2008;15:495-504
  • Cagnin A, Brooks DJ, Kennedy AM, In-vivo measurement of activated microglia in dementia. Lancet 2001;358:461-7
  • Davis DG, Schmitt FA, Wekstein DR, Markesbery WR. Alzheimer neuropathologic alterations in aged cognitively normal subjects. J Neuropathol Exp Neurol 1999;58:376-88
  • Fiala M, Lin J, Ringman J, Ineffective phagocytosis of amyloid-beta by macrophages of Alzheimer's disease patients. J Alzheimers Dis 2005;7:221-32; discussion 255–262
  • Bard F, Cannon C, Barbour R, Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 2000;6:916-19
  • Hock C, Konietzko U, Streffer JR, Antibodies against beta-amyloid slow cognitive decline in Alzheimer's disease. Neuron 2003;38:547-54
  • Schenk D, Barbour R, Dunn W, Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999;400:173-7
  • Krause DL, Muller N. Neuroinflammation, microglia and implications for anti-inflammatory treatment in Alzheimer's disease. Int J Alzheimers Dis 2010; published online 14 June 2010; doi:10.4061/2010/732806.
  • Mattson MP. Pathways towards and away from Alzheimer's disease. Nature 2004;430:631-9
  • Takeuchi H. Neurotoxicity by microglia: mechanisms and potential therapeutic strategy. Clin Exp Neuroimmunol 2010;1:12-21
  • Pratico D, Sung S. Lipid peroxidation and oxidative imbalance: early functional events in Alzheimer's disease. J Alzheimers Dis 2004;6:171-5
  • Williams TI, Lynn BC, Markesbery WR, Lovell MA. Increased levels of 4-hydroxynonenal and acrolein, neurotoxic markers of lipid peroxidation, in the brain in mild cognitive impairment and early Alzheimer's disease. Neurobiol Aging 2006;27:1094-9
  • Lee SC, Zhao ML, Hirano A, Dickson DW. Inducible nitric oxide synthase immunoreactivity in the Alzheimer disease hippocampus: association with Hirano bodies, neurofibrillary tangles, and senile plaques. J Neuropathol Exp Neurol 1999;58:1163-9
  • Weldon DT, Rogers SD, Ghilardi JR, Fibrillar beta-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS in vivo. J Neurosci 1998;18:2161-73
  • Bartzokis G. Alzheimer's disease as homeostatic responses to age-related myelin breakdown. Neurobiol Aging 2011;32:1341-71
  • Zandi PP, Breitner JC. Do NSAIDs prevent Alzheimer's disease? And, if so, why? The epidemiological evidence. Neurobiol Aging 2001;22:811-17
  • Benito C, Nunez E, Pazos MR, The endocannabinoid system and Alzheimer's disease. Mol Neurobiol 2007;36:75-81
  • Micale V, Mazzola C, Drago F. Endocannabinoids and neurodegenerative diseases. Pharmacol Res 2007;56:382-92
  • Mancuso C, Siciliano R, Barone E, Pharmacologists and Alzheimer disease therapy: to boldly go where no scientist has gone before. Expert Opin Investig Drugs 2011;20:1243-61
  • Takada-Takatori Y, Kume T, Izumi Y, Roles of nicotinic receptors in acetylcholinesterase inhibitor-induced neuroprotection and nicotinic receptor up-regulation. Biol Pharm Bull 2009;32:318-24
  • Schaeffer EL, Gattaz WF. Cholinergic and glutamatergic alterations beginning at the early stages of Alzheimer disease: participation of the phospholipase A2 enzyme. Psychopharmacology (Berl) 2008;198:1-27
  • Reisberg B, Doody R, Stoffler A, Memantine in moderate-to-severe Alzheimer's disease. N Engl J Med 2003;348:1333-41
  • Modrego PJ, Fayed N, Errea JM, Memantine versus donepezil in mild to moderate Alzheimer's disease: a randomized trial with magnetic resonance spectroscopy. Eur J Neurol 2010;17:405-12
  • Schneider LS, Dagerman KS, Higgins JP, McShane R. Lack of evidence for the efficacy of memantine in mild Alzheimer disease. Arch Neurol 2011;68:991-8
  • Lim GP, Yang F, Chu T, Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer's disease. J Neurosci 2000;20:5709-14
  • Boothby LA, Doering PL. Vitamin C and vitamin E for Alzheimer's disease. Ann Pharmacother 2005;39:2073-80
  • Nicoll JA, Wilkinson D, Holmes C, Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 2003;9:448-52
  • Piguet O, Garner B. Vascular pharmacotherapy and dementia. Curr Vasc Pharmacol 2010;8:44-50
  • Fowler CJ, Rojo ML, Rodriguez-Gaztelumendi A. Modulation of the endocannabinoid system: neuroprotection or neurotoxicity? Exp Neurol 2010;224:37-47
  • D'Souza DC. Cannabinoids and psychosis. Int Rev Neurobiol 2007;78:289-326
  • Howlett AC, Reggio PH, Childers SR, Endocannabinoid tone versus constitutive activity of cannabinoid receptors. Br J Pharmacol 2011;163:1329-43
  • Pazos MR, Nunez E, Benito C, Role of the endocannabinoid system in Alzheimer's disease: new perspectives. Life Sci 2004;75:1907-15
  • Sheng WS, Hu S, Min X, Synthetic cannabinoid WIN55,212-2 inhibits generation of inflammatory mediators by IL-1beta-stimulated human astrocytes. Glia 2005;49:211-19
  • Fernandez-Ruiz J, Gonzales S, Romero J, Ramos J. Cannabinoids in neurodegeneration and neuroprotection. In: Mechoulam R, editor. Cannabinoids as Therapeutics. Birkhaeuser Verlag; Basel, Switzerland: 2005. p. 79-109
  • Wong A, Gunasekaran N, Hancock DP, The major plant-derived cannabinoid Delta9-tetrahydrocannabinol promotes hypertrophy and macrophage infiltration in adipose tissue. Horm Metab Res 2012;44:105-13
  • Walter L, Franklin A, Witting A, Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J Neurosci 2003;23:1398-405
  • Ehrhart J, Obregon D, Mori T, Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation. J Neuroinflammation 2005;2:29
  • Maresz K, Pryce G, Ponomarev ED, Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB1 on neurons and CB2 on autoreactive T cells. Nat Med 2007;13:492-7
  • Buckley NE, McCoy KL, Mezey E, Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB2 receptor. Eur J Pharmacol 2000;396:141-9
  • Panikashvili D, Simeonidou C, Ben-Shabat S, An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 2001;413:527-31
  • Karanian DA, Brown QB, Makriyannis A, Dual modulation of endocannabinoid transport and fatty acid amide hydrolase protects against excitotoxicity. J Neurosci 2005;25:7813-20
  • Nadler V, Mechoulam R, Sokolovsky M. The non-psychotropic cannabinoid (+)-(3S,4S)-7-hydroxy-Delta6- tetrahydrocannabinol 1,1-dimethylheptyl (HU-211) attenuates N-methyl-d-aspartate receptor-mediated neurotoxicity in primary cultures of rat forebrain. Neurosci Lett 1993;162:43-5
  • Eubanks LM, Rogers CJ, Beuscher AE IV, A molecular link between the active component of marijuana and Alzheimer's disease pathology. Mol Pharm 2006;3:773-7
  • Gerdeman GL, Lovinger DM. Emerging roles for endocannabinoids in long-term synaptic plasticity. Br J Pharmacol 2003;140:781-9
  • Mazzola C, Medalie J, Scherma M, Fatty acid amide hydrolase (FAAH) inhibition enhances memory acquisition through activation of PPAR-alpha nuclear receptors. Learn Mem 2009;16:332-7
  • Varvel SA, Wise LE, Niyuhire F, Inhibition of fatty-acid amide hydrolase accelerates acquisition and extinction rates in a spatial memory task. Neuropsychopharmacology 2007;32:1032-41
  • Sokolic L, Long LE, Hunt GE, Disruptive effects of the prototypical cannabinoid Delta9-tetrahydrocannabinol and the fatty acid amide inhibitor URB-597 on go/no-go auditory discrimination performance and olfactory reversal learning in rats. Behav Pharmacol 2011;22:191-202
  • Wise LE, Thorpe AJ, Lichtman AH. Hippocampal CB1 receptors mediate the memory impairing effects of Delta9-tetrahydrocannabinol. Neuropsychopharmacology 2009;34:2072-80
  • Egashira N, Ishigami N, Mishima K, Delta9-Tetrahydrocannabinol-induced cognitive deficits are reversed by olanzapine but not haloperidol in rats. Prog Neuropsychopharmacol Biol Psychiatry 2008;32:499-506
  • Nava F, Carta G, Battasi AM, Gessa GL. D2 dopamine receptors enable Delta9-tetrahydrocannabinol induced memory impairment and reduction of hippocampal extracellular acetylcholine concentration. Br J Pharmacol 2000;130:1201-10
  • Ledent C, Valverde O, Cossu G, Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science 1999;283:401-4
  • Reibaud M, Obinu MC, Ledent C, Enhancement of memory in cannabinoid CB1 receptor knock-out mice. Eur J Pharmacol 1999;379:R1-2
  • Ortega-Alvaro A, Aracil-Fernandez A, Garcia-Gutierrez MS, Deletion of CB2 cannabinoid receptor induces schizophrenia-related behaviors in mice. Neuropsychopharmacology 2011;36:1489-504
  • Hasselmo ME, Barkai E. Cholinergic modulation of activity-dependent synaptic plasticity in the piriform cortex and associative memory function in a network biophysical simulation. J Neurosci 1995;15:6592-604
  • Steffens M, Szabo B, Klar M, Modulation of electrically evoked acetylcholine release through cannabinoid CB1 receptors: evidence for an endocannabinoid tone in the human neocortex. Neuroscience 2003;120:455-65
  • Bisogno T, Di Marzo V. The role of the endocannabinoid system in Alzheimer's disease: facts and hypotheses. Curr Pharm Des 2008;14:2299-305
  • Campbell VA, Gowran A. Alzheimer's disease; taking the edge off with cannabinoids? Br J Pharmacol 2007;152:655-62
  • Campillo NE, Paez JA. Cannabinoid system in neurodegeneration: new perspectives in Alzheimer's disease. Mini Rev Med Chem 2009;9:539-59
  • Farooqui AA, Liss L, Horrocks LA. Neurochemical aspects of Alzheimer's disease: involvement of membrane phospholipids. Metab Brain Dis 1988;3:19-35
  • Esposito G, Iuvone T, Savani C, Opposing control of cannabinoid receptor stimulation on amyloid-beta-induced reactive gliosis: in vitro and in vivo evidence. J Pharmacol Exp Ther 2007;322:1144-52
  • van der Stelt M, Mazzola C, Esposito G, Endocannabinoids and beta-amyloid-induced neurotoxicity in vivo: effect of pharmacological elevation of endocannabinoid levels. Cell Mol Life Sci 2006;63:1410-24
  • Mulder J, Zilberter M, Pasquare SJ, Molecular reorganization of endocannabinoid signalling in Alzheimer's disease. Brain 2011;134:1041-60
  • Jung KM, Astarita G, Yasar S, An. amyloid beta42-dependent deficit in anandamide mobilization is associated with cognitive dysfunction in Alzheimer's disease. Neurobiol Aging 2011 May 3; [Epub ahead of print] PMID: 21546126 [PubMed - as supplied by publisher]
  • Benito C, Nunez E, Tolon RM, Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer's disease brains. J Neurosci 2003;23:11136-41
  • Nunez E, Benito C, Tolon RM, Glial expression of cannabinoid CB2 receptors and fatty acid amide hydrolase are beta amyloid-linked events in Down's syndrome. Neuroscience 2008;151:104-10
  • Rampa A, Bartolini M, Bisi A, The first dual ChE/FAAH inhibitors: new perspectives for Alzheimer's disease? ACS Med Chem Lett 2012;3(3):182-6
  • Ramirez BG, Blazquez C, Gomez del Pulgar T, Prevention of Alzheimer's disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci 2005;25:1904-13
  • Tolon RM, Nunez E, Pazos MR, The activation of cannabinoid CB2 receptors stimulates in situ and in vitro beta-amyloid removal by human macrophages. Brain Res 2009;1283:148-54
  • Dawe RJ, Bennett DA, Schneider JA, Arfanakis K. Neuropathologic correlates of hippocampal atrophy in the elderly: a clinical, pathologic, postmortem MRI study. PLoS One 2011;6:e26286
  • Pievani M, Galluzzi S, Thompson PM, APOE4 is associated with greater atrophy of the hippocampal formation in Alzheimer's disease. Neuroimage 2011;55:909-19
  • Milton NG. Anandamide and noladin ether prevent neurotoxicity of the human amyloid-beta peptide. Neurosci Lett 2002;332:127-30
  • Esposito G, De Filippis D, Steardo L, CB1 receptor selective activation inhibits beta-amyloid-induced iNOS protein expression in C6 cells and subsequently blunts tau protein hyperphosphorylation in co-cultured neurons. Neurosci Lett 2006;404:342-6
  • Mazzola C, Micale V, Drago F. Amnesia induced by beta-amyloid fragments is counteracted by cannabinoid CB1 receptor blockade. Eur J Pharmacol 2003;477:219-25
  • Volicer L, Stelly M, Morris J, Effects of dronabinol on anorexia and disturbed behavior in patients with Alzheimer's disease. Int J Geriatr Psychiatry 1997;12:913-19
  • Walther S, Mahlberg R, Eichmann U, Kunz D. Delta-9-tetrahydrocannabinol for nighttime agitation in severe dementia. Psychopharmacology (Berl) 2006;185:524-8
  • Passmore MJ. The cannabinoid receptor agonist nabilone for the treatment of dementia-related agitation. Int J Geriatr Psychiatry 2008;23:116-17
  • Booz GW. Cannabidiol as an emergent therapeutic strategy for lessening the impact of inflammation on oxidative stress. Free Radic Biol Med 2011;51:1054-61
  • Iuvone T, Esposito G, De Filippis D, Cannabidiol: a promising drug for neurodegenerative disorders? CNS Neurosci Ther 2009;15:65-75
  • Krishnan S, Cairns R, Howard R. Cannabinoids for the treatment of dementia. Cochrane Database Syst Rev 2009;CD007204
  • Scuderi C, Filippis DD, Iuvone T, Cannabidiol in medicine: a review of its therapeutic potential in CNS disorders. Phytother Res 2009;23:597-602
  • Zuardi AW. Cannabidiol: from an inactive cannabinoid to a drug with wide spectrum of action. Rev Bras Psiquiatr 2008;30:271-80
  • Pertwee RG. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Delta9-tetrahydrocannabinol, cannabidiol and Delta9-tetrahydrocannabivarin. Br J Pharmacol 2008;153:199-215
  • de Filippis D, Iuvone T, d'amico A, Effect of cannabidiol on sepsis-induced motility disturbances in mice: involvement of CB receptors and fatty acid amide hydrolase. Neurogastroenterol Motil 2008;20:919-27
  • De Petrocellis L, Di Marzo V. Non-CB1, non-CB2 receptors for endocannabinoids, plant cannabinoids, and synthetic cannabimimetics: focus on G-protein-coupled receptors and transient receptor potential channels. J Neuroimmune Pharmacol 2010;5:103-21
  • Esposito G, Scuderi C, Savani C, Cannabidiol in vivo blunts beta-amyloid induced neuroinflammation by suppressing IL-1beta and iNOS expression. Br J Pharmacol 2007;151:1272-9
  • Hampson AJ, Grimaldi M, Axelrod J, Wink D. Cannabidiol and (-)Delta9-tetrahydrocannabinol are neuroprotective antioxidants. Proc Natl Acad Sci USA 1998;95:8268-73
  • Hamelink C, Hampson A, Wink DA, Comparison of cannabidiol, antioxidants, and diuretics in reversing binge ethanol-induced neurotoxicity. J Pharmacol Exp Ther 2005;314:780-8
  • Malfait AM, Gallily R, Sumariwalla PF, The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis. Proc Natl Acad Sci USA 2000;97:9561-6
  • Mukhopadhyay P, Rajesh M, Horvath B, Cannabidiol protects against hepatic ischemia/reperfusion injury by attenuating inflammatory signaling and response, oxidative/nitrative stress, and cell death. Free Radic Biol Med 2011;50:1368-81
  • Costa B, Trovato AE, Comelli F, The non-psychoactive cannabis constituent cannabidiol is an orally effective therapeutic agent in rat chronic inflammatory and neuropathic pain. Eur J Pharmacol 2007;556:75-83
  • De Filippis D, Esposito G, Cirillo C, Cannabidiol reduces intestinal inflammation through the control of neuroimmune axis. PLoS One 2011;6:e28159
  • Hallak JE, Dursun SM, Bosi DC, The interplay of cannabinoid and NMDA glutamate receptor systems in humans: preliminary evidence of interactive effects of cannabidiol and ketamine in healthy human subjects. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:198-202
  • Bergamaschi MM, Queiroz RH, Zuardi AW, Crippa JA. Safety and side effects of cannabidiol, a Cannabis sativa constituent. Curr Drug Saf 2011;6:237-49
  • Long LE, Chesworth R, Huang XF, A behavioural comparison of acute and chronic Delta9-tetrahydrocannabinol and cannabidiol in C57BL/6JArc mice. Int J Neuropsychopharmacol 2010;13:861-76
  • Fagherazzi EV, Garcia VA, Maurmann N, Memory-rescuing effects of cannabidiol in an animal model of cognitive impairment relevant to neurodegenerative disorders. Psychopharmacology (Berl) 2012;219:1133-40
  • Iuvone T, Esposito G, Esposito R, Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on beta-amyloid-induced toxicity in PC12 cells. J Neurochem 2004;89:134-41
  • Esposito G, De Filippis D, Carnuccio R, The marijuana component cannabidiol inhibits beta-amyloid-induced tau protein hyperphosphorylation through Wnt/beta-catenin pathway rescue in PC12 cells. J Mol Med 2006;84:253-8
  • Esposito G, De Filippis D, Maiuri MC, Cannabidiol inhibits inducible nitric oxide synthase protein expression and nitric oxide production in beta-amyloid stimulated PC12 neurons through p38 MAP kinase and NF-kappaB involvement. Neurosci Lett 2006;399:91-5
  • Martin-Moreno AM, Reigada D, Ramirez BG, Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: relevance to Alzheimer's disease. Mol Pharmacol 2011;79:964-73
  • Esposito G, Scuderi C, Valenza M, Cannabidiol reduces Abeta-induced neuroinflammation and promotes hippocampal neurogenesis through PPARgamma involvement. PLoS One 2011;6:e28668
  • Duce JA, Bush AI. Biological metals and Alzheimer's disease: implications for therapeutics and diagnostics.Prog Neurobiol 2010;92(1):1-18
  • Frisoni GB, Fox NC, Jack CR Jr, The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 2010;6:67-77
  • Ray S, Britschgi M, Herbert C, Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins. Nat Med 2007;13:1359-62
  • Tariot PN, Farlow MR, Grossberg GT, Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA 2004;291:317-24
  • Farlow MR, Alva G, Meng X, Olin JT. A 25-week, open-label trial investigating rivastigmine transdermal patches with concomitant memantine in mild-to-moderate Alzheimer's disease: a post hoc analysis. Curr Med Res Opin 2010;26:263-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.