644
Views
109
CrossRef citations to date
0
Altmetric
Reviews

Hsp60 chaperonopathies and chaperonotherapy: targets and agents

, , , , , & show all

Bibliography

  • Macario AJL, Conway de Macario E. Sick chaperones, cellular stress and disease. N Eng J Med 2005;353:1489-501
  • Macario AJL, Conway de Macario E, Cappello F. The Chaperonopathies. Diseases with defective molecular chaperones. Springer Dordrecht Heidelberg, New York; 2013. Available from:. http//www.springer.com/biomed/book/978-94-007-4666-4
  • Macario AJL, Conway de Macario E. Chaperonopathies by defect, excess, or mistake. Ann NYAcad Sci 2007;1113:178-91
  • Bross P, Naundrup S, Hansen J, et al. The Hsp60-(p.V98I) mutation associated with hereditary spastic paraplegia SPG13 compromises chaperonin function both in vitro and in vivo. J Biol Chem 2008;283:15694-700
  • Hansen JJ, Dürr A, Cournu-Rebeix I, et al. Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet 2002;70:1328-32
  • Magen D, Georgopoulos C, Bross P, et al. Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am J Hum Genet 2008;83:30-42
  • Brocchieri L, Karlin S. Conservation among HSP60 sequences in relation to structure, function, and evolution. Protein Sci 2000;9:476-86
  • Macario AJL, Conway de Macario E. Chaperonopathies and chaperonotherapy. FEBS Lett 2007;581:3681-8
  • Prakken BJ, van der Zee R, Anderton SM, et al. Peptide-induced nasal tolerance for a mycobacterial heat shock protein 60 T cell epitope in rats suppresses both adjuvant arthritis and nonmicrobially induced experimental arthritis. Proc Natl Acad Sci USA 1997;94:3284-9
  • Campanella C, Marino Gammazza A, Mularoni L, et al. A comparative analysis of the products of GROEL-1 gene from Chlamydia trachomatis serovar D and the HSP60 var1 transcript from Homo sapiens suggests a possible autoimmune response. Int J Immunogenet 2009;36:73-8
  • Cappello F, Conway de Macario E, Di Felice V, et al. Chlamydia trachomatis infection and anti-Hsp60 immunity: the two sides of the coin. PLoS Pathog 2009;5:e1000552
  • Jones DB, Coulson AF, Duff GW. Sequence homologies between hsp60 and autoantigens. Immunol Today 1993;14:115-18
  • Gazali A. Conference scene: taking the heat out of chaperokine function. Immunotherapy 2012;4:773-5
  • Chen W, Syldath U, Bellmann K, et al. Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J Immunol 1999;162:3212-19
  • Kol A, Lichtman AH, Finberg RW, et al. Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol 2000;164:13-17
  • Zanin-Zhorov A, Cohen IR. Signaling via TLR2 and TLR4 directly down-regulates T cell effector functions: The regulatory face of danger signals. Front Immunol 2013;4:211
  • Osterloh A, Geisinger F, Pie´davent M, et al. Heat shock protein 60 (HSP60) stimulates neutrophil effector functions. J Leukoc Biol 2009;86:423-34
  • Grundtman C, Wick G. The autoimmune concept of atherosclerosis. Curr Opin Lipidol 2011;22:327-34
  • Tomasello G, Rodolico V, Zerilli M, et al. Changes in immunohistochemical levels and subcellular localization after therapy and correlation and colocalization with CD68 suggest a pathogenetic role of Hsp60 in ulcerative colitis. Appl Immunohistochem Mol Morphol 2011;19:552-61
  • Cappello F, Caramori G, Campanella C, et al. Convergent sets of data from in vivo and in vitro methods point to an active role of Hsp60 in chronic obstructive pulmonary disease pathogenesis. PLoS ONE 2011;6(11):e28200
  • Castelli M, Cianfriglia F, Manieri A, et al. Anti-p53 and anti-heat shock proteins antibodies in patients with malignant or pre-malignant lesions of the oral cavity. Anticancer Res 2001;21:753-8
  • Cappello F, Bellafiore M, Palma A, et al. Expression of 60-kDa heat-shock protein increases during carcinogenesis in the uterine exocervix. Pathobiology 2002;70:83-8
  • Cappello F, Bellafiore M, Palma A, et al. 60kDa chaperonin (HSP60) is overexpressed during colorectal carcinogenesis. Eur J Histochem 2003;47:105-10
  • Cappello F, Rappa F, David S, et al. Immunohistochemical evaluation of PCNA, p53, HSP60, HSP10 and MUC-2 presence and expression in prostate carcinogenesis. Anticancer Res 2003;23:1325-31
  • Cappello F, Di Stefano A, D'Anna SE, et al. Immunopositivity of heat-shock protein 60 as a biomarker of bronchial carcinogenesis. Lancet Oncol 2005;6:816
  • Cappello F, Di Stefano A, David S, et al. Hsp60 and Hsp10 down-regulation predicts bronchial epithelial carcinogenesis in smokers with chronic obstructive pulmonary disease. Cancer 2006;107:2417-24
  • Merendino AM, Bucchieri F, Campanella C, et al. Hsp60 is actively secreted by human tumor cells. PLoS One 2010;5:e9247
  • Campanella C, Bucchieri F, Merendino AM, et al. The odyssey of Hsp60 from tumor cells to other destinations includes plasma membrane-associated stages and Golgi and exosomal protein-trafficking modalities. PLoS One 2012;7:e42008
  • Samali A, Cai J, Zhivotovsky B, et al. Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of Jurkat cells. EMBO J 1999;18:2040-8
  • Xanthoudakis S, Roy S, Rasper D, et al. Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis. EMBO J 1999;18:2049-56
  • Campanella C, Bucchieri F, Ardizzone NM, et al. Upon oxidative stress, the antiapoptotic Hsp60/procaspase-3 complexpersists in mucoepidermoid carcinoma cells. Eur J Histochem 2008;52:221-8
  • Chandra D, Choy G, Tang DG. Cytosolic accumulation of HSP60 during apoptosis with or without apparent mitochondrial release: evidence that its pro-apoptotic or pro-survival functions involve differential interactions with caspase-3. J Biol Chem 2007;282:31289-301
  • Zhong H, Yang Y, Ma S, et al. Induction of a tumour-specific CTL response by exosomes isolated from heat-treated malignant ascites of gastric cancer patients. Int J Hyperthermia 2011;27:604-11
  • Lv LH, Wan YL, Lin Y, et al. Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J Biol Chem 2012;287:15874-85
  • Cappello F, David S, Rappa F, et al. The expression of HSP60 and HSP10 in large bowel carcinomas with lymph node metastase. BMC Cancer 2005b;5:139
  • Tian E, Tang H, Xu R, et al. Azacytidine induces necrosis of multiple myeloma cells through oxidative stress. Proteome Sci 2013;11:24
  • Czarnecka AM, Campanella C, Zummo G, Cappello F. Mitochondrial chaperones in cancer: from molecular biology to clinical diagnostics. Cancer Biol Ther 2006;5:714-20
  • Cappello F, Conway de Macario E, Marasà L, et al. Hsp60 expression, new locations, functions and perspectives for cancer diagnosis and therapy. Cancer Biol Ther 2008;7:801-9
  • Gupta RS, Ramachandra NB, Bowes T, Singh B. Unusual cellular disposition of the mitochondrial molecular chaperones Hsp60, Hsp70 and Hsp10. Novartis Found Symp 2008;291:59-68. discussion 69-73, 137-40
  • Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell 1998;92:351-66
  • Parnas A, Nisemblat S, Weiss C, et al. Identification of elements that dictate the specificity of mitochondrial Hsp60 for its co-chaperonin. PLoS One 2012;7:e50318
  • Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 2006;75:333-66
  • Satoh J, Onoue H, Arima K, Yamamura T. The 14-3-3 protein forms a molecular complex with heat shock protein Hsp60 and cellular prion protein. J Neuropathol Exp Neurol 2005;64:858-68
  • MacKenzie JA, Payne RM. Mitochondrial protein import and human health and disease. Biochim Biophys Acta 2007;1772:509-23
  • Bross P, Magnoni R, Bie AS. Molecular chaperone disorders: defective Hsp60 in neurodegeneration. Curr Top Med Chem 2012;12:2491-503
  • Itoh H, Kobayashi R, Wakui H, et al. Mammalian 60-kDa stress protein (chaperonin homolog). Identification, biochemical properties, and localization. J Biol Chem 1995;270:13429-35
  • Owenius R, Jarl A, Jonsson BH, et al. GroEL-induced topological dislocation of a substrate protein β-sheet core: a solution EPR spin-spin distance study. J Chem Biol 2010;3:127-39
  • Biswas S, Carta F, Scozzafava A, et al. Structural effect of phenyl ring compared to thiadiazole based adamantyl-sulfonamides on carbonic anhydrase inhibition. Bioorg Med Chem 2013;21:2314-18
  • Alard JE, Hillion S, Guillevin L, et al. Autoantibodies to endothelial cell surface ATP synthase, the endogenous receptor for hsp60, might play a pathogenic role in vasculatides. PLoS ONE 2011;6:e14654
  • Kirchhoff SR, Gupta S, Knowlton AA. Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation 2002;105:2899-904
  • Rappa F, Farina F, Zummo G, et al. HSP-molecular chaperones in cancer biogenesis and tumor therapy: an overview. Anticancer Res 2012;32:5139-50
  • Ghosh JC, Dohi T, Kang BH, Altieri DC. Hsp60 regulation of tumor cell apoptosis. J Biol Chem 2008;283:5188-94
  • Tsai YP, Yang MH, Huang CH, et al. Interaction between HSP60 and beta-catenin promotes metastasis. Carcinogenesis 2009;30:1049-57
  • Cheon SS, Cheah AY, Turley S, et al. beta-Catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds. Proc Natl Acad Sci USA 2002;99:6973-8
  • Barazi HO, Zhou L, Templeton NS, et al. Identification of heat shock protein 60 as a molecular mediator of alpha 3 beta 1 integrin activation. Cancer Res 2002;62:1541-8
  • Stefano L, Racchetti G, Bianco F, et al. The surface-exposed chaperone, Hsp60, is an agonist of the microglial TREM2 receptor. J Neurochem 2009;110:284-94
  • Binder RJ, Vatner R, Srivastava P. The heat-shock protein receptors: some answers and more questions. Tissue Antigens 2004;64:442-51
  • Pockley AG, Muthana M, Calderwood SK. The dual immunoregulatory roles of stress proteins. Trends Biochem Sci 2008;33:71-9
  • Gülden E, Märker T, Kriebel J, et al. Heat shock protein 60: evidence for receptor-mediated induction of proinflammatory mediators during adipocyte differentiation. FEBS Lett 2009;583:2877-81
  • Märker T, Kriebel J, Wohlrab U, Habich C. Heat shock protein 60 and adipocytes: characterization of a ligand-receptor interaction. Biochem Biophys Res Commun 2010;391:1634-40
  • Zhang D, Sun L, Zhu H, et al. Microglial LOX-1 reacts with extracellular HSP60 to bridge neuroinflammation and neurotoxicity. Neurochem Int 2012;61:1021-35
  • Clare DK, Saibil HR. ATP-driven molecular chaperone machines. Biopolymers 2013; published on line 22 July 2013
  • Fei X, Yang D, Laronde-Leblanc N, Lorimer GH. Crystal structure of a GroEL-ADP complex in the relaxed allosteric state at 2.7 A resolution. Proc Natl Acad Sci USA 2013; published on line Jul 16 2013
  • Horwich A. Chaperonin-mediated protein folding. J Biol Chem 2013;288:23622-32
  • Richardson A, Landry SJ, Georgopoulos C. The ins and outs of a molecular chaperone machine. Trends Biochem Sci 1998;23:138-43
  • Ryan MT, Naylor DJ, Hoj PB, et al. The role of molecular chaperones in mitochondrial protein import and folding. Int Rev Cytol 1997;174:127-93
  • Dubaquie Y, Looser R, Rospert S. Significance of chaperonin 10-mediated inhibition of ATP hydrolysis by chaperonin 60. Proc Natl Acad Sci USA 1997;94:9011-16
  • Voos W and Rottgers K. Molecular chaperones as essential mediators of mitochondrial biogenesis. Biochim Biophys Acta 2002;1592:51-62
  • Roseman A, Chen S, White H, et al. The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell 1996;87:241-51
  • Sigler P, Zhaohui X, Rye HS, et al. 1998;Structure and function in GroEL-mediated protein folding. Annu Rev Biochem 1998;67:581-608
  • Braig K, Otwinowski Z, Hegde R, et al. The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature 1994;371:578-86
  • Fenton WA, Kashi Y, Furtak K, Horwich AL. Residues in chaperonin GroEL required for polypeptide binding and release. Nature 1994;371:614-19
  • Chen S, Roseman AM, Hunter AS, et al. Location of a folding protein and shape changes in GroEL-GroES complexes imaged by cryo-electron microscopy. Nature 1994;371:261-4
  • Sot B, Bañuelos S, Valpuesta JM, Muga A. GroEL stability and function. Contribution of the ionic interactions at the inter-ring contact sites. J Biol Chem 2003;278:32083-90
  • Kondoh Y, Osada H. High-throughput screening identifies small molecule inhibitors of molecular chaperones. Curr Pharm Des 2013;19:473-92
  • Pace A, Barone G, Lauria A, et al. Hsp60, a novel target for antitumor therapy: structure-function features and prospective drugs design. Curr Pharm Des 2013;19:2757-64
  • Chapman E, Farr GW, Fenton WA, et al. Requirement for binding multiple ATPs to convert a GroEL ring to the folding-active state. Proc Natl Acad Sci USA 2008;105:19205-10
  • Itoh H, Komatsuda A, Wakui H, et al. Mammalian HSP60 is a major target for an immunosuppressant mizoribine. J Biol Chem 1999;274:35147-51
  • Tanabe M, Ishida R, Izuhara F, et al. The ATPase activity of molecular chaperone HSP60 is inhibited by immunosuppressant mizoribine. Am J Mol Biol 2012;2:93-102
  • Wang J, Jin L, Li X, et al. Gossypol induces apoptosis in ovarian cancer cells through oxidative stress. Mol Bio Syst 2013;9:1489-97
  • Nagumo Y, Kakeya H, Yamaguchi J, et al. Structure–activity relationships of epolactaene derivatives: structural requirements for inhibition of Hsp60 chaperone activity. Bioorg Med Chem Lett 2004;14:4425-9
  • Nagumo Y, Kakeya H, Shoji M, et al. Epolactaene binds human Hsp60 Cys442 resulting in the inhibition of chaperone activity. Biochem J 2005;387:835-40
  • Wulff JE, Herzon SB, Siegrist R, Myers AG. Evidence for the rapid conversion of Stephacidin b into the electrophilic monomer avrainvillamide in cell culture. J Am Chem Soc 2007;129:4898-9
  • Misra RC, Verma AK, Verma SK, et al. Heat shock protein 60 of filarial parasite Brugia malayi: cDNA cloning, expression, purification and in silico modeling and analysis of its ATP binding site. Exp Parasitol 2012;132:257-66
  • Lee JH, Park S, Cheon S, et al. 1,25-Dihydroxyvitamin D3 enhances NK susceptibility of human melanoma cells via Hsp60-mediated FAS expression. Eur J Immunol 2011;41:2937-46
  • Lu X. Enantioselective effect of bifenthrin on antioxidant enzyme gene expression and stress protein response in PC12 cells. J Appl Toxicol 2011;33:586-92
  • Chang CL, Hsu YT, Wu CC, et al. Immune mechanism of the antitumor effects generated by Bortezomib. J Immunol 2012;189:3209-20
  • Tsuei AC, Martinus RD. Metformin induced expression of Hsp60 in human THP-1 monocyte cells. Cell Stress Chaperones 2012;17:23-8
  • Drastichova Z, Skrabalova J, Jedelsky P, et al. Changes in the rat heart proteome induced by prolonged morphine treatment and withdrawal. PLoS One 2012;7:e47167
  • Ishida K, Yamazaki T, Motohashi K, et al. Effect of the steroid receptor antagonist RU486 (mifepristone) on an. IFNc-induced persistent Chlamydophila pneumoniae infection model in epithelial HEp-2 cells. J Infect Chemother 2012;18:22-9
  • Anraku I, Rajasuriar R, Dobbin C, et al. Circulating heat shock protein 60 levels are elevated in HIV patients and are reduced by anti-retroviral therapy. PLoS One 2012;7:e45291
  • Sun W, Wang L, Jiang H, et al. Targeting mitochondrial transcription in fission yeast with ETB, an inhibitor of HSP60, the chaperone that binds to the mitochondrial transcription factor Mtf1. Genes Cells 2012;17:122-31
  • Cassiano C, Monti MC, Festa C, et al. Chemical proteomics reveals heat shock protein 60 to be the main cellular target of the marine bioactive sesterterpene Suvanine. Chem Bio Chem 2012;13:1953-8
  • Vila A, Tallman KA, Jacobs AT, et al. Identification of protein targets of 4-hydroxynonenal using click chemistry for ex vivo biotinylation of azido and alkynyl derivatives. Chem Res Toxicol 2008;21:432-44
  • Ban HS, Shimizu K, Minegishi H, Nakamura H. Identification of HSP60 as a primary target of o-carboranylphenoxyacetanilide, an HIF-1alpha inhibitor. J Am Chem Soc 2010;132:11870-1
  • Nakamura H, Yasui Y, Maruyama M, et al. Development of hypoxia-inducible factor (HIF)-1a inhibitors: effect of ortho-carborane substituents on HIF transcriptional activity under hypoxia. Bioorg Med Chem Lett 2013;23:806-10
  • Seung Ban H, Shimizu K, Minegishi H, Nakamura H. Identification of heat shock protein 60 as the regulator of the hypoxia-inducible factor subunit HIF-1. Pure Appl Chem 2012;84:2325-37
  • Terenzi A, Barone G, Palumbo Piccionello A, et al. Synthesis, characterization, cellular uptake and interaction with native DNA of a bis(pyridyl)-1,2,4-oxadiazole copper(II) complex. Dalton Trans 2010;39:9140-5
  • Terenzi A, Barone G, Palumbo Piccionello A, et al. Synthesis and chemical characterization of Cu(II), Ni(II) and Zn(II) complexes of 3,5-bis(2'-pyridyl)-1,2,4-oxadiazole and 3-(2'-pyridyl)5-(phenyl)-1,2,4-oxadiazole ligands. Inorg Chim Acta 2011;373:62-7
  • Lo Celso F, Pibiri I, Triolo A, et al. Study on the thermotropic properties of highly fluorinated 1,2,4-oxadiazolylpyridinium salts and their perspective applications as ionic liquid crystals. J Mater Chem 2007;17:1201-8
  • Pibiri I, Pace A, Buscemi S, et al. Oxadiazolyl-pyridines and perfluoroalkyl-carboxylic acids as building blocks for protic ionic liquids: crossing the thin line between ionic and hydrogen bonded materials. Phys Chem Chem Phys 2012;14:14306-14
  • Fortuna CG, Bonaccorso C, Bulbarelli A, et al. New linezolid-like 1,2,4-oxadiazoles active against Gram-positive multiresistant pathogens. Eur J Med Chem 2013;65:533-45
  • Pace A, Pierro P. The new era of 1,2,4-oxadiazoles. Org Biomol Chem 2009;7:4337-48
  • Palumbo Piccionello A, Musumeci R, Cocuzza C, et al. Synthesis and preliminary antibacterial evaluation of Linezolid-like 1,2,4-oxadiazole derivatives. Eur J Med Chem 2012;50:441-8
  • Macario AJL. Heat-shock proteins and molecular chaperones: implications for pathogenesis, diagnostics, and therapeutics. Int J Clin Lab Res 1995;25:59-70
  • Hansen JJ, Bross P, Westergaard M, et al. Genomic structure of the human mitochondrial chaperonin genes: HSP60 and HSP10 are localised head to head on chromosome 2 separated by a bidirectional promoter. Hum Genet 2003;112:71-7
  • Mukherjee K, Conway de Macario E, Macario AJL, Brocchieri L. Chaperonin genes on the rise: new divergent classes and intense duplication in human and other vertebrate genomes. BMC Evol Biol 2010;10:64
  • Ruiz-Vázquez E, de Castro P. "2-6-11" motif in heat shock protein 60 and central nervous system antigens: a preliminary study in multiple sclerosis patients. J Physiol Biochem 2003;59:1-9
  • Hoymans VY, Bosmans JM, Van Herck PL, et al. Implications of antibodies to heat-shock proteins in ischemic heart disease. Int J Cardiol 2008;123:277-82
  • Hahn DL, Peeling RW. Airflow limitation, asthma, and Chlamydia pneumoniae-specific heat shock protein 60. Ann Allergy Asthma Immunol 2008;101:614-18
  • Cappello F, Marino Gammazza A, Zummo L, et al. Hsp60 and AChR cross-reactivity in myasthenia gravis: an update. J Neurol Sci 2010;292:117-18
  • Marino Gammazza A, Bucchieri F, Grimaldi LM, et al. The molecular anatomy of human Hsp60 and its similarity with that of bacterial orthologs and acetylcholine receptor reveal a potential pathogenetic role of anti-chaperonin immunity in myasthenia gravis. Cell Mol Neurobiol 2012;32:943-7
  • Mayr M, Metzler B, Kiechl S, et al. Endothelial cytotoxicity mediated by serum antibodies to heat shock proteins of Escherichia coli and Chlamydia pneumoniae: immune reactions to heat shock proteins as a possible link between infection and atherosclerosis. Circulation 1999;99:1560-6
  • Ayada K, Yokota K, Kobayashi K, et al. Chronic infections and atherosclerosis. Clin Rev Allergy Immunol 2009;37:44-8
  • Okada T, Ayada K, et al. Antibodies against heat shock protein 60 derived from Helicobacter pylori: diagnostic implications in cardiovascular disease. J Autoimmun 2007;29:106-15
  • Ford PJ, Gemmell E, Timms P, et al. Anti-P. gingivalis response correlates with atherosclerosis. J Dent Res 2007;86:35-40
  • Krohn K, Uibo R, Aavik E, et al. Identification by molecular cloning of an autoantigen associated with Addison's disease as steroid 17 alpha-hydroxylase. Lancet 1992;339:770-3
  • Winquist O, Karlsson FA, Kämpe O. 21-Hydroxylase, a major autoantigen in idiopathic Addison's disease. Lancet 1992;339:1559-62
  • Ota K, Matsui M, Milford EL, et al. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 1990;346:183-7
  • Lebar R, Baudrimont M, Vincent C. Chronic experimental autoimmune encephalomyelitis in the guinea pig. Presence of anti-M2 antibodies in central nervous system tissue and the possible role of M2 autoantigen in the induction of the disease. J Autoimmun 1989;2:115-32
  • Rodriguez M, Truh LI, O'Neill BP, Lennon VA. Autoimmune paraneoplastic cerebellar degeneration: ultrastructural localization of antibody-binding sites in Purkinje cells. Neurology 1988;38:1380-6
  • Beisel KW, Srinivasappa J, Olsen MR, et al. A neutralizing monoclonal antibody against Coxsackievirus B4 cross-reacts with contractile muscle proteins. Microb Pathog 1990;8:151-6
  • Guéry JC, Druet E, Glotz D, et al. Specificity and cross-reactive idiotypes of anti-glomerular basement membrane autoantibodies in HgCl2-induced autoimmune glomerulonephritis. Eur J Immunol 1990;20:93-100
  • Cohen-Tervaert JW, Goldschmeding R, Elema JD, et al. Autoantibodies against myeloid lysosomal enzymes in crescentic glomerulonephritis. Kidney Int 1990;37:799-806
  • Manns MP, Griffin KJ, Quattrochi LC, et al. Identification of cytochrome P450IA2 as a human autoantigen. Arch Biochem Biophys 1990;280:229-32
  • Such CD, Coppel R, Gershwin ME. Structural requirement for autoreactivity on human pyruvate dehydrogenase-E2, the major autoantigen of primary biliary cirrhosis. Implication for a conformational autoepitope. J Immunol 1990;144:3367-74
  • Frostell A, Mendel-Hartvig I, Nelson BD, et al. Mitochondrial autoantigens in primary biliary cirrhosis. Association of disease-specific determinants with a subunit of complex I (NADH-ubiquinone reductase) of the inner mitochondrial membrane. Scand J Immunol 1988;28:645-52
  • Coppel RL, McNeilage LJ, Surh CD, et al. Primary structure of the human M2 mitochondrial autoantigen of primary biliary cirrhosis: dihydrolipoamide acetyltransferase. Proc Natl Acad Sci USA 1988;85:7317-21
  • Protti MP, Manfredi AA, Straub C, et al. Use of synthetic peptides to establish anti-human acetylcholine receptor CD4+ cell lines from myasthenia gravis patients. J Immunol 1990;144:1711-20
  • Baekkeskov S, Aanstoot HJ, Christgau S, et al. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 1990;347:151-6
  • Stanley JR, Tanaka T, Mueller S, et al. Isolation of complementary DNA for bullous pemphigoid antigen by use of patients' autoantibodies. J Clin Invest 1988;82:1864-70
  • Mimmori T, Ohosone Y, Hama N, et al. Isolation and characterization of cDNA encoding the 80-kDa subunit protein of the human autoantigen Ku (p70/p80) recognized by autoantibodies from patients with scleroderma-polymyositis overlap syndrome. Proc Natl Acad Sci USA 1990;87:1777-81
  • Montecucco C, Caporali R, Negri C, et al. Antibodies from patients with rheumatoid arthritis and systemic lupus erythematosus recognize different epitopes of a single heterogeneous nuclear RNP core protein. Possible role of cross-reacting antikeratin antibodies. Arthritis Rheum 1990;33:180-6
  • Amino N, Degroot LJ. Insoluble particulate antigen(s) in cell-mediated immunity of autoimmune thyroid disease. Metabolism 1975;24:45-56
  • Reeves WH, Chiorazzi N. Interaction between anti-DNA and anti-DNA-binding protein autoantibodies in cryoglobulins from sera of patients with systemic lupus erythematosus. J Exp Med 1986;164:1029-42
  • Minota S, Koyasu S, Yahara I, Winfield J. Autoantibodies to the heat-shock protein hsp90 in systemic lupus erythematosus. J Clin Invest 1988;81:106-9
  • Gupta S, Knowlton AA. HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am J Physiol Heart Circ Physiol 2007;292:H3052-6
  • Knowlton AA, Kapadia S, Torre-Amione G, et al. Differential expression of heat shock proteins in normal and failing human hearts. J Mol Cell Cardiol 1998;30:811-18
  • Lin L, Kim SC, Wang Y, et al. HSP60 in heart failure: abnormal distribution and role in cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol 2007;293:H2238-47
  • Novo G, Cappello F, Rizzo M, et al. Hsp60 and heme oxygenase-1 (Hsp32) in acute myocardial infarction. Transl Res 2011;157:285-92
  • Slot MC, Theunissen R, van Paassen P, et al. Evaluation of antibodies against human HSP60 in patients with MPOANCA associated glomerulonephritis: a cohort study. J Autoimmune Dis 2006;3:4
  • Puga Yung GL, Fidler M, Albani E, et al. Heat shock protein-derived T-cell epitopes contribute to autoimmune inflammation in pediatric Crohn's disease. PLoS One 2009;4:e7714
  • Rodolico V, Tomasello G, Zerilli M, et al. Hsp60 and Hsp10 increase in colon mucosa of Crohn's disease and ulcerative colitis. Cell Stress Chaperones 2010;15:877-84
  • Deniz E, Guc U, Buyukbabani N, Gul A. HSP 60 expression in recurrent oral ulcerations of Behçet's disease. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110:196-200
  • Rizzo M, Cappello F, Marfil R, et al. Heat-shock protein 60 kDa and atherogenic dyslipidemia in patients with untreated mild periodontitis: a pilot study. Cell Stress Chaperones 2012;17:399-407
  • Blasi C, Kim E, Knowlton AA. Improved metabolic control in diabetes, HSP60, and proinflammatory mediators. Autoimmune Dis 2012;2012:346501
  • Brudzynski K. Insulitis-caused redistribution of heat-shock protein HSP60 inside beta-cells correlates with induction of HSP60 autoantibodies. Diabetes 1993;42:908-13
  • Fischer B, Elias D, Bretzel RG, Linn T. Immunomodulation with heat shock protein DiaPep277 to preserve beta cell function in type 1 diabetes - an update. Expert Opin Biol Ther 2010;10:265-72
  • Mallard K, Jones DB, Richmond J, et al. Expression of the human heat shock protein 60 in thyroid, pancreatic, hepatic and adrenal autoimmunity. J Autoimmun 1996;9:89-96
  • Tuccinardi D, Fioriti E, Manfrini S, et al. DiaPep277 peptide therapy in the context of other immune intervention trials in type 1 diabetes. Expert Opin Biol Ther 2011;11:1233-40
  • Verrijn Stuart AA, de Jager W, Klein MR, et al. Recognition of heat shock protein 60 epitopes in children with type 1 diabetes. Diabetes Metab Res Rev 2012;28:527-34
  • Elst EF, Klein M, de Jager W, et al. Hsp60 in inflamed muscle tissue is the target of regulatory autoreactive T cells in patients with juvenile dermatomyositis. Arthritis Rheum 2008;58:547-55
  • Seung NR, Park EJ, Kim CW, et al. Comparison of expression of heat-shock protein 60, Toll-like receptors 2 and 4, and T-cell receptor gammadelta in plaque and guttate psoriasis. J Cutan Pathol 2007;34:903-11
  • Krenn V, Vollmers HP, von Landenberg P, et al. Immortalized B lymphocytes from rheumatoid synovial tissue show specificity for bacterial HSP60. Virchows Arch 1996;427:511-18
  • Sedlackova L, Spacek M, Holler E, et al. Heat-shock protein expression in leukemia. Tumour Biol 2011;32:33-44
  • Wilbrink B, Holewijn M, Bijlsma JW, et al. Suppression of human cartilage proteoglycan synthesis by rheumatoid synovial fluid mononuclear cells activated with mycobacterial 60-kd heat-shock protein. Arthritis Rheum 1993;36:514-18
  • Wu CT, Ou LS, Yeh KW, et al. Serum heat shock protein 60 can predict remission of flare-up in juvenile idiopathic arthritis. Clin Rheumatol 2011;30:959-65
  • Alard JE, Dueymes M, Youinou P, Jamin C. HSP60 and anti-HSP60 antibodies in vasculitis: they are two of a kind. Clin Rev Allergy Immunol 2008;35:66-71
  • Almanzar G, Öllinger R, Leuenberger J, et al. Autoreactive HSP60 epitope-specific T-cells in early human atherosclerotic lesions. J Autoimmun 2012;39:441-50
  • Dieudé M, Correa JA, Neville C, et al. Association of autoantibodies to heat-shock protein 60 with arterial vascular events in patients with antiphospholipid antibodies. Arthritis Rheum 2011;63:2416-24
  • Grundtman C, Kreutmayer SB, Almanzar G, et al. Heat shock protein 60 and immune inflammatory responses in atherosclerosis. Arterioscler Thromb Vasc Biol 2011;31:960-8
  • Prohaszka Z, Duba J, Lakos G, et al. Antibodies against human heat-shock protein (hsp) 60 and mycobacterial hsp65 differ in their antigen specificity and complement-activating ability. Int Immunol 1999;11:1363-70
  • Rizzo M, Macario AJL, Conway de Macario E, et al. Heat shock protein-60 and risk for cardiovascular disease. Curr Pharm Des 2011;17:3662-8
  • Wick G. Atherosclerosis-an autoimmune disease due to an immune reaction against heat-shock protein 60. Herz 2000;25:87-90
  • Xu Q, Schett G, Perschinka H, et al. Serum soluble heat shock protein 60 is elevated in subjects with atherosclerosis in a general population. Circulation 2000;102:14-20
  • Perschinka H, Mayr M, Millonig G, et al. Crossreactive B-cell epitopes of microbial and human heat shock protein 60/65 in atherosclerosis. Arterioscler Thromb Vasc Biol 2003;23:1060-5
  • Perschinka H, Wellenzohn B, Parson W, et al. Identification of atherosclerosis-associated conformational heat shock protein 60 epitopes by phage display and structural alignment. Atherosclerosis 2007;194:79-87
  • Pignatelli D, Ferreira J, Soares P, et al. Immunohistochemical study of heat-shock proteins 27, 60 and 70 in the normal human adrenal and in adrenal tumors with suppressed ACTH production. Microsc Res Tech 2003;61:315-23
  • Cappello F, David S, Ardizzone N, et al. Expression of heat-shock proteins Hsp10, Hsp27, Hsp60, Hsp70 and Hsp90 in urothelial carcinoma of urinary bladder. J Cancer Mol 2006;2:73-7
  • Kamishima T, Fukuda T, Usuda H, et al. Carcinosarcoma of the urinary bladder: expression of epithelial markers and different expression of heat-shock proteins between epithelial and sarcomatous elements. Pathol Int 1997;47:166-73
  • Lebret T, Watson RW, Molinie V, et al. Heat-shock proteins HSP27, HSP60, HSP70, and HSP90: expression in bladder carcinoma. Cancer 2003;98:970-7
  • Chant ID, Rose PE, Morris AG. Analysis of heat-shock protein expression in myeloid leukaemia cells by flow cytometry. Br J Haematol 1995;90:163-8
  • Hsu PL, Hsu SM. Abundance of heat shock proteins (HSP89, HSP60 and HSP27) in malignant cells of Hodgkin's disease. Cancer Res 1998;58:5507-13
  • Thomas X, Campos L, Mounier C, et al. Expression of heat-shock proteins is associated with major adverse prognostic factors in acute myeloid leukemia. Leuk Res 2005;29:1049-58
  • Bajramovic JJ, Geutskens SB, Bsibsi M, et al. The stress kit: a new method based on competitive reverse transcriptase-polymerase chain reaction to quantify the expression of human alphaBcrystallin, HSP27 and HSP60. Cell Stress Chaperones 2000;5:30-5
  • Hitotsumatsu T, Iwaki T, Fukui M, Tateishi J. Distinctive immunohistochemical profiles of small heat-shock proteins (heat-shock protein 27 and alpha B-crystallin) in human brain tumors. Cancer 1996;77:352-61
  • Khalil AA. Biomarker discovery: a proteomic approach for brain cancer profiling. Cancer Sci 2007;98:201-13
  • Rappa F, Unti E, Baiamonte P, et al. Different immunohistochemical levels of Hsp60 and Hsp70 in a subset of brain tumors and putative role of Hsp60 in neuroepithelial tumorigenesis. Eur J Histochem 2013;57:e20
  • Raska M, Weigl E. Heat shock proteins in autoimmune diseases. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2005;149:243-9
  • Bini L, Magi B, Marzocchi B, et al. Protein expression profiles in human breast ductal carcinoma and histologically normal tissue. Electrophoresis 1997;18:2832-41
  • Desmetz C, Bibeau F, Boissière F, et al. Proteomics-based identification of HSP60 as a tumor-associated antigen in early stage breast cancer and ductal carcinoma in situ. J Proteome Res 2008;7:3830-7
  • Faried A, Sohda M, Nakajima M, et al. Expression of heat-shock protein HSP60 correlated with the apoptotic index and patient prognosis in human oesophageal squamous cell carcinoma. Eur J Cancer 2004;40:2804-11
  • Slotta-Huspenina J, Berg D, Bauer K, et al. Evidence of prognostic relevant expression profiles of heat-shock proteins and glucose-regulated proteins in oesophageal adenocarcinomas. PLoS One 2012;7:e41420
  • Hamelin C, Cornut E, Poirier F, et al. Identification and verification of heat shock protein 60 as a potential serum marker for colorectal cancer. FEBS J 2011;278:4845-59
  • He Y, Wu Y, Mou Z, et al. Proteomics-based identification of HSP60 as a tumor-associated antigen in colorectal cancer. Proteomics Clin Appl 2007;1:336-42
  • Ménoret A, Drew DA, Miyamoto S, et al. Differential proteomics identifies pdia3 as a novel chemoprevention target in human colon cancer cells. Mol Carcinog 2012; published on line 19 December 2012
  • Mori D, Nakafusa Y, Miyazaki K and Tokunaga O. Differential expression of Janus kinase 3 (JAK3), matrix metalloproteinase 13 (MMP13), heat-shock protein 60 (HSP60), and mouse double minute 2 (MDM2) in human colorectal cancer progression using human cancer cDNA microarrays. Pathol Res Pract 2005;201:777-89
  • Looi KS, Nakayasu ES, Diaz RA, et al. Using proteomic approach to identify tumor-associated antigens as markers in hepatocellular carcinoma. J Proteome Res 2008;7:4004-12
  • Margel D, Pevsner-Fischer M, Baniel J, et al. Stress proteins and cytokines are urinary biomarkers for diagnosis and staging of bladder cancer. Eur Urol 2011;59:113-19
  • Xu X, Wang W, Shao W, et al. Heat shock protein-60 expression was significantly correlated with the prognosis of lung adenocarcinoma. J Surg Oncol 2011;104:598-603
  • Hjerpe E, Egyhazi S, Carlson J, et al. HSP60 predicts survival in advanced serous ovarian cancer. Int J Gynecol Cancer 2013;23:448-55
  • Castilla C, Congregado B, Conde JM, et al. Immunohistochemical expression of Hsp60 correlates with tumor progression and hormone resistance in prostate cancer. Urology 2010;76:1017.e1-6
  • Glaessgen A, Jonmarker S, Lindberg A, et al. Heat shock proteins 27, 60 and 70 as prognostic markers of prostate cancer. APMIS 2008;116:888-95
  • Johansson B, Pourian MR, Chuan YC, et al. Proteomic comparison of prostate cancer cell lines LNCaP-FGC and LNCaP-r reveals heat shock protein 60 as a marker for prostate malignancy. Prostate 2006;66:1235-44
  • Kobayashi K, Yokota K, Yoshino T, et al. Detection of Helicobacter pylori associated antigen and heat-shock protein 60 on follicular dendritic cells in the germinal centres of low-grade B-cell lymphoma of gastric mucosa-associated lymphoid tissue (MALT). J Clin Pathol 1998;51:396-8
  • Hwang YJ, Lee SP, Kim SY, et al. Expression of heat shock protein 60 kDa is upregulated in cervical cancer. Yonsei Med J 2009;50:399-406
  • Alard JE, Dueymes M, Youinou P, Jamin C. Modulation of endothelial cell damages by anti-Hsp60 autoantibodies in systemic autoimmune diseases. Autoimmun Rev 2007;6:438-43
  • Hammarström P, Persson M, Owenius R, et al. Protein substrate binding induces conformational changes in the chaperoninGroEL. A suggested mechanism for unfoldase activity. J Biol Chem 2000;275:22832-8
  • Binder RJ, Zhou YJ, Messmer MN, Pawaria S. CD91-dependent modulation of immune responses by heat shock proteins: a role in autoimmunity. Autoimmune Dis 2012;2012:863041
  • Brea D, Blanco M, Ramos-Cabrer P, et al. Toll-like receptors 2 and 4 in ischemic stroke: outcome and therapeutic values. J Cereb Blood Flow Metab 2011;31:1424-31
  • Cohen-Sfady M, Nussbaum G, Pevsner-Fischer M, et al. Heat shock protein 60 activates B cells via the TLR4-MyD88 pathway. J Immunol 2005;175:3594-602
  • Ohashi K, Burkart V, Flohé S, Kolb H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 2000;164:558-61
  • Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2006;22:195-201
  • Kiefer F, Arnold K, Künzli M, et al. The SWISS-MODEL Repository and associated resources. Nucleic Acids Res 2009;37:D387-92
  • Peitsch MC. Protein modeling by E-mail Bio/Technology. 1995;13:658-60
  • Chaudhry C, Farr GW, Todd MJ, et al. Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics. EMBO J 2003;22:4877-87
  • Clare DK, Vasishtan D, Stagg S, et al. ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of the GroEL chaperonin. Cell 2012;149:113-23

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.