642
Views
27
CrossRef citations to date
0
Altmetric
Reviews

Heparan sulfate inhibitors and their therapeutic implications in inflammatory illnesses

, PhD
Pages 965-975 | Published online: 24 Jun 2013

Bibliography

  • Griffin CC, Linhardt RJ, Van Gorp CL, et al. Isolation and characterization of heparan sulfate from crude porcine intestinal mucosal peptidoglycan heparin. Carbohydr Res 1995;276:183-97
  • Esko JD, Selleck SB. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 2002;71:435-71
  • Turnbull JE, Gallagher JT. Distribution of iduronate 2-sulphate residues in heparan sulphate. Evidence for an ordered polymeric structure. Biochem J 1991;273:553-9
  • Staples GO, Shi X, Zaia J. Extended N-sulfated domains reside at the nonreducing end of heparan sulfate chains. J Biol Chem 2010;285:18336-43
  • Kreuger J, Spillmann D, Li JP, et al. Interactions between heparan sulfate and proteins: the concept of specificity. J Cell Biol 2006;174:323-7
  • Taylor KR, Gallo RL. Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation. FASEB J 2006;20:9-22
  • Parish CR. The role of heparan sulphate in inflammation. Nat Rev Immunol 2006;6:633-43
  • Wang L, Brown JR, Varki A, et al. Heparin's anti-inflammatory effects require glucosamine 6-O-sulfation and are mediated by blockade of L- and P-selectins. J Clin Invest 2002;110:127-36
  • Butcher EC. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 1991;67:1033-6
  • Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994;76:301-14
  • Schenkel AR, Mamdouh Z, Muller WA. Locomotion of monocytes on endothelium is a critical step during extravasation. Nat Immunol 2004;5:393-400
  • Li JP, Vlodavsky I. Heparin, heparan sulfate and heparanase in inflammatory reactions. Thromb Haemost 2009;102:823-8
  • Wang L, Fuster M, Sriramarao P, et al. Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol 2005;6:902-10
  • Bao X, Moseman EA, Saito H, et al. Endothelial heparan sulfate controls chemokine presentation in recruitment of lymphocytes and dendritic cells to lymph nodes. Immunity 2010;33:817-29
  • Alon R. Trapped versus soluble chemokines: functions in leukocyte adhesion and motility. Immunity 2010;33:654-6
  • de Mestre AM, Rao S, Hornby JR, et al. Early growth response gene 1 (EGR1) regulates heparanase gene transcription in tumor cells. J Biol Chem 2005;280:35136-47
  • Baraz L, Haupt Y, Elkin M, et al. Tumor suppressor p53 regulates heparanase gene expression. Oncogene 2006;25:3939-47
  • Chen G, Wang D, Vikramadithyan R, et al. Inflammatory cytokines and fatty acids regulate endothelial cell heparanase expression. Biochemistry 2004;43:4971-7
  • Sandwall E, Bodevin S, Nasser NJ, et al. Molecular structure of heparan sulfate from Spalax. Implications of heparanase and hypoxia. J Biol Chem 2009;284:3814-22
  • Freeman C, Parish CR. Human platelet heparanase: purification, characterization and catalytic activity. Biochem J 1998;330:1341-50
  • Pikas DS, Li JP, Vlodavsky I, et al. Substrate specificity of heparanases from human hepatoma and platelets. J Biol Chem 1998;273:18770-7
  • Okada Y, Yamada S, Toyoshima M, et al. Structural recognition by recombinant human heparanase that plays critical roles in tumor metastasis. Hierarchical sulfate groups with different effects and the essential target disulfated trisaccharide sequence. J Biol Chem 2002;277:42488-95
  • Peterson SB, Liu J. Unraveling the specificity of heparanase utilizing synthetic substrates. J Biol Chem 2010;285:14504-13
  • Peterson S, Liu J. Deciphering mode of action of heparanase using structurally defined oligosaccharides. J Biol Chem 2012;287:34836-43
  • Available from: http://www.cazy.org/GH79.html
  • Hulett MD, Hornby JR, Ohms SJ, et al. Identification of active-site residues of the pro-metastatic endoglycosidase heparanase. Biochemistry 2000;39:15659-67
  • Bisio A, Mantegazza A, Urso E, et al. High-performance liquid chromatographic/mass spectrometric studies on the susceptibility of heparin species to cleavage by heparanase. Semin Thromb Hemost 2007;33:488-95
  • Hammond E, Li CP, Ferro V. Development of a colorimetric assay for heparanase activity suitable for kinetic analysis and inhibitor screening. Anal Biochem 2010;396:112-16
  • Fux L, Feibish N, Cohen-Kaplan V, et al. Structure-function approach identifies a COOH-terminal domain that mediates heparanase signaling. Cancer Res 2009;69:1758-67
  • Gandhi NS, Freeman C, Parish CR, et al. Computational analyses of the catalytic and heparin-binding sites and their interactions with glycosaminoglycans in glycoside hydrolase family 79 endo-beta-D-glucuronidase (heparanase). Glycobiology 2012;22:35-55
  • Sapay N, Cabannes E, Petitou M, et al. Molecular model of human heparanase with proposed binding mode of a heparan sulfate oligosaccharide and catalytic amino acids. Biopolymers 2012;97:21-34
  • Edovitsky E, Lerner I, Zcharia E, et al. Role of endothelial heparanase in delayed-type hypersensitivity. Blood 2006;107:3609-16
  • Waterman M, Ben-Izhak O, Eliakim R, et al. Heparanase upregulation by colonic epithelium in inflammatory bowel disease. Mod Pathol 2007;20:8-14
  • Lerner I, Hermano E, Zcharia E, et al. Heparanase powers a chronic inflammatory circuit that promotes colitis-associated tumorigenesis in mice. J Clin Invest 2011;121:1709-21
  • Karin M, Greten FR. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005;5:749-59
  • Meirovitz A, Goldberg R, Binder A, et al. Heparanase in inflammation and inflammation-associated cancer. FEBS J 2013;230:2307-19
  • Vlodavsky I, Beckhove P, Lerner I, et al. Significance of heparanase in cancer and inflammation. Cancer Microenviron 2012;5:115-32
  • Li RW, Freeman C, Yu D, et al. Dramatic regulation of heparanase activity and angiogenesis gene expression in synovium from patients with rheumatoid arthritis. Arthritis Rheum 2008;58:1590-600
  • Parish CR, Freeman C, Ziolkowski AF, et al. Unexpected new roles for heparanase in Type 1 diabetes and immune gene regulation. Matrix Biol 2013; DOI: 10.1016/j.matbio.2013.02.007
  • Ziolkowski AF, Popp SK, Freeman C, et al. Heparan sulfate and heparanase play key roles in mouse beta cell survival and autoimmune diabetes. J Clin Invest 2012;122:132-41
  • Shafat I, Ilan N, Zoabi S, et al. Heparanase levels are elevated in the urine and plasma of type 2 diabetes patients and associate with blood glucose levels. PLoS One 2011;6:e17312
  • Gil N, Goldberg R, Neuman T, et al. Heparanase is essential for the development of diabetic nephropathy in mice. Diabetes 2012;61:208-16
  • Ma P, Luo Y, Zhu X, et al. Retinal heparanase expression in streptozotocin-induced diabetic rats. Can J Ophthalmol 2010;45:46-51
  • Schmidt EP, Yang Y, Janssen WJ, et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med 2012;18:1217-23
  • Vlodavsky I, Blich M, Li JP, et al. Involvement of heparanase in atherosclerosis and other vessel wall pathologies. Matrix Biol 2013; DOI: 10.1016/j.matbio.2013.03.002
  • He YQ, Sutcliffe EL, Bunting KL, et al. The endoglycosidase heparanase enters the nucleus of T lymphocytes and modulates H3 methylation at actively transcribed genes via the interplay with key chromatin modifying enzymes. Transcription 2012;3:130-45
  • Bitan M, Weiss L, Reibstein I, et al. Heparanase upregulates Th2 cytokines, ameliorating experimental autoimmune encephalitis. Mol Immunol 2010;47:1890-8
  • Bitan M, Weiss L, Zeira M, et al. Heparanase promotes engraftment and prevents graft versus host disease in stem cell transplantation. PLoS ONE 2010;5:e10135
  • Massena S, Christoffersson G, Hjertstrom E, et al. A chemotactic gradient sequestered on endothelial heparan sulfate induces directional intraluminal crawling of neutrophils. Blood 2010;116:1924-31
  • Li L, Wang B, Gao T, et al. Heparanase overexpression reduces carrageenan-induced mechanical and cold hypersensitivity in mice. Neurosci Lett 2012;511:4-7
  • Zhang X, Wang B, O'Callaghan P, et al. Heparanase overexpression impairs inflammatory response and macrophage-mediated clearance of amyloid-beta in murine brain. Acta Neuropathol 2012;124:465-78
  • Tsuzuki Y, Nguyen TK, Garud DR, et al. 4-deoxy-4-fluoro-xyloside derivatives as inhibitors of glycosaminoglycan biosynthesis. Bioorg Med Chem Lett 2010;20:7269-73
  • Raman K, Ninomiya M, Nguyen TK, et al. Novel glycosaminoglycan biosynthetic inhibitors affect tumor-associated angiogenesis. Biochem Biophys Res Commun 2011;404:86-9
  • Berkin A, Szarek WA, Kisilevsky R. Biological evaluation of a series of 2-acetamido-2-deoxy-D-glucose analogs towards cellular glycosaminoglycan and protein synthesis in vitro. Glycoconjugate J 2005;22:443-51
  • van Wijk XM, Oosterhof A, van den Broek SA, et al. A 4-deoxy analogue of N-acetyl-D-glucosamine inhibits heparan sulphate expression and growth factor binding in vitro. Exp Cell Res 2010;316:2504-12
  • Nilsson U, Johnsson R, Fransson LA, et al. Attenuation of tumor growth by formation of antiproliferative glycosaminoglycans correlates with low acetylation of histone H3. Cancer Res 2010;70:3771-9
  • Coombe DR, Kett WC. Heparin mimetics. Handb Exp Pharmacol 2012;207:361-83
  • Gandhi NS, Mancera RL. Heparin/heparan sulphate-based drugs. Drug Discov Today 2010;15:1058-69
  • Li P, Sheng J, Liu Y, et al. Heparosan-derived heparan sulfate/heparin-like compounds: one kind of potential therapeutic agents. Med Res Rev 2013;33:665-92
  • Ramani VC, Purushothaman A, Stewart MD, et al. The heparanase/syndecan-1 axis in cancer: mechanisms and therapies. FEBS J 2013;280:2294-306
  • Tyrrell DJ, Horne AP, Holme KR, et al. Heparin in inflammation: potential therapeutic applications beyond anticoagulation. Adv Pharmacol 1999;46:151-208
  • Davidson BL, Geerts WH, Lensing AW. Low-dose heparin for severe sepsis. N Engl J Med 2002;347:1036-7
  • Day R, Forbes A. Heparin, cell adhesion, and pathogenesis of inflammatory bowel disease. Lancet 1999;354:62-5
  • Hoppensteadt D, Fareed J, Klein AL, et al. Comparison of anticoagulant and anti-inflammatory responses using enoxaparin versus unfractionated heparin for transesophageal echocardiography-guided cardioversion of atrial fibrillation. Am J Cardiol 2008;102:842-6
  • Ahmed T, Garrigo J, Danta I. Preventing bronchoconstriction in exercise-induced asthma with inhaled heparin. N Engl J Med 1993;329:90-5
  • Törkvist L, Thorlacius H, Sjöqvist U, et al. Low molecular weight heparin as adjuvant therapy in active ulcerative colitis. Aliment Pharmacol Ther 1999;13:1323-8
  • Saliba MJ Jr. Heparin in the treatment of burns: a review. Burns 2001;27:349-58
  • Casu B, Vlodavsky I, Sanderson RD. Non-anticoagulant heparins and inhibition of cancer. Pathophysiol Haemost Thromb 2008;36:195-203
  • Naggi A, Casu B, Perez M, et al. Modulation of the heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol splitting. J Biol Chem 2005;280:12103-13
  • Meirovitz A, Hermano E, Lerner I, et al. Role of heparanase in radiation-enhanced invasiveness of pancreatic carcinoma. Cancer Res 2011;71:2772-80
  • Ritchie JP, Ramani VC, Ren Y, et al. SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clin Cancer Res 2011;17:1382-93
  • Cassinelli G, Lanzi C, Tortoreto M, et al. Antitumor efficacy of the heparanase inhibitor SST0001 alone and in combination with antiangiogenic agents in the treatment of human pediatric sarcoma models. Biochem Pharmacol 2013;85:1424-32
  • Zhou H, Roy S, Cochran E, et al. M402, a novel heparan sulfate mimetic, targets multiple pathways implicated in tumor progression and metastasis. PLoS ONE 2011;6:e21106
  • Parish CR, Hindmarsh EJ, Bartlett MR, et al. Treatment of central nervous system inflammation with inhibitors of basement membrane degradation. Immunol Cell Biol 1998;76:104-13
  • Parish CR, Freeman C, Brown KJ, et al. Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Res 1999;59:3433-41
  • Ferro V, Dredge K, Liu L, et al. PI-88 and novel heparan sulfate mimetics inhibit angiogenesis. Semin Thromb Hemost 2007;33:557-68
  • Kudchadkar R, Gonzalez R, Lewis KD. PI-88: a novel inhibitor of angiogenesis. Expert Opin Investig Drugs 2008;17:1769-76
  • Liu CJ, Lee PH, Lin DY, et al. Heparanase inhibitor PI-88 as adjuvant therapy for hepatocellular carcinoma after curative resection: a randomized phase II trial for safety and optimal dosage. J Hepatol 2009;50:958-68
  • Parish CR, Cowden WB. Preparation and use of sulfated oligosaccharides. US6143730; 2000
  • Ma P, Luo Y, Zhu X, et al. Phosphomannopentaose sulfate (PI-88) inhibits retinal leukostasis in diabetic rat. Biochem Biophys Res Commun 2009;380:402-6
  • Levidiotis V, Freeman C, Punler M, et al. A synthetic heparanase inhibitor reduces proteinuria in passive Heymann nephritis. J Am Soc Nephrol 2004;15:2882-92
  • Severin IC, Soares A, Hantson J, et al. Glycosaminoglycan analogs as a novel anti-inflammatory strategy. Front Immunol 2012;3:293
  • Vismara E, Coletti A, Valerio A, et al. Anti-metastatic semi-synthetic sulfated maltotriose C-C linked dimers. Synthesis and characterisation. Molecules 2012;17:9912-30
  • Borsig L, Vlodavsky I, Ishai-Michaeli R, et al. Sulfated hexasaccharides attenuate metastasis by inhibition of P-selectin and heparanase. Neoplasia 2011;13:445-52
  • Johnstone KD, Karoli T, Liu L, et al. Synthesis and biological evaluation of polysulfated oligosaccharide glycosides as inhibitors of angiogenesis and tumor growth. J Med Chem 2010;53:1686-99
  • Karoli T, Liu L, Fairweather JK, et al. Synthesis, biological activity, and preliminary pharmacokinetic evaluation of analogues of a phosphosulfomannan angiogenesis inhibitor (PI-88). J Med Chem 2005;48:8229-36
  • Ferro V, Liu L, Johnstone KD, et al. Discovery of PG545: a highly potent and simultaneous inhibitor of angiogenesis, tumor growth, and metastasis. J Med Chem 2012;55:3804-13
  • Dredge K, Hammond E, Handley P, et al. PG545, a dual heparanase and angiogenesis inhibitor, induces potent anti-tumour and anti-metastatic efficacy in preclinical models. Br J Cancer 2011;104:635-42
  • Hammond E, Brandt R, Dredge K. PG545, a heparan sulfate mimetic, reduces heparanase expression in vivo, blocks spontaneous metastases and enhances overall survival in the 4T1 breast carcinoma model. PLoS One 2012;7:e52175
  • Ferro V, Hammond E, Fairweather JK. The development of inhibitors of heparanase, a key enzyme involved in tumour metastasis, angiogenesis and inflammation. Mini Rev Med Chem 2004;4:693-702
  • Hammond E, Bytheway I, Ferro V. Heparanase as a target for anticancer therapeutics: new developments and future prospects. In: Delehedde M, Lortat-Jacob H, editors. New developments in therapeutic glycomics. Research Signpost; Trivandrum, India: 2006. p. 251-82
  • McKenzie EA. Heparanase: a target for drug discovery in cancer and inflammation. Br J Pharmacol 2007;151:1-14
  • Simmons SC, McKenzie EA, Harris LK, et al. Development of novel single-stranded nucleic acid aptamers against the pro-angiogenic and metastatic enzyme heparanase (HPSE1). PLoS One 2012;7:e37938
  • Xiong Z, Lu MH, Fan YH, et al. Downregulation of heparanase by RNA interference inhibits invasion and tumorigenesis of hepatocellular cancer cells in vitro and in vivo. Int J Oncol 2012;40:1601-9
  • Jiang G, Zheng L, Pu J, et al. Small RNAs targeting transcription start site induce heparanase silencing through interference with transcription initiation in human cancer cells. PLoS ONE 2012;7:e31379
  • Zhang L, Sullivan PS, Goodman JC, et al. MicroRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase. Cancer Res 2011;71:645-54
  • Liu X, Fang H, Chen H, et al. An artificial miRNA against HPSE suppresses melanoma invasion properties, correlating with a down-regulation of chemokines and MAPK phosphorylation. PLoS One 2012;7:e38659
  • Zhang J, Yang JM, Wang HJ, et al. Synthesized multiple antigenic polypeptide vaccine based on B-cell epitopes of human heparanase could elicit a potent antimetastatic effect on human hepatocellular carcinoma in vivo. PLoS One 2013;8:e52940
  • Tang XD, Wang GZ, Guo J, et al. Multiple antigenic peptides based on H-2Kb-restricted CTL epitopes from murine heparanase induce a potent antitumor immune response in vivo. Mol Cancer Ther 2012;11:1183-92
  • Fu J, Zhao B, Dong Z, et al. Heparanase DNA vaccine delivered by electroporation induces humoral immunity and cytoimmunity in animal models. Vaccine 2012;30:2187-96
  • Zhang YF, Tang XD, Gao JH, et al. Heparanase: a universal immunotherapeutic target in human cancers. Drug Discov Today 2011;16:412-17
  • Sarrazin S, Bonnaffe D, Lubineau A, et al. Heparan sulfate mimicry: a synthetic glycoconjugate that recognizes the heparin binding domain of interferon-γ inhibits the cytokine activity. J Biol Chem 2005;280:37558-64
  • Veber DF, Johnson SR, Cheng HY, et al. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 2002;45:2615-23
  • Martin YC. A bioavailability score. J Med Chem 2005;48:3164-70
  • Maag H. Overcoming poor permeability – the role of prodrugs for oral drug delivery. Drug Discov Today 2012;9:e121-e30

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.