518
Views
42
CrossRef citations to date
0
Altmetric
Reviews

Targeting apicoplasts in malaria parasites

&
Pages 167-177 | Published online: 11 Dec 2012

Bibliography

  • WHO GMP. World malaria report: 2011. World Health Organization; Geneva Switzerland; 2011
  • Hayton K, Su X-z. Drug resistance and genetic mapping in Plasmodium falciparum. Curr Genet 2008;54(5):223-39
  • McFadden GI, Reith ME, Munholland J, Lang-Unnasch N. Plastid in human parasites. Nature 1996;381(6582):482
  • Wilson RJ, Denny PW, Preiser PR, Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J Mol Biol 1996;261(2):155-72
  • Kohler S, Delwiche CF, Denny PW, A plastid of probable green algal origin in Apicomplexan parasites. Science 1997;275(5305):1485-9
  • Jomaa H, Wiesner J, Sanderbrand S, Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 1999;285(5433):1573-6
  • McFadden GI, Waller RF. Plastids in parasites of humans. Bioessays 1997;19(11):1033-40
  • Ralph SA, van Dooren GG, Waller RF, Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol 2004;2(3):203-16
  • Surolia N, Surolia A. Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum. Nat Med 2001;7(2):167-73
  • Walker G, Dorrell RG, Schlacht A, Dacks JB. Eukaryotic systematics: a user's guide for cell biologists and parasitologists. Parasitology 2011;138(13):1638-63
  • Adl SM, Simpson AGB, Lane CE, The revised classification of eukaryotes. J Eukaryot Microbiol 2012;59(5):429-514
  • Obornik M, Janouskovec J, Chrudimsky T, Lukes J. Evolution of the apicoplast and its hosts: from heterotrophy to autotrophy and back again. Int J Parasitol 2009;39(1):1-12
  • Moore RB, Obornik M, Janouskovec J, A photosynthetic alveolate closely related to apicomplexan parasites. Nature 2008;451(7181):959-63
  • Obornik M, Modry D, Lukes M, Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the Great Barrier Reef. Protist 2012;163(2):306-23
  • Janouskovec J, Horak A, Obornik M, A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci USA 2010;107(24):10949-54
  • Foth BJ, Ralph SA, Tonkin CJ, Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 2003;299(5607):705-8
  • Kalanon M, Tonkin CJ, McFadden GI. Characterization of two putative protein translocation components in the apicoplast of Plasmodium falciparum. Eukaryot Cell 2009;8(8):1146-54
  • Sato S, Clough B, Coates L, Wilson RJ. Enzymes for heme biosynthesis are found in both the mitochondrion and plastid of the malaria parasite Plasmodium falciparum. Protist 2004;155(1):117-25
  • Spork S, Hiss JA, Mandel K, An unusual ERAD-like complex is targeted to the apicoplast of Plasmodium falciparum. Eukaryot Cell 2009;8(8):1134-45
  • Janouskovec J, Horak A, Barott KL, Global analysis of plastid diversity reveals apicomplexan-related lineages in coral reefs. Curr Biol 2012;22(13):R518-19
  • Mullin KA, Lim L, Ralph SA, Membrane transporters in the relict plastid of malaria parasites. Proc Natl Acad Sci USA 2006;103(25):9572-7
  • Divo AA, Geary TG, Jensen JB. Oxygen- and time-dependent effects of antibiotics and selected mitochondrial inhibitors on Plasmodium falciparum in culture. Antimicrob Agents Chemother 1985;27(1):21-7
  • Yeo AE, Rieckmann KH. Increased antimalarial activity of azithromycin during prolonged exposure of Plasmodium falciparum in vitro. Int J Parasitol 1995;25(4):531-2
  • Yeo AE, Rieckmann KH. Prolonged exposure of Plasmodium falciparum to ciprofloxacin increases anti-malarial activity. J Parasitol 1994;80(1):158-60
  • Yu M, Kumar TRS, Nkrumah LJ, The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites. Cell Host Microbe 2008;4(6):567-78
  • Vaughan AM, O'neill MT, Tarun AS, Type II fatty acid synthesis is essential only for malaria parasite late liver stage development. Cell Microbiol 2009;11(3):506-20
  • He CY, Shaw MK, Pletcher CH, A plastid segregation defect in the protozoan parasite Toxoplasma gondii. EMBO J 2001;20(3):330-9
  • Fichera ME, Roos DS. A plastid organelle as a drug target in apicomplexan parasites. Nature 1997;390(6658):407-9
  • Dahl EL, Rosenthal PJ. Multiple antibiotics exert delayed effects against the Plasmodium falciparum apicoplast. Antimicrob Agents Chemother 2007;51(10):3485-90
  • Dahl EL, Shock JL, Shenai BR, Tetracyclines specifically target the apicoplast of the malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother 2006;50(9):3124-31
  • Goodman CD, Su V, McFadden GI. The effects of anti-bacterials on the malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 2007;152(2):181-91
  • Sidhu AbS, Sun Q, Nkrumah LJ, In vitro efficacy, resistance selection, and structural modeling studies implicate the malarial parasite apicoplast as the target of azithromycin. J Biol Chem 2007;282(4):2494-504
  • Lee Y, Choi JY, Fu H, Chemistry and biology of macrolide antiparasitic agents. J Med Chem 2011;54(8):2792-804
  • Aminake MN, Schoof S, Sologub L, Thiostrepton and derivatives exhibit antimalarial and gametocytocidal activity by dually targeting parasite proteasome and apicoplast. Antimicrob Agents Chemother 2011;55(4):1338-48
  • Rathore S, Sinha D, Asad M, A cyanobacterial serine protease of Plasmodium falciparum is targeted to the apicoplast and plays an important role in its growth and development. Mol Microbiol 2010; Epub ahead of print
  • Ekland EH, Schneider J, Fidock DA. Identifying apicoplast-targeting antimalarials using high-throughput compatible approaches. FASEB J 2011;25(10):3583-93
  • Friesen J, Silvie O, Putrianti ED, Natural immunization against malaria: causal prophylaxis with antibiotics. Sci Transl Med 2010;2(40):40-9
  • Yeh E, DeRisi JL. Chemical rescue of malaria parasites lacking an apicoplast defines organelle function in blood-stage Plasmodium falciparum. PLoS Biol 2011;9(8):e100138
  • Rodriguez-Concepcion M, Boronat A. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 2002;130(3):1079-89
  • Kuzuyama T, Shimizu T, Takahashi S, Seto H. Fosmidomycin, a specific inhibitor of 1-deoxy-d-xylulose 5-phosphate reducoisomerase in the nonmevalonate pathway for terpenoid biosynthesis. Tetrahedron Lett 1998;2239(43):7913-16
  • Zeidler J, Schwender J, Muller C, Inhibition of the non-mevalonate 1-deoxy-D-xylulose-5-phosphate pathway of plant isoprenoid biosynthesis by fosmidomycin. Z Naturforsch 1998;53c:980-6
  • Nair SC, Brooks CF, Goodman CD, Apicoplast isoprenoid precursor synthesis and the molecular basis of fosmidomycin resistance in Toxoplasma gondii. J Exp Med 2011;208(7):1547-59
  • Missinou MA, Borrmann S, Schindler A, Fosmidomycin for malaria. Lancet 2002;360(9349):1941-2
  • Lell B, Ruangweerayut R, Wiesner J, Fosmidomycin, a novel chemotherapeutic agent for malaria. Antimicrob Agents Chemother 2003;47(2):735-8
  • Wiesner J, Reichenberg A, Heinrich S, The plastid-like organelle of apicomplexan parasites as drug target. Curr Pharm Des 2008;14(9):855-71
  • Devreux V, Wiesner J, Goeman JL, Synthesis and biological evaluation of cyclopropyl analogues of fosmidomycin as potent Plasmodium falciparum growth inhibitors. J Med Chem 2006;49(8):2656-60
  • Haemers T, Wiesner J, Giessmann D, Synthesis of beta- and gamma-oxa isosteres of fosmidomycin and FR900098 as antimalarial candidates. Bioorg Med Chem 2008;16(6):3361-71
  • Haemers T, Wiesner J, Van Poecke S, Synthesis of alpha-substituted fosmidomycin analogues as highly potent Plasmodium falciparum growth inhibitors. Bioorg Med Chem Lett 2006;16(7):1888-91
  • Zhang B, Watts KM, Hodge D, A second target of the antimalarial and antibacterial agent fosmidomycin revealed by cellular metabolic profiling. Biochemistry 2011;50(17):3570-7
  • Hirsch AK, Lauw S, Gersbach P, Nonphosphate inhibitors of IspE protein, a kinase in the non-mevalonate pathway for isoprenoid biosynthesis and a potential target for antimalarial therapy. ChemMedChem 2007;2(6):806-10
  • Rodriguez-Concepcion M. The MEP pathway: a new target for the development of herbicides, antibiotics and antimalarial drugs. Curr Pharm Des 2004;10(19):2391-400
  • Witkowski B, Lelievre J, Barragan MJ, Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob Agents Chemother 2010;54(5):1872-7
  • Veiga MI, Ferreira PE, Schmidt BA, Antimalarial exposure delays Plasmodium falciparum intra-erythrocytic cycle and drives drug transporter genes expression. PLoS One 2010;5(8):e12408
  • Teuscher F, Gatton ML, Chen N, Artemisinin-induced dormancy in Plasmodium falciparum: duration, recovery rates, and implications in treatment failure. J Infect Dis 2010;202(9):1362-8
  • Pei Y, Tarun AS, Vaughan AM, Plasmodium pyruvate dehydrogenase activity is only essential for the parasite's progression from liver infection to blood infection. Mol Microbiol 2010;75(4):957-71
  • Nagaraj VA, Arumugam R, Gopalakrishnan B, Unique properties of Plasmodium falciparum porphobilinogen deaminase. J Biol Chem 2008;283(1):437-44
  • Nagaraj VA, Prasad D, Rangarajan PN, Padmanaban G. Mitochondrial localization of functional ferrochelatase from Plasmodium falciparum. Mol Biochem Parasitol 2009;168(1):109-12
  • Varadharajan S, Dhanasekaran S, Bonday ZQ, Involvement of delta-aminolaevulinate synthase encoded by the parasite gene in de novo haem synthesis by Plasmodium falciparum. Biochem J 2002;367(Pt 2):321-7
  • Varadharajan S, Sagar BK, Rangarajan PN, Padmanaban G. Localization of ferrochelatase in Plasmodium falciparum. Biochem J 2004;384(Pt 2):429-36
  • van Dooren GG, Su V, D'Ombrain MC, McFadden GI. Processing of an apicoplast leader sequence in Plasmodium falciparum and the identification of a putative leader cleavage enzyme. J Biol Chem 2002;277(26):23612-19
  • Nagaraj VA, Arumugam R, Prasad D, Protoporphyrinogen IX oxidase from Plasmodium falciparum is anaerobic and is localized to the mitochondrion. Mol Biochem Parasitol 2010;174(1):44-52
  • Krungkrai J, Prapunwattana P, Krungkrai SR. Ultrastructure and function of mitochondria in gametocytic stage of Plasmodium falciparum. Parasite 2000;7(1):19-26
  • Okamoto N, Spurck TP, Goodman CD, McFadden GI. Apicoplast and mitochondrion in gametocytogenesis of Plasmodium falciparum. Eukaryot Cell 2009;8(1):128-32
  • Young JA, Fivelman QL, Blair PL, The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. Mol Biochem Parasitol 2005;143(1):67-79
  • Martin W. Gene transfer from organelles to the nucleus: frequent and in big chunks. Proc Natl Acad Sci USA 2003;100(15):8612-14
  • Agrawal S, van Dooren GG, Beatty WL, Striepen B. Genetic evidence that an endosymbiont-derived endoplasmic reticulum-associated protein degradation (ERAD) system functions in import of apicoplast proteins. J Biol Chem 2009;284(48):33683-91
  • Kalanon M, McFadden GI. Malaria, Plasmodium falciparum and its apicoplast. Biochem Soc Trans 2010;38(3):775-82
  • Van Dooren GG, Tomova C, Agrawal S, Toxoplasma gondii Tic20 is essential for apicoplast protein import. Proc Natl Acad Sci USA 2008;105(36):13574-9
  • Glaser S, Van Dooren GG, Agrawal S, Tic22 is an essential chaperone required for protein import into the apicoplast. J Biol Chem 2012; [Epub ahead of print]
  • Ramya TNC, Karmodiya K, Surolia A, Surolia N. 15-deoxyspergualin primarily targets the trafficking of apicoplast proteins in Plasmodium falciparum. J Biol Chem 2007;282(9):6388-97
  • Banerjee T, Singh RR, Gupta S, 15-Deoxyspergualin hinders physical interaction between basic residues of transit peptide in PfENR and Hsp70-1. IUBMB Life 2012;64(1):99-107
  • Ramya TN, Surolia N, Surolia A. 15-deoxyspergualin inhibits eukaryotic protein synthesis through eIF2alpha phosphorylation. Biochem J 2007;401(2):411-20
  • Rohrich RC, Englert N, Troschke K, Reconstitution of an apicoplast-localised electron transfer pathway involved in the isoprenoid biosynthesis of Plasmodium falciparum. FEBS Lett 2005;579(28):6433-8
  • Seeber F. Eukaryotic genomes contain a [2Fez.sbnd;2S] ferredoxin isoform with a conserved C-terminal sequence motif. Trends Biochem Sci 2002;27(11):545-7
  • Van Dooren GG, Stimmler LM, McFadden GI. Metabolic maps and functions of the Plasmodium mitochondrion. FEMS Microbiol Rev 2006;30(4):596-630
  • Vollmer M, Thomsen N, Wiek S, Seeber F. Apicomplexan parasites possess distinct nuclear-encoded, but apicoplast-localized, plant-type ferredoxin-NADP+ reductase and ferredoxin. J Biol Chem 2001;276(8):5483-90
  • Milani M, Balconi E, Aliverti A, Ferredoxin-NADP+ reductase from Plasmodium falciparum undergoes NADP+-dependent dimerization and inactivation: functional and crystallographic analysis. J Mol Biol 2007;367(2):501-13
  • Seeber F, Aliverti A, Zanetti G. The plant-type ferredoxin-NADP+ reductase/ferredoxin redox system as a possible drug target against apicomplexan human parasites. Curr Pharm Des 2005;11(24):3159-72
  • Balconi E, Pennati A, Crobu D, The ferredoxin-NADP+ reductase/ferredoxin electron transfer system of Plasmodium falciparum. FEBS J 2009;276(14):3825-36
  • Crobu D, Canevari G, Milani M, Plasmodium falciparum ferredoxin-NADP+ reductase His286 plays a dual role in NADP(H) binding and catalysis. Biochemistry 2009;48(40):9525-33
  • Foth BJ, Stimmler LM, Handman E, The malaria parasite Plasmodium falciparum has only one pyruvate dehydrogenase complex, which is located in the apicoplast. Mol Microbiol 2005;55(1):39-53
  • Kose M, Schiedel AC. Nucleoside/nucleobase transporters: drug targets of the future? Future Med Chem 2009;1(2):303-26
  • Zhou SF, Wang LL, Di YM, Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr Med Chem 2008;15(20):1981-2039
  • Wickenden A, Priest B, Erdemli G. Ion channel drug discovery: challenges and future directions. Future Med Chem 2012;4(5):661-79
  • Martin RE, Henry RI, Abbey JL, The 'permeome' of the malaria parasite: an overview of the membrane transport proteins of Plasmodium falciparum. Genome Biol 2005;6(3):R26
  • DeRocher AE, Karnataki A, Vaney P, Parsons M. Apicoplast targeting of a Toxoplasma gondii transmembrane protein requires a cytosolic tyrosine-based motif. Traffic 2012;13(5):694-704
  • Lim L, Linka M, Mullin KA, The carbon and energy sources of the non-photosynthetic plastid in the malaria parasite. FEBS Lett 2010;584(3):549-54
  • Karnataki A, Derocher A, Coppens I, Cell cycle-regulated vesicular trafficking of Toxoplasma APT1, a protein localized to multiple apicoplast membranes. Mol Microbiol 2007;63(6):1653-68
  • Flugge UI, Gao W. Transport of isoprenoid intermediates across chloroplast envelope membranes. Plant Biol (Stuttg) 2005;7(1):91-7
  • Wang J, Huang L, Li J, Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation. PLoS ONE 2010;5(3):e9582
  • Arnou B, Montigny C, Morth JP, The Plasmodium falciparum Ca(2+)-ATPase PfATP6: insensitive to artemisinin, but a potential drug target. Biochem Soc Trans 2011;39(3):823-31
  • Eckstein-Ludwig U, Webb RJ, Van Goethem ID, Artemisinins target the SERCA of Plasmodium falciparum. Nature 2003;424(6951):957-61
  • Haynes RK, Chan WC, Wong HN, Facile oxidation of leucomethylene blue and dihydroflavins by artemisinins: relationship with flavoenzyme function and antimalarial mechanism of action. ChemMedChem 2010;5(8):1282-99
  • Kannan R, Kumar K, Sahal D, Reaction of artemisinin with haemoglobin: implications for antimalarial activity. Biochem J 2005;385(Pt 2):409-18

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.