1,354
Views
114
CrossRef citations to date
0
Altmetric
Review

Everolimus and sirolimus in transplantation-related but different

, & , MD PhD

Bibliography

  • Peddi VR, Wiseman A, Chavin K, et al. Review of combination therapy with mTOR inhibitors and tacrolimus minimization after transplantation. Transplant Rev 2013;27(4):97-107
  • Yost SE, Byrne R, Kaplan B. Transplantation: mTOR inhibition in kidney transplant recipients. Nat Rev Nephrol 2011;7(10):553-5
  • Manito N, Delgado JF, Crespo-Leiro MG, et al. Clinical recommendations for the use of everolimus in heart transplantation. Transplant Rev (Orlando) 2010;24(3):129-42
  • Asrani SK, Leise MD, West CP, et al. Use of sirolimus in liver transplant recipients with renal insufficiency: a systematic review and meta-analysis. Hepatology 2010;52(4):1360-70
  • De Simone P, Metselaar HJ, Fischer L, et al. Conversion from a calcineurin inhibitor to everolimus therapy in maintenance liver transplant recipients: a prospective, randomized, multicenter trial. Liver Transpl 2009;15(10):1262-9
  • Asrani SK, Wiesner RH, Trotter JF, et al. De novo sirolimus and reduced-dose tacrolimus versus standard-dose tacrolimus after liver transplantation: the 2000-2003 phase II prospective randomized trial. Am J Transplant 2014;14(2):356-66
  • Vilar E, Perez-Garcia J, Tabernero J. Pushing the envelope in the mTOR pathway: the second generation of inhibitors. Mol Cancer Ther 2011;10(3):395-403
  • Benjamin D, Colombi M, Moroni C, et al. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov 2011;10(11):868-80
  • Giordano A, Romano A. Inhibition of human in-stent restenosis: a molecular view. Curr Opin Pharmacol 2011;11(4):372-7
  • Park KW, Kang SH, Velders MA, et al. Safety and efficacy of everolimus- versus sirolimus-eluting stents: a systematic review and meta-analysis of 11 randomized trials. Am Heart J 2013;165(2):241-50
  • Neumayer H-H. Introducing everolimus (Certican) in organ transplantation: an overview of preclinical and early clinical developments. Transplantation 2005;79(9 Suppl):S72-5
  • Sehgal SN, Molnar-Kimber K, Ocain TD, et al. Rapamycin: a novel immunosuppressive macrolide. Med Res Rev 1994;14(1):1-22
  • Sedrani R, Cottens S, Kallen J, Schuler W. Chemical modification of rapamycin: the discovery of SDZ RAD. Transplant Proc 1998;30(5):2192-4
  • Womer KL, Kaplan B. Recent developments in kidney transplantation – a critical assessment. Am J Transplant 2009;9(6):1265-71
  • Kahan BD, Gibbons S, Tejpal N, et al. Synergistic interactions of cyclosporine and rapamycin to inhibit immune performances of normal human peripheral blood lymphocytes in vitro. Transplantation 1991;51(1):232-9
  • Schuurman HJ, Cottens S, Fuchs S. SDZ-RAD, a new rapamycin derivative: synergism with cyclosporine. Transplantation 1997;64(1):32-5
  • Schuler W, Sedrani R, Cottens S, et al. SDZ RAD, a new rapamycin derivative: pharmacological properties in vitro and in vivo. Transplantation 1997;64(1):36-42
  • Chung J, Kuo CJ, Crabtree GR, et al. Rapamycin-FKBP specifically blocks growth dependent activation and signal transduction by the 70 kD S6 protein kinases. Cell 1992;69(7):1227-36
  • Dumont FJ, Su Q. Mechanism of action of the immunosuppressant rapamycin. Life Sci 1996;58(5):373-95
  • Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway. Curr Opin Cell Biol 2005;17(6):596-603
  • Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012;149(2):274-93
  • Mabasa VH, Ensom MH. The role of therapeutic monitoring of everolimus in solid organ transplantation. Ther Drug Monit 2005;27(5):666-76
  • Stenton SB, Partovi N, Ensom MH. Sirolimus: the evidence for clinical pharmacokinetic monitoring. Clin Pharmacokinet 2005;44(8):769-86
  • Jin YP, Valenzuela NM, Ziegler ME, et al. Everolimus inhibits anti-HLA I antibody-mediated endothelial cell signaling, migration and proliferation more potently than sirolimus. Am J Transplant 2014;14(4):806-19
  • Schreiber SL. Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science 1991;251(4991):283-7
  • Mahalati K, Kahan BD. Clinical pharmacokinetics of sirolimus. Clin Pharmacokinet 2001;40(8):573-85
  • Kirchner GI, Meier-Wiedenbach I, Manns MP. Clinical pharmacokinetics of everolimus. Clin Pharmacokinet 2004;43(2):83-95
  • Crowe A, Bruelisauer A, Duerr L, et al. Absorption and intestinal metabolism of SDZ-RAD and rapamycin in rats. Drug Metab Dispos 1999;27(5):627-32
  • Crowe A, Lemaire M. In vitro and in situ absorption of SDZ-RAD using a human intestinal cell line (Caco-2) and a single pass perfusion model in rats: comparison with rapamycin. Pharm Res 1998;15(11):1666-72
  • Christians U, Schmitz V, Haschke M. Functional interactions between p-glycoprotein and CYP3A in drug metabolism. Expert Opin Drug Metab Toxicol 2005;1(4):641-54
  • Christians U, Strom T, Zhang YL, et al. Active drug transport of immunosuppressants: new insights for pharmacokinetics and pharmacodynamics. Ther Drug Monit 2006;28(1):39-44
  • Serkova N, Hausen B, Berry GJ, et al. Tissue distribution and clinical monitoring of the novel macrolide immunosuppressant SDZ-RAD and its metabolites in monkey lung transplant recipients: interaction with cyclosporine. J Pharmacol Exp Ther 2000;294(1):323-32
  • Serkova N, Jacobsen W, Niemann CU, et al. Sirolimus, but not the structurally related SDZ-RAD (everolimus), enhances the negative effects of cyclosporine on mitochondrial metabolism in the rat brain. Br J Pharmacol 2001;133(3):875-85
  • Gottschalk S, Cummins CL, Leibfritz D, et al. Age and sex differences in the effects of the immunosuppressants cyclosporine, sirolimus and everolimus on rat brain metabolism. Neurotoxicology 2011;32(1):50-7
  • Bohra R, Schöning W, Klawitter J, et al. Everolimus and sirolimus in combination with cyclosporine have different effects on renal metabolism in the rat. PLoS One 2012;7:e48063
  • Piao SG, Bae SK, Lim SW, et al. Drug interaction between cyclosporine and mTOR inhibitors in experimental model of chronic cyclosporine nephrotoxicity and pancreatic islet dysfunction. Transplantation 2012;93(4):383-9
  • Jacobsen W, Serkova N, Hausen B, et al. Comparison of the in vitro metabolism of the immunosuppressants sirolimus and RAD. Transplant Proc 2001;33(1-2):514-15
  • Kuhn B, Jacobsen W, Christians U, et al. Metabolism of sirolimus and its derivative everolimus by cytochrome P450 3A4: insights from docking, molecular dynamics, and quantum chemical calculations. J Med Chem 2001;44(12):2027-34
  • Strom T, Haschke M, Bendrick-Peart J, et al. Everolimus metabolite patterns in the blood of kidney transplant patients. Ther Drug Monit 2007;29(5):592-9
  • Kovarik JM, Hartmann S, Figueiredo J, et al. Effect of food on everolimus absorption: quantification in healthy subjects and a confirmatory screening in patients with renal transplants. Pharmacotherapy 2002;22(2):154-9
  • Kovarik JM, Noe A, Berthier S, et al. Clinical development of an everolimus pediatric formulation: relative bioavailability, food effect, and steady-state pharmacokinetics. J Clin Pharmacol 2003;43(2):141-7
  • Zimmerman JJ, Ferron GM, Lim HK, Parker V. The effect of a high-fat meal on the oral bioavailability of the immunosuppressant sirolimus (rapamycin). J Clin Pharmacol 1999;39(11):1155-61
  • Rapamune. Summary of product characteristics. Pfizer; Sandwich, United Kingdom: 2013
  • Certican. Basic prescribing information. Novartis Pharma AG; Basel, Switzerland: 2013
  • Christians U, Gottschalk S, Miljus J, et al. Alterations in glucose metabolism by cyclosporine in rat brain slices link to oxidative stress: interactions with mTOR inhibitors. Br J Pharmacol 2004;143(3):388-96
  • Serkova N, Litt L, Leibfritz D, et al. The novel immunosuppressant SDZ-RAD protects rat brain slices from cyclosporine-induced reduction of high-energy phosphates. Br J Pharmacol 2000;129(3):485-92
  • Serkova N, Christians U. Transplantation: toxicokinetics and mechanisms of toxicity of cyclosporine and macrolides. Curr Opin Investig Drugs 2003;4(11):1287-96
  • Klawitter J, Gottschalk S, Hainz C, et al. Immunosuppressant neurotoxicity in rat brain models: oxidative stress and cellular metabolism. Chem Res Toxicol 2010;23(3):608-19
  • Serkova NJ, Christians U, Benet LZ. Biochemical mechanisms of cyclosporine neurotoxicity. Mol Interv 2004;4(2):97-107
  • Podder H, Stepkowski SM, Napoli KL, et al. Pharmacokinetic interactions augment toxicities of sirolimus/cyclosporine combinations. J Am Soc Nephrol 2001;12(5):1059-71
  • Serkova N, Litt L, James TL, et al. Evaluation of individual and combined neurotoxicity of the immunosuppressants cyclosporine and sirolimus by in vitro multinuclear NMR. J Pharmacol Exp Ther 1999;289(2):800-6
  • Serkova N, Donohoe P, Gottschalk S, et al. Comparison of the effects of cyclosporine on the metabolism of perfused rat brain slices during normoxia and hypoxia. J Cereb Blood Flow Metab 2002;22(3):342-52
  • Roberts DJ, Miyamoto S. Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ 2015;22(2):248-57
  • Müller-Krebs S, Weber L, Tsobaneli J, et al. Cellular effects of everolimus and sirolimus on podocytes. PLoS One 2013;8(11):e80340
  • Klawitter J, Bendrick-Peart J, Rudolph B, et al. Urine metabolites reflect time-dependent effects of cyclosporine and sirolimus on rat kidney function. Chem Res Toxicol 2009;22(1):118-28
  • Klawitter J, Klawitter J, Kushner E, et al. Association of immunosuppressant-induced protein changes in the rat kidney with changes in urine metabolite patterns: a proteo-metabonomic study. J Proteome Res 2010;9(2):865-75
  • Christians U, Bohra R, Schoening W, et al. Sirolimus, but not everolimus, enhances tacrolimus nephrotoxicity in the rat. Am J Transplant 2010;10(Suppl 2):34-5
  • Shihab FS, Bennett WM, Yi H, et al. Comparitive effects of sirolimus versus everolimus in similar doses and blood trough levels on chronic cyclosporine nephrotoxicity. Am J Transplant 2005;5(Suppl 11):222
  • Kahan BD; for the Rapamune US Study Group. Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: a randomize multicenter study. Lancet 2000;356(9225):194-202
  • Kahan BD, Kaplan B, Lorber MI, et al. RAD in de novo renal transplantation: comparison of three doses on the incidence and severity of acute rejection. Transplantation 2001;71(10):1400-6
  • Nashan B. Early clinical experience with a novel rapamycin derivative. Ther Drug Monit 2002;24(1):53-8
  • Eisen HJ, Tuzcu EM, Dorent R, et al. Everolimus for the prevention of allograft rejection and vasculopathy in cardiac-transplant recipients. N Engl J Med 2003;349(9):847-58
  • Starling RC, Hare JM, Hauptman P, et al. Therapeutic drug monitoring for everolimus in heart transplant recipients based on exposure-effect modeling. Am J Transplant 2004;4(12):2126-31
  • Delgado JF, Manito N, Segovia J, et al. The use of proliferation signal inhibitors in the prevention and treatment of allograft vasculopathy in heart transplantation. Transplant Rev 2009;23(2):69-79
  • Shing CM, Fassett RG, Brown L, et al. The effects of immunosuppressants on vascular function, systemic oxidative stress and inflammation in rats. Transpl Int 2012;25(3):337-46
  • Vitiello D, Neagoe PE, Sirois MG, et al. Effect of everolimus on the immunomodulation of the human neutrophil inflammatory response and activation. Cell Mol Immunol 2015;12(1):40-52
  • Kamar N, Allard J, Ribes D, et al. Assessment of glomerular and tubular functions in renal transplant patients receiving cyclosporine A in combination with either sirolimus or everolimus. Clin Nephrol 2005;63(2):80-6
  • Sánchez-Fructuoso AI, Ruiz JC, Pérez-Flores I, et al. Comparative analysis of adverse events requiring suspension of mTOR inhibitors: everolimus versus sirolimus. Transplant Proc 2010;42(8):3050-2
  • Tenderich G, Fuchs U, Zittermann A, et al. Comparison of sirolimus and everolimus in their effects on blood lipid profiles and haematological parameters in heart transplant patients. Clin Transplant 2007;21(4):536-43
  • Baur B, Oroszlan M, Hess O, et al. Efficacy and safety of sirolimus and everolimus in heart transplant patients: a retrospective study. Transplant Proc 2011;43(5):1853-61
  • Carvalho C, Coentrão L, Bustorff M, et al. Conversion from sirolimus to everolimus in kidney transplant recipients receiving a calcineurin-free regimen. Clin Transplant 2011;25(4):E401-5
  • Moro JA, Almenar L, Martínez-Dolz L, et al. Tolerance profile of the proliferation signal inhibitors everolimus and sirolimus in heart transplantation. Transplant Proc 2008;40(9):3034-6
  • González-Costello J, Kaplinsky E, Manito N, et al. High rate of discontinuation of a mammalian target of rapamycin inhibitor based regime during long-term follow-up of cardiac transplant patients. J Heart Lung Transplant 2012;31(Suppl 4):S224
  • Hart A, Weir MR, Kasiske BL. Cardiovascular risk assessment in kidney transplantation. Kidney Int 2015;87(3):527-34
  • Kasiske BL, de Mattos A, Flechner SM, et al. Mammalian target of rapamycin inhibitor dyslipidemia in kidney transplant recipients. Am J Transplant 2008;8(7):1384-92
  • Kaplan B, Qazi Y, Wellen JR. Strategies for the management of adverse events associated with mTOR inhibitors. Transplant Rev 2014;28(3):126-33
  • Buhaescu I, Izzedine H, Covic A. Sirolimus–challenging current perspectives. Ther Drug Monit 2006;28(5):577-84
  • Knight ZA, Schmidt SF, Birsoy K, et al. A critical role for mTORC1 in erythropoiesis and anemia. Elife 2014;3:e01913
  • Nashan B Gaston R, Emery V, et al. Review of cytomegalovirus infection findings with mammalian target of rapamycin inhibitor-based Immunosuppressive therapy in de novo renal transplant recipients.Transplantation. 2012;93(11):1075-85
  • Brennan DC, Aguado JM, Potena L, et al. Effect of maintenance immunosuppressive drugs on virus pathobiology: evidence and potential mechanisms. Rev Med Virol 2013;23(2):97-125
  • Andrassy J, Hoffmann VS, Rentsch M, et al. Is cytomegalovirus prophylaxis dispensable in patients receiving an mTOR inhibitor-based immunosuppression? a systematic review and meta-analysis. Transplantation 2012;94(12):1208-17
  • Araki K, Youngblood B, Ahmed R. The role of mTOR in memory CD8 T-cell differentiation. Immunol Rev 2010;235(1):234-43
  • Nashan B, Citterio F. Wound healing complications and the use of mammalian target of rapamycin inhibitors in kidney transplantation: a critical review of the literature. Transplantation 2012;94(6):547-61
  • Zuckermann Z, Barten MJ. Surgical wound complications after heart transplantation. Transpl Int 2011;24(7):627-36
  • Vitko S, Margreiter R, Weimar W, et al. Everolimus (Certican) 12- month safety and efficacy versus mycophenolate mofetil in de novo renal transplant recipients. Transplantation 2005;78(10):1532-40
  • Lorber MI, Mulgaonkar S, Butt KM, et al. Everolimus versus myco- phenolate mofetil in the prevention of rejection in de novo renal transplant recipients: a 3-year randomized, multicenter, phase III study. Transplantation 2005;80(2):244-52
  • Tedesco Silva HJr, Cibrik D, Johnston T, et al. Everolimus plus reduced- exposure CsA versus mycophenolic acid plus standard-exposure CsA in renal-transplant recipients. Am J Transplant 2010;10(6):1401-13
  • Koch M, Kantas A, Ramcke K, et al. Surgical complications after kidney transplantation: different impact of immunosuppression, graft function, patient variables and surgical performance. Clin Transplant 2015;29(3):252-60
  • Lee S, Coco M, Greenstein SM, et al. The effect of sirolimus on sex hormone levels of male renal transplant recipients. Clin Transplant 2005;19(2):162-7
  • Kaczmarek I, Groetzner J, Adamidis I, et al. Sirolimus impairs gonadal function in heart transplant recipients. Am J Transplant 2004;4(7):1084-8
  • Ganschow R, Pape L, Sturm E, et al. Growing experience with mTOR inhibitors in pediatric solid organ transplantation. Pediatr Transplant 2013;17(7):694-706
  • Billing H, Burmeister G, Plotnicki L, et al. Longitudinal growth on an everolimus- versus an MMF-based steroid-free immunosuppressive regimen in paediatric renal transplant recipients. Transpl Int 2013;26(9):903-9
  • Pape L, Ganschow R, Ahlenstiel T. Everolimus in pediatric transplantation. Curr Opin Organ Transplant 2012;17(5):515-19
  • Mahé E, Morelon E, Lechaton S, et al. Cutaneous adverse events in renal transplant recipients receiving sirolimus-based therapy. Transplantation 2005;79(4):476-82
  • Rehm B, Keller F, Mayer J, et al. Resolution of sirolimus-induced pneumonitis after conversion to everolimus. Transplant Proc 2006;38(3):711-13
  • Kuypers DR. Influence of interactions between immunosuppressive drugs on therapeutic drug monitoring. Ann Transplant 2008;13(3):11-18
  • Neau-Cransac M, Moreau K, Deminière C, et al. Decrease in sirolimus-induced proteinuria after switch to everolimus in a liver transplant recipient with diabetic nephropathy. Transpl Int 2009;22(5):586-7
  • Ram R, Swarnalatha G, Neela P, et al. Sirolimus-induced aphthous ulcers which disappeared with conversion to everolimus. Saudi J Kidney Dis Transpl 2008;19(5):819-20
  • Calle L, Tejada C, Lancho C, Mazeucos A. Pneumonitis caused by sirolimus: improvement after switching to everolimus. Nefrologia 2009;29(5):490-1
  • De Simone P, Petruccelli S, Precisi A, et al. Switch to everolimus for sirolimus-induced pneumonitis in a liver transplant recipient – not all proliferation signal inhibitors are the same: a case report. Transplant Proc 2007;39(10):3500-1
  • Rodríguez-Moreno A, Ridao N, Garcia-Ledesma P, et al. Sirolimus and everolimus induced pneumonitis in adult renal allograft recipients: experience in a center. Transpl Proc 2009;41(6):2163-5
  • Klawitter J, Klawitter J, Schmitz V, et al. Mycophenolate mofetil enhances the negative effects of sirolimus and tacrolimus on rat kidney cell metabolism. PLoS One 2014;9(1):e86202
  • Shihab F, Christians U, Smith L, et al. Focus on mTOR inhibitors and tacrolimus in renal transplantation: pharmacokinetics, exposure-response relationships, and clinical outcomes. Transpl Immunol 2014;31(1):22-32
  • Zimmerman JJ, Harper D, Getsy J, Jusko WJ. Pharmacokinetic interactions between sirolimus and microemulsion cyclosporine when orally administered jointly and 4 hours apart in healthy volunteers. J Clin Pharmacol 2003;43(10):1168-76
  • Kovarik JM, Kalbag J, Figueiredo J, et al. Differential influence of two cyclosporine formulations on everolimus pharmacokinetics: a clinically relevant pharmacokinetic interaction. J Clin Pharmcol 2002;42(1):95-9
  • Favre HA, Powell WH. Nomenclature of Organic Chemistry. IUPAC Recommendations and Preferred Name 2013. The Royal Society of Chemistry; Cambridge, UK: 2013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.