38
Views
11
CrossRef citations to date
0
Altmetric
Miscellaneous

Emerging targets for antimalarial drugs

&
Pages 423-441 | Published online: 25 Feb 2005

Bibliography

  • COWMAN AF: The Molecular basis of resistance to the sulfones, sulfonamides and dihydrofolate Inhibitors. In: Malaria Parasite Biology. Pathogenesis and Protection. IW Sherman (Ed.) ASM Press, Washington DC (1999):317–330.
  • BZIK DJ, LI WB, HORII T, INSELBURG J: Molecular Cloning and sequence analysis of the PlasmadMm falciparum dihydrofolate reductase - thimidylate synthase gene. Proc. Nati Acad. ScL USA (1987) 84:8360–8364.
  • TRIGLIA T, COWMAN AF: Primary structure and expression of dihydropteroate synthetase gene of Plasmodium falciparum. Proc. Nati Acad. Li. USA (1994) 91:7149–7153.
  • COWMAN AF, MORRY MJ, BIGGS BA et al.: Amino acid changes linked to pyrimethamine resistance in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum. Proc. Natl Acad. Li. USA (1988) 85:9109–9113.
  • WANG P, BROBEY RKB, HORII T et al.: Utilization of exogenous folate in the human malaria parasite P falciparum and its critical role in antifolate drug synergy. Mal Microbial (1999) 32:1254–1262.
  • •Exogenous folate makes DHPS enzyme a relevant target.
  • SIRAWARAPORN W, PRAPANWATTANA P, SIRAWARAPORN R et al.: The dihydrofolate reductase domain of PlasmadMm falciparum thymidylate synthase -dihydrofolate reductase. Gene synthesis, expression and anti-folate-resistant mutants. ..1 Biol. Chem. (1993) 268:21637–21644.
  • SHERMAN LW: Purine and pyrimidine metabolism of asexual stages. In: Malaria - Parasite Biology, Pathogenesis and Protection. IW Sherman (Ed.), ASM press, Washington DC (1998):177–184.
  • DADDONA PE, WISEMAN WP, LAMBROS C et al.: Human malaria parasite adenosine deaminase: characterization in host enzyme-deficient erythrocyte culture. ..1 Biol. Chem. (1984) 259:1472–1475.
  • DADDONA PE, WISEMAN WP, MILHOUSE W et al.: Expression of human malaria parasite purine nucleoside phosphorylase in host enzyme-deficient erythrocyte culture: enzyme characterization and identification of novel inhibitors. ..1 Biol. Chem. (1986) 261:11667–11673.
  • QUEEN SA, VANDER JAGT D, REYES P: Properties and substrate specificity of a purine phosphoribosykransferase from the human malaria parasite, Plasmodium falciparum. Mal. Biochem. Parasite]. (1988) 30:123–134.
  • MARSHALL VM, COPPEL RL: Characterization of the gene encoding adenylosuccinate lyase of Plasmodium falciparum. Mal. Biochem. Parasite]. (1997) 88:237–241.
  • KRUNGKRAI J, CERAMI J, HENDERSON GB: Pyrimidine biosynthesis in parasitic Protozoa: purification of a monofunctional dihydroorotase from Plasmodium berghei and Crithidia fasciculate. Biochemistry (1990) 29:6270–6275.
  • HUDSON AT, DICKINS M, GINGER CD et al.: A broad spectrum anti-infective agent with activity against malaria and opportunistic infections in IDS patients. Drugs. Exp. OM. Res. (1991) 17:427–435.
  • SRIVASTAVA IK, ROTTENBERG H, VAIDYA AB: Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malarial parasite. ..I Biol. Chem. (1997) 272:3961–3966.
  • •Provides a second mechanism for atavoquone action.
  • LOOAREESUWAN S, VIRAVAN C, WEBSTER HK et al.: Clinical studies of atovaquone, alone or in combination with other antimalarial drugs, for treatment of acute uncomplicated malaria in Thailand. Am...1 Trap. Med. Hyg. (1996) 54:62–66.
  • VAIDYA AB: Mitochondrial physiology as a target for atovaquone and other antimalarials. In: Malaria- Parasite Biology. pathogenesis and Protection. IW Sherman (Ed.) ASM Press, Washington DC (1998):355–368.
  • ROOTH E, Jr.: Carbohydrate metabolism: Connection between host cell and parasite. Blood Cells (1990) 16:453–460.
  • SUBBAYYA INS, RAY SS, BALARAM P, BALARAM H: Metabolic enzymes as potential targets in Plasmodium falciparum Indian.j Med. Res. (1997) 106:79–94.
  • MAKLER MT, HINRICHS DJ: Measurement of the lactate dehydrogenase activity of PlasmadMm falciparum as an assessment of parasitemia. Am. ..1 Trap. Med. Hyg. (1993) 48:205–210.
  • DZIERSZINSKI F, POPESCU O, TOURSEL C et al.: The protozoan parasite T gandli expresses two functional plant-like glycolytic enzymes. Implictions for evolutionary origin of apicocomplexans. Biol. Chem. (1999) 274:24888–24895.
  • SLOMIANNY C: Three dimensional reconstruction of the feeding process of the malarial parasite. Blood Cells (1990) 16:369–378.
  • GOLDBERG DE, SLATER AFG, CERAMI A, HENDERSON GB: Hemolgobin degradation in the malaria parasite PlasmadMm falciparum: an ordered process in a unique organelle. Proc. Nati Acad. Sci. USA (1990) 87:2931–2935.
  • •Explains the role of cysteine and aspartic proteases in haemoglobin degradation.
  • FRANCIS SE, GLUZMAN IY, OKSMAN A. et al Characterization of native falcipain, an enzyme involved in Plasmodium falciparum degradation. Md. Biochem. Parasitol. (1996) 83:189–200.
  • ROSENTHAL PJ, MESHNICK R: Hemoglobin processing and the metabolism of amino acids, heme and iron. In: Malaria - Parasite Biology, pathogenesis and Protection. IW Sherman (Ed.) ASM Press, Washington DC (1998):355–368.
  • KAMCHIONWONGPAISAN S, SAMOFF E, MESCHNICK SR: Identification of hemoglobin degradation products in PlasmodMm falciparum. Mol. Biochem. Parasitol.(1997) 86:179–186.
  • LE BONNIEC S, DEREGNANCOURT C, REDEKER V et al.: Plasmepsin II, an acidic hemoglobinase from the Plasmodium falciparum food vacuole, is active at neutral pH on the host erythrocyte membrane skeleton J. Bid. Chem. (1999) 274:14218–14223.
  • EGGLESON KK, DUTTIN KL, GOLDBERG DE: Identification and characterization of Falcilysin, a met allopeptidase involved in hemoglobin catabolism within the malarial parasite PlasmodMm falciparum. j Biol. Chem. (1999) 274:32411–32417.
  • ROSENTHAL PJ: WOLLISH WS, PALMER JT, RASNICK D: Antimalarial effects of peptide inhibitors of a Plasmodium falciparum cysteine proteinase. j Chu. Invest. (1991) 88:1467–1472.
  • LI R, KENYON GL, COHEN FE et al.: In vitro antimalarial activity of chalcones and their derivatives. j Med. Chem. (1995) 38:5031–5037.
  • DOMINQUEZ JN, LOPEZ S, CHARRUS J et al.: Synthesis and antimalarial effects of phenothiazine inhibitors of a Plasmodium falciparum cysteine protease. j Med. Chem. (1997) 40:2726–2732.
  • SILVA AM, LEE AY, GULNIK SV et al.: Structure and inhibition of plasmepsin II, a hemoglobin degrading enzyme from PlasmodMm falciparum. Proc. Nati Acad. Sci. USA (1996) 93:10034–10039.
  • ROSENTHAL PJ: Conservation of key amino acids among the cysteine proteases of multiple malarial species. Mol. Biochem. Parasitol. (1996) 75:255–260.
  • ORJIH A, BANYAL HS, CHEVLI R, FITCH CD: Hemin lyses malaria parasites. Science (1981) 214:667–669.
  • •First evidence for the mechanism of action of chloroquine.
  • FITCH CD: Malaria and red cell. Ciba Foundation Symposium (1983) 94:222–232.
  • SULLIVAN AD, MESHNICK SR: Haemozoin: Identification and quantification. Parasitol. Today (1996) 12:161–163.
  • PAGOLA S, STEPHENS PW, SCOTT-BOHLE D et al: The structure of malaria pigment P-haematin. Nature (2000) 404:307–310.
  • ••Provides a new perspective on haemozoinformation.
  • SLATER AFG, CERAMI A: Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites. Nature (1992) 355:167–169.
  • EGAN TJ, ROSS DC, ADAMS PA: Quinoline antimalarial drugs inhibit spontaneous formation of P-haematin (malaria pigment) FEBS Lett. (1994) 352:54–57.
  • DORN A, STOFFEL R, MATILE H et al.: Malarial hemozoin/P-haematin supports haem polymerization in the absence of protein. Nature (1995) 374:269–271.
  • PANDEY AV, TEKWANI BL: Formation of haemozoin/P-haematin under physiological conditions is not spontaneous. FEBS Lett. (1996) 393:189–193.
  • BENDRAT K, BERGER BJ, CERAMI A: Haem polymerization in malaria. Nature (1995) 378:138.
  • SULLIVAN DJ: GLUZMAN IY, GOLDBERG DE: Plasmodium hemozoin formation mediated by histidine-rich proteins. Science (1996) 271:219–222.
  • PADMANABAN G, RANGARAJAN PN: Heme metabolism of Plasmodium is a major antimalarial target. Biochem. Biophys. Res. Comm. (2000) 268:665–668.
  • FITCH CD, CHEVLI R, BANYAL HS et al. Lysis of Plasmodium falciparum by ferriprotoporphyrin IX and a chloroquine - ferriprotoporphyrin IX complex. Antimicrob. Agents. Chemother. (1982) 21:819–822.
  • SULLIVAN DJ, MATILE H, RIDLEY RG, GOLDBERG DE: A common mechanism for blockade of heme polymerization by antimalarial quinolines. j Biol. Chem. (1998) 273:31103–31107.
  • EGAN TJ, MAVUSO WM, NEOKAZI KK: The mechanism of I3-hematin formation in acetate solution. Parallels between hemozoin formation and biomineralization process. Biochemistry (2001) 40:204–213.
  • PANDEY AV, TEKWANI BL, SINGH RL, CHAUHAN VS: Artemisinin, an endoperoxide antimalarial, disrupts the hemoglobin catabolism and heme detoxification steps in malarial parasite. J. Biol. Chem. (1999) 274:19383–19388.
  • BHISUTTIBHAN J, PAN XQ, HOSSLER PA et al.: The Plasmodium falciparum translationally controlled tumor protein homolog and its reaction with the antimalarial drug artemisinin. _J. Biol. Chem. (1998) 273:16192–16198.
  • GINSBURG H, FAMIN O, ZHANG J, KRUGLIAK M: Inhibition of glutathione-dependent degradation of heme by chloroquine and amodiaquine as a possible basis for their antimalarial mode of action. Biochem. Pharmacol. (1998) 15:1305–1313.
  • ATAMNA H, GINSBURG H: The malaria parasite supplies glutathione to its host cell. Investigation of glutathione metabolism in human erythrocyte infected with Plasmodium falciparum. Eur. j Biochem. (1997) 250:670–679.
  • LORIA P, MILLERS, FOLEY M, TILLEY L: Inhibition of the peroxidative decomposition of haem as the basis of action of chloroquine and other quinoline antimalarials. Biochem. j (1999) 339:363–370.
  • PANDEY AV, BISHT H, BABBARWAL VK et al.: Mechanism of malarial haem detoxification inhibition by chloroquine. Biochem. j (2001) 355:333–338.
  • SUROLIA N, PADMANABAN G: Chloroquine inhibits heme dependent protein synthesis in PlasmodMm falciparum. Proc. Natl. Acad. Sci. USA (1991) 88:4788–4792.
  • •Provides evidence for an alternative mode of chloroquine action through haeme.
  • KARTHIKEYAN G: Role of heme in chloroquine resistance in the malarial parasite. PhD Thesis of the Indian Institute of Science, Bangalore (1997).
  • SHANZER A, LIBMAN J, LYTTON SD et al.: Reversed siderophores act as antimalarial agents. Proc. Natl. Acad. Sci. USA (1991) 88:6585–6589.
  • LYTTON SD, MESTER B, DAYANL et al.: Mode of action of iron (III) chelators as antimalarials: I: membrane permeation properties and cytotoxic activity. Blood (1993) 81:214–221.
  • MABEZA GF, BIEMBA G, GORDENK VR: Chemical studies of iron chelators in malaria. Acta. HaematoL (1996) 95:78–86.
  • FOOTE SJ, KYLE DE, MARTIN RK, et al.: Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature (1990) 345:255–258.
  • SANCHEZ CP, WUNSCH S, LANZER M: Identification of a chloroquine importer in Plasmodium falciparum. j Biol. Chem. (1997) 272:2652–2658.
  • SU X, KIRKMAN LA, FUJIOKA H, WELLEMS JE: Complex polymorphisms in an approximately 330 kDa protein are linked to chloroquine-resistant I? falciparum in Southeast Asia and Africa. Cell (1997) 91:593–603.
  • •Implicates Cg2 allele in chloroquine resistance.
  • BRAY PG, JANNEH O, RAYNES KJ et al.Cellular uptake of chloroquine is dependent on binding ferriprotoporphyrin IX and is independent of NHE activity in Plasmodium falciparum. J. Cell Biol. (1999) 145:363–376.
  • REED MB, SALIBA KJ, CARUANA SR et al.: Pghl modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature (2000) 403:906–909.
  • FIDOCK DA, NOMURA T, COOPER RA et al.: Allelic modifications of Cg2and Cgj genes do not alter chloroquine response of drug resistant Plasmodium falciparum. Biochem. Parasitol. (2000) 110:1–10.
  • ••Provides evidence that Cg2 allele is notdirectly involved in chloroquine resistance.
  • FIDOCK DA, NOMURA T, TALLEY AK et al.: Mutations in the Plasmodium falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Ma. Cell (2000) 6:861–871.
  • ••Identifies a new gene PfCRT inchloroquine resistance.
  • DJIMDE A, PHARM D, DOUMBO OK et al.: A molecular marker for chloroquine-resistant falciparum malaria. New Eng. J. Med. (2001) 344:257–263.
  • ••A field study validating PfCRT associationwith chloroquine reistance.
  • MARTIN SK, ODOULA AM, MILHOUS WK: Reversal of chloroquine resistance in Plasmodium falciparum by verapamil. Science (1987) 235:899–901.
  • MARTINEY JA, CERAMI A, SLATER AFG: Verapamil reversal of chloroquine resistance in the malarial parasite PlasmodMm falciparum is specific for resistant parasites and independent of the weak base effect. J. Biol. Chem. (1995) 270:22393–22398.
  • MILHOUS WK, KYLE DE: Introduction to the modes of action and mechanism of resistance to antimalarials. In Malaria: Parasite Biology, Pathogenesis, and Protection IW Sherman (Ed.), ASM Press, Washington DC (1998):303–316.
  • DE D, KROGSTAD FM, COGSWELL FB, KROGSTAD DJ: Aminoquinolines that circumvent resistance in Plasmodium falciparum in vitro. Am. J. Trap. Med. Hyg. (1996) 55:579–583.
  • SUROLIA N, PADMANABAN G: De novo biosynthesis of heme offers a new chemotherapeutic target in the human malarial parasite. Biochem. Biophys. Res. Comm. (1992) 187:744–750.
  • •Demonstrates de novo haeme synthesis and as a drug target.
  • BONDAY ZQ, TAKETANI S, GUPTA PD, PADMANABAN G: Heme biosynthesis by the malarial parasite: Import of 8-aminolevulinate dehydrase from the host red cell. ..J. Biol. Chem. (1997) 272:21839–21846.
  • •Demonstrates import of a host enzyme into the parasite.
  • BONDAY ZQ, DHANASEKHARAN S, RANGARAJAN PN, PADMANABAN G: Import of host 8-aminolevulinate dehydrase into the malarial parasite: identification of a new drug target. Nature Med. (2000) 6:898–903.
  • ••Demonstrates protein import from themedium into the parasite.
  • MCFADDEN GI, ROOS DS: Apicomplexan plastids as drug targets. Trends MicrobioL (1999) 7:328–333.
  • WILSON RJM, DENNY DW, DREISER PR et al.: Complete gene map of the plastid-like DNA of the malarial parasite PlasmodMm falciparum. j Ma. Biol. (1996) 261:155–172.
  • ••Reviews the role of apicoplast in theparasite.
  • WILSON CM, SMITH AB, BAYLON RV: Characterization of the 8-aminolevulinate synthase gene homologue in P falciparum. Biochem. ParasitoL(1996) 75:271–276.
  • SATO S, TEWS, I, WILSON RJM: Impact of a Plastid-bearing endocymbiont on apicomplexan genomes. InternatL ParasitoL (2000) 30:427–439.
  • ROBERTS F, ROBERTS CW, JOHNSON JJ et al.: Evidence for the shikimate pathway in apicomplexan parasites. Nature (1998) 393:801–805.
  • KEELING PJ, PALMER JD, DONALD RGK et al: Shikimate pathway in apicomplexan parasites. Nature (1999) 397:219.
  • WALLER RF, KEELING PJ, DONALD RGK et al.: Nuclear-encoded proteins target to the plastid in Toxoplasrna gondii and Plasmodium falciparum. Proc. NatL Acad. Sci. USA (1998) 95:12352–12357.
  • •Demonstrates targeting of enzymes to the apicoplast.
  • WALLER RF, REED MB, COWMAN AF, MCFADDEN GI: Protein trafficking to the Plastid of Plasmodium falciparum is via the secretory pathway. EMBO J. (2000) 19:1794–1802.
  • SUROLIA N, SUROLIA A: Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum. Nature Med. (2001) 7:167–173.
  • ••Identifies enoyl - ACP reductase as a newdrug target.
  • JOMAA H, WIESNER J, SANDERBRAND S et al.: Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science (1999) 285:1573–1576.
  • •Demonstrates plant-like enzymes in isoprenoid synthesis as drug targets.
  • FREVERT U, CRISANTI A: Invasion of vertebrate cells: hepatocytes. In: Malaria Parasite Biology, Pathogenesis and Protection IW Sherman (Ed.), ASM Press, Washington DC (1998):73–91.
  • BARN WELL JW, GALINSKI R: Invasion of vertebrate cells: erythrocytes. In: Malaria: Parasite Biology, Pathogenesis and Protection IW Sherman (Ed.), ASM Press, Washington DC (1998):93–120.
  • NAIK RS, DAVIDSON EA, GOWDA D: Developmental stage specific biosynthesis of glycosylphosphatidylinositol anchors in intraerythrocytic Plasmodium falciparum and its inhibition in a novel manner by mannosamine. j Biol. Chem. (2000) 275:24506–24511.
  • BARUCH DI, PASLOSKE BL, SINGH HB et al.: Cloning the I? falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell (1995) 82:77–87.
  • CHEN Q, BARRAGAN A, FERNANDEZ V et al.: Identification of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) as the rosetting ligand of the malarial parasite, R falciparum. j Esp. Med. (1998) 187:15–23.
  • BEESON JG, ROGERSON SJ: COOKE BM et al.: Adhesion of Plasmodium fakiparum-infected erythrocytes to hyaluronic acid in placental malaria. Nature Med. (2000) 6:86–90.
  • VIAL HJ, ANCELIN ML: Malarial lipids, an overview. In: Subcellular Biochemistry JL Avila, JR Harris (Eds.), Plenum Press, New York (1992):259–306.
  • VIAL HJ, VIDAL-SAILHANT V, ANCELIN ML et al: New drugs against malaria with special reference to effectors of the plasmodial phospholipid metabolism. In: Multith-ug resistance in emerging arid re-emerging diseases. RC Mahajan, A Therwath (Eds.), Narosa Publishing House, New Delhi (1999):175–189.
  • ELMENDORF HG, HALDAR K: Plasmodium falciparum exports the Golgi marker sphingomyelin synthase into a tubovesicular network in the cytoplasm of mature erythrocytes. j. Cell Biol. (1994) 124:449–462.
  • LAUER SA: RATHOD PK, GHORI, N HALDAR K: A membrane network of nutrient import in red cells infected with the malaria parasite. Science (1997) 276:1122–1125.
  • ••Demonstrates role of tubovesicularmembrane in nutrient uptake.
  • GINSBURG H, KIRK H: Membrane transport in malaria-infected erythrocytes. In: Malaria: Parasite Biology, Pathogenesis and Protection. IW Sherman (Ed.) ASM Press, Washington DC (1998):219–232.
  • BERRIMAN M, FAIRLAMB AH: Detailed characterization of a cyclophilin from the human malarial parasite Plasmodium falciparum. Biochem. J. (1998) 334:437–445.
  • TIFFERT T, GINBURG H: KRUGLIAK M: et al.: Antimalarial activity of clomitrazole in in vitro cultures of P falciparum. Proc. Natl. Acad. Sci. USA (2000) 97:331–336.
  • MULLER S, DA' DARA A, LURSEN K et al.: In the human malarial parasite P falciparum polyamines are synthesized by a bifunctional ODC S-adomet decarboxylase. j. Biol. Chem. (2000) 275:8097–8102.
  • SLAYDEN RA, LEE RE, BARRY CE. Isoniazid affects multiple components of the type II fatty acid synthase system of Mycobacterium tuberculosis. Molecular Microbial (2000) 38:514–525.
  • ••Identifies FasII enzymes as targets for INH.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.