705
Views
32
CrossRef citations to date
0
Altmetric
Review

HIV-1 gp120 as a therapeutic target: navigating a moving labyrinth

, PhD (Research Scientist) , , PhD (Research Fellow) , , PhD (Senior Investigator) & , PhD (Chief)

Bibliography

  • Wilen CB, Tilton JC, Doms RW. HIV: cell binding and entry. Cold Spring Harbor perspect med 2012;2:8
  • Jolly C, Kashefi K, Hollinshead M, et al. HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J Exp Med 2004;199(2):283-93
  • Huang Y, Paxton WA, Wolinsky SM, et al. The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med 1996;2(11):1240-3
  • Hutter G, Nowak D, Mossner M, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 2009;360(7):692-8
  • Allers K, Hutter G, Hofmann J, et al. Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation. Blood 2011;117(10):2791-9
  • Maraviroc reduces viral load in naive patients at 48 weeks. AIDS Patient Care STDS 2007;21(9):703-4
  • Lalezari JP, Eron JJ, Carlson M, et al. A phase II clinical study of the long-term safety and antiviral activity of enfuvirtide-based antiretroviral therapy. AIDS 2003;17(5):691-8
  • Lalezari J, Latiff GH, Brinson C, et al. Attachment inhibitor prodrug BMS-663068 in ARV-experienced subjects: week 24 Analysis [abstract 131]. Conference on Retroviruses and Opportunistic Infections; Boston, MA; 2014
  • Julien JP, Cupo A, Sok D, et al. Crystal structure of a soluble cleaved HIV-1 envelope trimer. Science 2013;342(6165):1477-83
  • Lyumkis D, Julien JP, de Val N, et al. Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer. Science 2013;342(6165):1484-90
  • Pancera M, Zhou T, Druz A, et al. Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature 2014;514(7523):455-61
  • Munro JB, Gorman J, Ma X, et al. Conformational dynamics of single HIV-1 envelope trimers on the surface of native virions. Science 2014;346(6210):759-63
  • Barouch DH, Whitney JB, Moldt B, et al. Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys. Nature 2013;503(7475):224-8
  • Horwitz JA, Halper-Stromberg A, Mouquet H, et al. HIV-1 suppression and durable control by combining single broadly neutralizing antibodies and antiretroviral drugs in humanized mice. Proc Nat Acad Sci 2013;110(41):16538-16543
  • Klein F, Halper-Stromberg A, Horwitz JA, et al. HIV therapy by a combination of broadly neutralizing antibodies in humanized mice. Nature 2012;492(7427):118-22
  • Acharya P, Luongo TS, Louder MK, et al. Structural basis for highly effective HIV-1 neutralization by CD4-mimetic miniproteins revealed by 1.5 Å cocrystal structure of gp120 and M48U1. Structure 2013;21(6):1018-29
  • Dereuddre-Bosquet N, Morellato-Castillo L, Brouwers J, et al. MiniCD4 microbicide prevents HIV infection of human mucosal explants and vaginal transmission of SHIV(162P3) in cynomolgus macaques. PLoS Pathog 2012;8(12):e1003071
  • Wu X, Yang ZY, Li Y, et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 2010;329(5993):856-61
  • Esser MT, Mori T, Mondor I, et al. Cyanovirin-N binds to gp120 to interfere with CD4-dependent human immunodeficiency virus type 1 virion binding, fusion, and infectivity but does not affect the CD4 binding site on gp120 or soluble CD4-induced conformational changes in gp120. J Virol 1999;73(5):4360-71
  • Tsai CC, Emau P, Jiang Y, et al. Cyanovirin-N gel as a topical microbicide prevents rectal transmission of SHIV89.6P in macaques. AIDS Res Hum Retroviruses 2003;19(7):535-41
  • Wu X, Wang C, O’Dell S, et al. Selection pressure on HIV-1 envelope by broadly neutralizing antibodies to the conserved CD4-binding site. J Virol 2012;86(10):5844-56
  • Wibmer CK, Bhiman JN, Gray ES, et al. Viral escape from HIV-1 neutralizing antibodies drives increased plasma neutralization breadth through sequential recognition of multiple epitopes and immunotypes. PLoS Pathog 2013;9(10):e1003738
  • Roche M, Jakobsen MR, Sterjovski J, et al. HIV-1 escape from the CCR5 antagonist maraviroc associated with an altered and less-efficient mechanism of gp120-CCR5 engagement that attenuates macrophage tropism. J Virol 2011;85(9):4330-42
  • Mascola JR, Montefiori DC. HIV-1: nature’s master of disguise. Nat Med 2003;9(4):393-4
  • Roche M, Salimi H, Duncan R, et al. A common mechanism of clinical HIV-1 resistance to the CCR5 antagonist maraviroc despite divergent resistance levels and lack of common gp120 resistance mutations. Retrovirology 2013;10:43
  • Chen L, Kwon YD, Zhou T, et al. Structural basis of immune evasion at the site of CD4 attachment on HIV-1 gp120. Science 2009;326(5956):1123-7
  • Kwong PD, Doyle ML, Casper DJ, et al. HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature 2002;420(6916):678-82
  • Labrijn AF, Poignard P, Raja A, et al. Access of antibody molecules to the conserved coreceptor binding site on glycoprotein gp120 is sterically restricted on primary human immunodeficiency virus type 1. J Virol 2003;77(19):10557-65
  • Rowling JK. Harry Potter and the goblet of fire. 4. Scholastic, US. 2000
  • Liu J, Bartesaghi A, Borgnia MJ, et al. Molecular architecture of native HIV-1 gp120 trimers. Nature 2008;455(7209):109-13
  • Kwong PD, Wyatt R, Robinson J, et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 1998;393(6686):648-59
  • Huang CC, Lam SN, Acharya P, et al. Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4. Science 2007;317(5846):1930-4
  • Pancera M, Majeed S, Ban YE, et al. Structure of HIV-1 gp120 with gp41-interactive region reveals layered envelope architecture and basis of conformational mobility. Proc Natl Acad Sci USA 2010;107(3):1166-71
  • Tran EE, Borgnia MJ, Kuybeda O, et al. Structural mechanism of trimeric HIV-1 envelope glycoprotein activation. PLoS Pathog 2012;8(7):e1002797
  • Zhou T, Xu L, Dey B, et al. Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature 2007;445(7129):732-7
  • Huang CC, Tang M, Zhang MY, et al. Structure of a V3-containing HIV-1 gp120 core. Science 2005;310(5750):1025-8
  • Acharya P, Tolbert WD, Gohain N, et al. Structural definition of an antibody-dependent cellular cytotoxicity response implicated in reduced risk for HIV-1 infection. J Virol 2014;88(21):12895-906
  • Li Y, Migueles SA, Welcher B, et al. Broad HIV-1 neutralization mediated by CD4-binding site antibodies. Nat Med 2007;13(9):1032-4
  • Walker LM, Phogat SK, Chan-Hui PY, et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 2009;326(5950):285-9
  • Poignard P, Sabbe R, Picchio GR, et al. Neutralizing antibodies have limited effects on the control of established HIV-1 infection in vivo. Immunity 1999;10(4):431-8
  • Wei X, Decker JM, Wang S, et al. Antibody neutralization and escape by HIV-1. Nature 2003;422(6929):307-12
  • West APJr, Scharf L, Scheid JF, et al. Structural insights on the role of antibodies in HIV-1 vaccine and therapy. Cell 2014;156(4):633-48
  • Shingai M, Nishimura Y, Klein F, et al. Antibody-mediated immunotherapy of macaques chronically infected with SHIV suppresses viraemia. Nature 2013;503(7475):277-80
  • Zhou T, Zhu J, Wu X, et al. Multidonor analysis reveals structural elements, genetic determinants, and maturation pathway for HIV-1 neutralization by VRC01-class antibodies. Immunity 2013;39(2):245-58
  • Scheid JF, Mouquet H, Ueberheide B, et al. Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science 2011;333(6049):1633-7
  • Gao F, Bonsignori M, Liao HX, et al. Cooperation of B cell lineages in induction of HIV-1-broadly neutralizing antibodies. Cell 2014;158(3):481-91
  • Shingai M, Donau OK, Plishka RJ, et al. Passive transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal antibodies block SHIV infection in macaques. J Exp Med 2014;211(10):2061-74
  • Lin PF, Blair W, Wang T, et al. A small molecule HIV-1 inhibitor that targets the HIV-1 envelope and inhibits CD4 receptor binding. Proc Natl Acad Sci USA 2003;100(19):11013-18
  • Nowicka-Sans B, Gong YF, McAuliffe B, et al. In vitro antiviral characteristics of HIV-1 attachment inhibitor BMS-626529, the active component of the prodrug BMS-663068. Antimicrob Agents Chemother 2012;56(7):3498-507
  • Pancera M, Druz A, Zhou T, et al. Structure of BMS-806, a small-molecule HIV-1 entry inhibitor, bound to BG505 SOSIP.664 HIV-1 Env trimer. AIDS Res Hum Retroviruses 2014;30(Suppl 1):A151
  • Vita C, Drakopoulou E, Vizzavona J, et al. Rational engineering of a miniprotein that reproduces the core of the CD4 site interacting with HIV-1 envelope glycoprotein. Proc Natl Acad Sci USA 1999;96(23):13091-6
  • Stricher F, Huang CC, Descours A, et al. Combinatorial optimization of a CD4-mimetic miniprotein and cocrystal structures with HIV-1 gp120 envelope glycoprotein. J Mol Biol 2008;382(2):510-24
  • Huang CC, Stricher F, Martin L, et al. Scorpion-toxin mimics of CD4 in complex with human immunodeficiency virus gp120 crystal structures, molecular mimicry, and neutralization breadth. Structure 2005;13(5):755-68
  • Selhorst P, Grupping K, Tong T, et al. M48U1 CD4 mimetic has a sustained inhibitory effect on cell-associated HIV-1 by attenuating virion infectivity through gp120 shedding. Retrovirology 2013;10:12
  • Zhao Q, Ma L, Jiang S, et al. Identification of N-phenyl-N’-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4. Virology 2005;339(2):213-25
  • LaLonde JM, Kwon YD, Jones DM, et al. Structure-based design, synthesis, and characterization of dual hotspot small-molecule HIV-1 entry inhibitors. J Med Chem 2012;55(9):4382-96
  • Courter JR, Madani N, Sodroski J, et al. Structure-based design, synthesis and validation of CD4-mimetic small molecule inhibitors of HIV-1 entry: conversion of a viral entry agonist to an antagonist. Acc Chem Res 2014;47(4):1228-37
  • Matz J, Kessler P, Bouchet J, et al. Straightforward selection of broadly neutralizing single-domain antibodies targeting the conserved CD4 and coreceptor binding sites of HIV-1 gp120. J Virol 2013;87(2):1137-49
  • Cormier EG, Persuh M, Thompson DA, et al. Specific interaction of CCR5 amino-terminal domain peptides containing sulfotyrosines with HIV-1 envelope glycoprotein gp120. Proc Natl Acad Sci USA 2000;97(11):5762-7
  • Cormier EG, Tran DN, Yukhayeva L, et al. Mapping the determinants of the CCR5 amino-terminal sulfopeptide interaction with soluble human immunodeficiency virus type 1 gp120-CD4 complexes. J Virol 2001;75(12):5541-9
  • Dogo-Isonagie C, Lam S, Gustchina E, et al. Peptides from second extracellular loop of C-C chemokine receptor type 5 (CCR5) inhibit diverse strains of HIV-1. J Biol Chem 2012;287(18):15076-86
  • Lam SN, Acharya P, Wyatt R, et al. Tyrosine-sulfate isosteres of CCR5 N-terminus as tools for studying HIV-1 entry. Bioorg Med Chem 2008;16(23):10113-20
  • Farzan M, Chung S, Li W, et al. Tyrosine-sulfated peptides functionally reconstitute a CCR5 variant lacking a critical amino-terminal region. J Biol Chem 2002;277(43):40397-402
  • Berger EA, Alkhatib G. HIV gp120 interactions with coreceptors: insights from studies with CCR5-based peptides. Eur J Med Res 2007;12(9):403-7
  • Agrawal L, VanHorn-Ali Z, Berger EA, et al. Specific inhibition of HIV-1 coreceptor activity by synthetic peptides corresponding to the predicted extracellular loops of CCR5. Blood 2004;103(4):1211-17
  • Xiang SH, Farzan M, Si Z, et al. Functional mimicry of a human immunodeficiency virus type 1 coreceptor by a neutralizing monoclonal antibody. J Virol 2005;79(10):6068-77
  • Huang CC, Venturi M, Majeed S, et al. Structural basis of tyrosine sulfation and VH-gene usage in antibodies that recognize the HIV type 1 coreceptor-binding site on gp120. Proc Natl Acad Sci USA 2004;101(9):2706-11
  • Choe H, Li W, Wright PL, et al. Tyrosine sulfation of human antibodies contributes to recognition of the CCR5 binding region of HIV-1 gp120. Cell 2003;114(2):161-70
  • Acharya P, Dogo-Isonagie C, LaLonde JM, et al. Structure-based identification and neutralization mechanism of tyrosine sulfate mimetics that inhibit HIV-1 entry. ACS Chem Biol 2011;6(10):1069-77
  • Debnath AK. Rational design of HIV-1 entry inhibitors. Methods Mol Biol 2013;993:185-204
  • Quinlan BD, Joshi VR, Gardner MR, et al. A double-mimetic peptide efficiently neutralizes HIV-1 by bridging the CD4- and coreceptor-binding sites of gp120. J Virol 2014;88(6):3353-8
  • Dey B, Del Castillo CS, Berger EA. Neutralization of human immunodeficiency virus type 1 by sCD4-17b, a single-chain chimeric protein, based on sequential interaction of gp120 with CD4 and coreceptor. J Virol 2003;77(5):2859-65
  • Gardner MR, Kattenhorn LM, Kondur HR, et al. Durable protection of rhesus macaques from multiple SHIV challenges through AAV expression of an exceptionally broad and potent HIV-1 entry inhibitor. Nature 2015; 10.1038/nature14264.
  • Chen W, Feng Y, Prabakaran P, et al. Exceptionally potent and broadly cross-reactive, bispecific multivalent HIV-1 inhibitors based on single human CD4 and antibody domains. J Virol 2014;88(2):1125-39
  • Julien JP, Lee PS, Wilson IA. Structural insights into key sites of vulnerability on HIV-1 Env and influenza HA. Immunol Rev 2012;250(1):180-98
  • Doores KJ, Bonomelli C, Harvey DJ, et al. Envelope glycans of immunodeficiency virions are almost entirely oligomannose antigens. Proc Natl Acad Sci USA 2010;107(31):13800-5
  • Go EP, Hewawasam G, Liao HX, et al. Characterization of glycosylation profiles of HIV-1 transmitted/founder envelopes by mass spectrometry. J Virol 2011;85(16):8270-84
  • Walker LM, Huber M, Doores KJ, et al. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 2011;477(7365):466-70
  • McLellan JS, Pancera M, Carrico C, et al. Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 2011;480(7377):336-43
  • Pancera M, Shahzad-Ul-Hussan S, Doria-Rose NA, et al. Structural basis for diverse N-glycan recognition by HIV-1-neutralizing V1-V2-directed antibody PG16. Nat Struct Mol Biol 2013;20(7):804-13
  • Hansen JE, Nielsen CM, Nielsen C, et al. Correlation between carbohydrate structures on the envelope glycoprotein gp120 of HIV-1 and HIV-2 and syncytium inhibition with lectins. AIDS 1989;3(10):635-41
  • Robinson WEJr, Montefiori DC, Mitchell WM. Evidence that mannosyl residues are involved in human immunodeficiency virus type 1 (HIV-1) pathogenesis. AIDS Res Hum Retroviruses 1987;3(3):265-82
  • Boyd MR, Gustafson KR, McMahon JB, et al. Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. Antimicrob Agents Chemother 1997;41(7):1521-30
  • Mori T, O’Keefe BR, Sowder RCII, et al. Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp. J Biol Chem 2005;280(10):9345-53
  • Bokesch HR, O’Keefe BR, McKee TC, et al. A potent novel anti-HIV protein from the cultured cyanobacterium Scytonema varium. Biochemistry 2003;42(9):2578-84
  • Balzarini J. Carbohydrate-binding agents: a potential future cornerstone for the chemotherapy of enveloped viruses? Antivir Chem Chemother 2007;18(1):1-11
  • Huskens D, Schols D. Algal lectins as potential HIV microbicide candidates. Mar Drugs 2012;10(7):1476-97
  • François KO, Balzarini J. Potential of carbohydrate-binding agents as therapeutics against enveloped viruses. Med Res Rev 2012;32(2):349-87
  • Hoorelbeke B, Van Damme EJ, Rouge P. Antiviral chemistry and chemotherapy differences in the mannose oligomer specificities of the closely related lectins from Galanthus nivalis and Zea mays strongly determine their eventual anti-HIV activity. Retrovirology 2011;8(1):10
  • Saidi H, Nasreddine N, Jenabian MA. Antiviral chemistry and chemotherapy Differential in vitro inhibitory activity against HIV-1 of alpha-(1-3)- and alpha-(1-6)-D-mannose specific plant lectins: implication for microbicide development. J Transl Med 2007;5:28
  • Swanson MD, Winter HC, Goldstein IJ, et al. A lectin isolated from bananas is a potent inhibitor of HIV replication. J Biol Chem 2010;285(12):8646-55
  • Bewley CA, Cai M, Ray S, et al. New carbohydrate specificity and HIV-1 fusion blocking activity of the cyanobacterial protein MVL: NMR, ITC and sedimentation equilibrium studies. J Mol Biol 2004;339(4):901-14
  • Huskens D, Ferir G, Vermeire K, et al. Microvirin, a novel alpha(1,2)-mannose-specific lectin isolated from Microcystis aeruginosa, has anti-HIV-1 activity comparable with that of cyanovirin-N but a much higher safety profile. J Biol Chem 2010;285(32):24845-54
  • Sato Y, Okuyama S, Hori K. Primary structure and carbohydrate binding specificity of a potent anti-HIV lectin isolated from the filamentous cyanobacterium Oscillatoria agardhii. J Biol Chem 2007;282(15):11021-9
  • Xiong C, O’Keefe BR, Byrd RA, et al. Potent anti-HIV activity of scytovirin domain 1 peptide. Peptides 2006;27(7):1668-75
  • Chiba H, Inokoshi J, Okamoto M, et al. Actinohivin, a novel anti-HIV protein from an actinomycete that inhibits syncytium formation: isolation, characterization, and biological activities. Biochem Biophys Res Commun 2001;282(2):595-601
  • Gattegno L, Ramdani A, Jouault T, et al. Lectin-carbohydrate interactions and infectivity of human immunodeficiency virus type 1 (HIV-1). AIDS Res Hum Retroviruses 1992;8(1):27-37
  • Wright CS, Hester G. The 2.0 A structure of a cross-linked complex between snowdrop lectin and a branched mannopentose: evidence for two unique binding modes. Structure 1996;4(11):1339-52
  • Koharudin LM, Kollipara S, Aiken C, et al. Structural insights into the anti-HIV activity of the Oscillatoria agardhii agglutinin homolog lectin family. J Biol Chem 2012;287(40):33796-811
  • Williams DCJr, Lee JY, Cai M, et al. Crystal structures of the HIV-1 inhibitory cyanobacterial protein MVL free and bound to Man3GlcNAc2: structural basis for specificity and high-affinity binding to the core pentasaccharide from n-linked oligomannoside. J Biol Chem 2005;280(32):29269-76
  • Bewley CA. Solution structure of a cyanovirin-N:man alpha 1-2Man alpha complex: structural basis for high-affinity carbohydrate-mediated binding to gp120. Structure 2001;9(10):931-40
  • Shahzad-ul-Hussan S, Gustchina E, Ghirlando R, et al. Solution structure of the monovalent lectin microvirin in complex with Man(alpha)(1-2)Man provides a basis for anti-HIV activity with low toxicity. J Biol Chem 2011;286(23):20788-96
  • McFeeters RL, Xiong C, O’Keefe BR, et al. The novel fold of scytovirin reveals a new twist for antiviral entry inhibitors. J Mol Biol 2007;369(2):451-61
  • Dam TK, Brewer CF. Multivalent lectin – carbohydrate interactions. Adv Carbohydrate Chem Biochem 2010;63:139-64
  • Emau P, Tian B, O’Keefe B R, et al. Griffithsin, a potent HIV entry inhibitor, is an excellent candidate for anti-HIV microbicide. J Med Primatol 2007;36(4-5):244-53
  • Shahzad-ul-Hussan S, Ghirlando R, Dogo-Isonagie CI, et al. Characterization and carbohydrate specificity of pradimicin S. J Am Chem Soc 2012;134(30):12346-9
  • Kakushima M, Masuyoshi S, Hirano M, et al. In vitro and in vivo antifungal activities of BMY-28864, a water-soluble pradimicin derivative. Antimicrob Agents Chemother 1991;35(11):2185-90
  • Friend DR, Kiser PF. Assessment of topical microbicides to prevent HIV-1 transmission: concepts, testing, lessons learned. Antiviral Res 2013;99(3):391-400
  • Hoorelbeke B, Huskens D, Ferir G, et al. Actinohivin, a broadly neutralizing prokaryotic lectin, inhibits HIV-1 infection by specifically targeting high-mannose-type glycans on the gp120 envelope. Antimicrob Agents Chemother 2010;54(8):3287-301
  • Balzarini J, Van Laethem K, Hatse S, et al. Profile of resistance of human immunodeficiency virus to mannose-specific plant lectins. J Virol 2004;78(19):10617-27
  • Alexandre KB, Gray ES, Pantophlet R, et al. Binding of the mannose-specific lectin, griffithsin, to HIV-1 gp120 exposes the CD4-binding site. J Virol 2011;85(17):9039-50
  • Witvrouw M, Fikkert V, Hantson A, et al. Resistance of human immunodeficiency virus type 1 to the high-mannose binding agents cyanovirin N and concanavalin A. J Virol 2005;79(12):7777-84
  • Balzarini J, Van Laethem K, Peumans WJ, et al. Mutational pathways, resistance profile, and side effects of cyanovirin relative to human immunodeficiency virus type 1 strains with N-glycan deletions in their gp120 envelopes. J Virol 2006;80(17):8411-21
  • Hu Q, Mahmood N, Shattock RJ. High-mannose-specific deglycosylation of HIV-1 gp120 induced by resistance to cyanovirin-N and the impact on antibody neutralization. Virology 2007;368(1):145-54
  • Sadjadpour R, Donau OK, Shingai M, et al. Emergence of gp120 V3 variants confers neutralization resistance in an R5 simian-human immunodeficiency virus-infected macaque elite neutralizer that targets the N332 glycan of the human immunodeficiency virus type 1 envelope glycoprotein. J Virol 2013;87(15):8798-804
  • Moore PL, Gray ES, Wibmer CK, et al. Evolution of an HIV glycan-dependent broadly neutralizing antibody epitope through immune escape. Nat Med 2012;18(11):1688-92
  • Alexandre KB, Moore PL, Nonyane M, et al. Mechanisms of HIV-1 subtype C resistance to GRFT, CV-N and SVN. Virology 2013;446(1-2):66-76
  • Balzarini J. Targeting the glycans of glycoproteins: a novel paradigm for antiviral therapy. Nat Rev Microbiol 2007;5(8):583-97
  • Reitter JN, Means RE, Desrosiers RC. A role for carbohydrates in immune evasion in AIDS. Nat Med 1998;4(6):679-84
  • Hu J, Cladel NM, Balogh K, et al. Impact of genetic changes to the CRPV genome and their application to the study of pathogenesis in vivo. Virology 2007;358(2):384-90
  • Diskin R, Scheid JF, Marcovecchio PM, et al. Increasing the potency and breadth of an HIV antibody by using structure-based rational design. Science 2011;334(6060):1289-93
  • Diskin R, Klein F, Horwitz JA, et al. Restricting HIV-1 pathways for escape using rationally designed anti-HIV-1 antibodies. J Exp Med 2013;210(6):1235-49
  • Rudicell RS, Kwon YD, Ko SY, et al. Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo. J Virol 2014;88(21):12669-82
  • Balazs AB, Chen J, Hong CM, et al. Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature 2012;481(7379):81-4
  • Balazs AB, Ouyang Y, Hong CM, et al. Vectored immunoprophylaxis protects humanized mice from mucosal HIV transmission. Nat Med 2014;20(3):296-300
  • Dey B, Berger EA. Blocking HIV-1 gp120 at the Phe43 cavity: if the extension fits. Structure 2013;21(6):871-2
  • Berger EA. Targeted cytotoxic therapy: adapting a rapidly progressing anticancer paradigm for depletion of persistent HIV-infected cell reservoirs. Curr Opin HIV AIDS 2011;6(1):80-5
  • Zhou T, Georgiev I, Wu X, et al. Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science 2010;329(5993):811-17
  • Klein F, Diskin R, Scheid JF, et al. Somatic mutations of the immunoglobulin framework are generally required for broad and potent HIV-1 neutralization. Cell 2013;153(1):126-38
  • Pegu A, Yang Z-y, Boyington JC, et al. Neutralizing antibodies to HIV-1 envelope protect more effectively in vivo than those to the CD4 receptor. Sci Transl Med 2014;6(243):243ra88
  • Ko S-Y, Pegu A, Rudicell RS, et al. Enhanced neonatal Fc receptor function improves protection against primate SHIV infection. Nature 2014;514(7524):642-645
  • Morellato-Castillo L, Acharya P, Combes O, et al. Interfacial cavity filling to optimize CD4-mimetic miniprotein interactions with HIV-1 surface glycoprotein. J Med Chem 2013;56(12):5033-47
  • Kwon YD, LaLonde JM, Yang Y, et al. Crystal structures of HIV-1 gp120 envelope glycoprotein in complex with NBD analogues that target the CD4-binding site. PLoS One 2014;9(1):e85940
  • Lalonde JM, Elban MA, Courter JR, et al. Design, synthesis and biological evaluation of small molecule inhibitors of CD4-gp120 binding based on virtual screening. Bioorg Med Chem 2011;19(1):91-101
  • Madani N, Schon A, Princiotto AM, et al. Small-molecule CD4 mimics interact with a highly conserved pocket on HIV-1 gp120. Structure 2008;16(11):1689-701
  • Madani N, Perdigoto AL, Srinivasan K, et al. Localized changes in the gp120 envelope glycoprotein confer resistance to human immunodeficiency virus entry inhibitors BMS-806 and #155. J Virol 2004;78(7):3742-52
  • Kwong PD, Wyatt R, Majeed S, et al. Structures of HIV-1 gp120 envelope glycoproteins from laboratory-adapted and primary isolates. Structure 2000;8(12):1329-39
  • Rizzuto CD, Wyatt R, Hernandez-Ramos N, et al. A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. Science 1998;280(5371):1949-53
  • Xiang SH, Kwong PD, Gupta R, et al. Mutagenic stabilization and/or disruption of a CD4-bound state reveals distinct conformations of the human immunodeficiency virus type 1 gp120 envelope glycoprotein. J Virol 2002;76(19):9888-99
  • Xiang SH, Wang L, Abreu M, et al. Epitope mapping and characterization of a novel CD4-induced human monoclonal antibody capable of neutralizing primary HIV-1 strains. Virology 2003;315(1):124-34
  • Zhang W, Canziani G, Plugariu C, et al. Conformational changes of gp120 in epitopes near the CCR5 binding site are induced by CD4 and a CD4 miniprotein mimetic. Biochemistry 1999;38(29):9405-16
  • Wan C, Sun J, Chen W, et al. Epitope mapping of M36, a human antibody domain with potent and broad HIV-1 inhibitory activity. PLoS One 2013;8(6):e66638
  • Julien JP, Lee JH, Cupo A, et al. Asymmetric recognition of the HIV-1 trimer by broadly neutralizing antibody PG9. Proc Natl Acad Sci USA 2013;110(11):4351-6
  • Malbec M, Porrot F, Rua R, et al. Broadly neutralizing antibodies that inhibit HIV-1 cell to cell transmission. J Exp Med 2013;210(13):2813-21
  • Koharudin LM, Gronenborn AM. Structural basis of the anti-HIV activity of the cyanobacterial oscillatoria agardhii agglutinin. Structure 2011;19(8):1170-81
  • Meagher JL. Crystal structure of banana lectin reveals a novel second sugar binding site. Glycobiology 2005;15(10):1033-42
  • Balzarini J, Van Laethem K, Hatse S, et al. Marked depletion of glycosylation sites in HIV-1 gp120 under selection pressure by the mannose-specific plant lectins of Hippeastrum hybrid and Galanthus nivalis. Mol Pharmacol 2005;67(5):1556-65
  • Hoorelbeke B, van Montfort T, Xue J, et al. HIV-1 envelope trimer has similar binding characteristics for carbohydrate-binding agents as monomeric gp120. FEBS Lett 2013;587(7):860-6
  • Takahashi A, Inokoshi J, Hachiya A, et al. The high mannose-type glycan binding lectin actinohivin: dimerization greatly improves anti-HIV activity. J Antibiot (Tokyo) 2011;64(8):551-7
  • Takahashi A, Inokoshi J, Tsunoda M, et al. Actinohivin: specific amino acid residues essential for anti-HIV activity. J Antibiot (Tokyo) 2010;63(11):661-5
  • Shenoy SR, O’Keefe BR, Bolmstedt AJ, et al. Selective interactions of the human immunodeficiency virus-inactivating protein cyanovirin-N with high-mannose oligosaccharides on gp120 and other glycoproteins. J Pharmacol Exp Ther 2001;297(2):704-10
  • O’Keefe BR, Giomarelli B, Barnard DL, et al. Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein griffithsin against emerging viruses of the family Coronaviridae. J Virol 2010;84(5):2511-21

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.