372
Views
74
CrossRef citations to date
0
Altmetric
Reviews

Surface modified poly(amido)amine dendrimers as diverse nanomolecules for biomedical applications

, &
Pages 835-850 | Published online: 28 Jul 2009

Bibliography

  • Newkome GR, Yao ZQ, Baker GR, Gupta VK. Micells. Part 1. Cascade molecules: a new approach to micelles A[27]-Arborol. J Org Chem 1985;50:2003-4
  • Tomalia DA, Baker H, Dewald J, et al. A new class of polymers: starburst-dendritic macromolecules. Polymer J 1985;17:117-32
  • Wängler C, Moldenhauer G, Saffrich R, et al. PAMAM structure-based multifunctional fluorescent conjugates for improved fluorescent labelling of biomacromolecules. Chemistry 2008;14:8116-30
  • Parimi S, Barnes TJ, Prestidge CA. PAMAM dendrimers interactions with supported lipid bilayers: a kinetic and mechanistic investigation. Langmuir 2008;24(23):13532-39
  • El-sayed M, Kiani MF, Naimark MD, et al. Extravasation of poly(amidoamine) (PAMAM) dendrimers across microvascular network endothelium. Pharm Res 2001;18:23-8
  • Majoros IJ, Myc A, Thomas T, et al. PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 2006;7:572-9
  • Konda SD, Aref M, Wang S, et al. Specific targeting of folate-dendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts. MAGMA 2001;12:104-13
  • Shukla S, Wu G, Chatterjee M, et al. Synthesis and biological evaluation of folate receptor-targeted boronated PAMAM dendrimers as potential agents for neutron capture therapy. Bioconjug Chem 2003;14:158-16
  • Chandrasekar D, Sistla R, Ahmad FJ, et al. Folate coupled poly(ethyleneglycol) conjugates of anionic poly(amidoamine) dendrimer for inflammatory tissue specific drug delivery. J Biomed Mater Res A 2007;82:92-103
  • Kukowska-Latallo JF, Candido KA, Cao Z, et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 2005;65:5317-24
  • Yang W, Cheng Y, Xu T, et al. Targeting cancer cells with biotin-dendrimer conjugates. Eur J Med Chem 2008 (In Press)
  • Xu H, Regino CA, Koyama Y, et al. Preparation and preliminary evaluation of a biotin-targeted, lectin-targeted dendrimer-based probe for dual-modality magnetic resonance and fluorescence imaging. Bioconjug Chem 2007;18:1474-82
  • Mangold SL, Morgan JR, Strohmeyer GC, et al. Cyanovirin-N binding to Manalpha1-2Man functionalized dendrimers. Org Biomol Chem 2005;3:2354-8
  • Mangold SL, Cloninger MJ. Binding of monomeric and dimeric Concanavalin A to mannose-functionalized dendrimers. Org Biomol Chem 2006;4:2458-65
  • Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy. J Natl Cancer Inst 1998;90:889-905
  • Ndoye A, Merlin JL, Leroux A, et al. Enhanced gene transfer and cell death following P53 gene transfer using photochemical internalisation internalisation of glucosylated PEI-DNA complexes. J Gene Med 2004;6:884-94
  • Berg K, Dietze A, Kaalhus O, Hogset A. Site-specific drug delivery by photochemical internalization enhances the antitumor effect of bleomycin. Clin Cancer Res 2005;11:8476-85
  • Folini M, Berg K, Millo E, et al. Photochemical internalization of a peptide nucleic acid targeting the catalytic subunit of human telomerase. Cancer Res 2003;63:3490-494
  • Lai PS, Lou PJ, Peng CL, et al. Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy. J Control Release 2007;122:39-46
  • Shieh MJ, Peng CL, Lou PJ, et al. Non-toxic phototriggered gene transfection by PAMAM-porphyrin conjugates. J Control Release 2008;129:200-6
  • Margerum LD, Campion BK, Koo M, et al. Gadolinium(III) DO3A macrocycles and polyethylene glycol coupled to dendrimers: effect of molecular weight on physical and biological properties of macromolecular magnetic resonance imaging contrast agents. J Alloy Compd 1997;249:185-90
  • Jendrusch-Borkowski B, Awad J, Wasgestian F. Reactions of chromium (III)- and cobalt(III)-amine-complexes with starburst (PAMAM) dendrimers. J Inclusion Phenomena Macrolytic Chem 1999;35:355-9
  • Benini PGZ, McGarvey BR, Franco DW. Fictionalization of PAMAM dendrimers with [RuIII(edta)(H2O)]. Nitric Oxide 2008;19:245-51
  • Malik N, Evagorou EG, Duncan R. Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs 1999;10:767-76
  • Shukla R, Thomas TP, Desai AM, et al. HER2 specific delivery of methotrexate by dendrimer conjugated anti-HER2 mAb. Nanotechnology 2008;19:295102
  • Patri AK, Myc A, Beals J, et al. Synthesis and in vitro testing of J591 antibody-dendrimer conjugates for targeted prostate cancer therapy. Bioconjug Chem 2004;15:1174-81
  • Kobayashi H, Sato N, Saga T, et al. Monoclonal antibody-dendrimer conjugates enable radiolabeling of antibody with markedly high specific activity with minimal loss of immunoreactivity. Eur J Nucl Med 2000;27:1334-9
  • Wängler C, Moldenhauer G, Eisenhut M, et al. Antibody-dendrimer conjugates: the number, not the size of the dendrimers, determines the immunoreactivity. Bioconjug Chem 2008;19:813-20
  • Boswell CA, Eck PK, Regino CA, et al. Synthesis, characterization, and biological evaluation of integrin alphavbeta3-targeted PAMAM dendrimers. Mol Pharm 2008;5:527-39
  • Yang H, Kao WJ. Synthesis and characterization of nanoscale dendritic RGD clusters for potential applications in tissue engineering and drug delivery. Int J Nanomed 2007;2(1):89-99
  • Shukla R, Thomas TP, Peters J, et al. Tumor angiogenic vasculature targeting with PAMAM dendrimers-RGD conjugates. Chem Commun (Camb) 2005;5739-41
  • Myc A, Patri AK, Baker JR Jr. Dendrimer-based BH3 conjugate that targets human carcinoma cells. Biomacromolecules 2007;8:2986-9
  • Thomas TP, Shukla R, Kotlyar A, et al. Dendrimer#Epidermal growth factor conjugate displays superagonist activity. Biomacromolecules 2008;9(2):603-9
  • Wu G, Barth RF, Yang W, et al. Targeted delivery of methotrexate to epidermal growth factor receptor-positive brain tumors by means of cetuximab (IMC-C225) dendrimers bioconjugates. Mol Cancer Ther 2006;5(1):52-9
  • Zeng YL, Huang HW, Jiang JH, et al. Novel looped enzyme-polyamidoamine dendrimer nanohybrids used as biosensor matrix. Anal Chim Acta 2007;604:170-6
  • Xiangyang S, Baker JR Jr. Synthesis, characterization and stability of a luteinizing hormone-releasing hormone (LHRH)-functionalized poly(amidoamine) dendrimer conjugate. J Biomater Sci Polym Ed 2008;19:131-42
  • Liu H, Guo J, Jin L, et al. Fabrication and functionalization of dendritic poly(amidoamine)-immobilized magnetic polymer composite microspheres. J Phys Chem B 2008;112:3315-21
  • Oliveira JM, Kotobuki N, Marques AP, et al. Surface engineered carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles for intracellular targeting. Adv Funct Mater 2008;18:1840-53
  • Zhang XQ, Intra J, Salem AK. Conjugation of polyamidoamine dendrimers on biodegradable microparticles for nonviral gene delivery. Bioconjug Chem 2007;18:2068-76
  • Papagiannaros A, Dimas K, Papaioannou GT, Demetzos C. Doxorubicin-PAMAM dendrimer complex attached to liposomes: cytotoxic studies against human cancer cell lines. Int J Pharm 2005;302:29-38
  • Mareck U, Geyer H, Guddat S, et al. Identification of the aromatase inhibitors anastrozole and exemestane in human urine using liquid chromatography/ tandem mass spectrometry. Rapid Commun Mass Spectrom 2006;20:1954-62
  • Sarkar K, Yang H. Encapsulation and extended release of anti-cancer anastrozole by stealth nanoparticles. Drug Deliv 2008;15:343-6
  • Pan G, Lemmouchi Y, Akala EO, Bakare O. Studies on PEGylated and drug-loaded PAMAM dendrimers. J Bioactive Compatible Polymers 2005;20:113-28
  • Yang H, Lopina ST. In Vitro enzymatic stability of dendritic peptides. J Biomed Mater Res A 2006;76A(2):398-407
  • Guillaudeu SJ, Fox ME, Haidar YM, et al. PEGylated dendrimers with core functionality for biological applications. Bioconjugate Chem 2008;19:461-69
  • El-Sayed M, Ginski M, Rhodes C, Ghandeharia H. Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers. J Controlled Release 2002;81:355-65
  • El-Sayed M, Rhodes CA, Ginski M, Ghandehari H. Transport mechanism(s) of poly (amidoamine) dendrimers across Caco-2 cell monolayers. Int J Pharm 2003;265:151-7
  • Kitchens KM, Kolhatkar RB, Swaan PW, et al. Transport of poly(Amidoamine) dendrimers across Caco-2 cell monolayers: influence of size, charge and fluorescent labeling. Pharm Res 2006;23:2818-26
  • Kitchens KM, Foraker AB, Kolhatkar RB, et al. Endocytosis and interaction of poly (Amidoamine) dendrimers with Caco-2 cells. Pharm Res 2007;24:2138-45
  • Seiler N, Delcros JG, Moulinoux JP. Polyamine transport in mammalian cells: an update. Int J Biochem Cell Biol 1996;28:843-61
  • Pisal DS, Yellepeddi VK, Kumar A, et al. Permeability of surface-modified polyamidoamine (PAMAM) dendrimers across Caco-2 cell monolayers. Int J Pharm 2008;350:113-21
  • Pisal DS, Yellepeddi VK, Kumar A, Palakurthi S. Transport of surface engineered polyamidoamine (PAMAM) dendrimers across IPEC-J2 cell monolayers. Drug Deliv 2008;15:515-22
  • Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 2005;57:2215-37
  • Brazeau GA, Attia S, Poxon S, Hughes JA. In vitro myotoxicity of selected cationic macromolecules used in non-viral gene delivery. Pharm Res 1998;15:680-4
  • Jevprasesphant R, Penny J, Attwood D, et al. Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm Res 2003;20:1543-50
  • Najlah M, Freeman S, Attwood D, D'Emanuele A. In vitro evaluation of dendrimer prodrugs for oral drug delivery. Int J Pharm 2007;336:183-90
  • Ke W, Zhao Y, Huang R, et al. Enhanced oral bioavailability of doxorubicin in a dendrimer drug delivery system. J Pharm Sci 2008;97:2208-16
  • Kolhatkar RB, Swaan P, Ghandehari H. Potential oral delivery of 7-Ethyl-10-Hydroxy-camptothecin (SN-38) using poly(amidoamine) dendrimers. Pharm Res 2008;25:1723-29
  • Najlah M, Freeman S, Attwood D, D'Emanuele A. Synthesis and assessment of first-generation polyamidoamine dendrimer prodrugs to enhance the cellular permeability of P-gp substrates. Bioconjugate Chem 2007;18:937-46
  • Eliyahu H, Barenholz Y, Domb AJ. Polymers for DNA delivery. Molecules 2005;10:34-64
  • Kono K, Akiyama H, Takahashi T, et al. Transfection activity of polyamidoamine dendrimers having hydrophobic amino acid residues in the periphery. Bioconjug Chem 2005;16:208-14
  • Futaki S. Arginine-rich peptides: potential for intracellular delivery of macromolecules and the mystery of the translocation mechanisms. Int J Pharm 2002;245:1-7
  • Choi JS, Nam K, Park JY, et al. Enhanced transfection efficiency of PAMAM dendrimer by surface modification with L-arginine. J Control Release 2004;94:445-56
  • Kasai S, Nagasawa H, Shimamura M, et al. Design and synthesis of antiangiogenic/heparin-binding arginine dendrimer mimicking the surface of endostatin. Bioorg Med Chem Lett 2002;12:951-4
  • Okuda T, Sugiyama A, Niidome T, Aoyagi H. Characters of dendritic poly(l-lysine) analogues with the terminal lysines replaced with arginines and histidines as gene carriers in vitro. Biomaterials 2004;25:537-44
  • Nam HY, Hahn HJ, Nam K, et al. Evaluation of generations 2, 3 and 4 arginine modified PAMAM dendrimers for gene delivery. Int J Pharm 2008;363:199-205
  • Nam HY, Nam K, Hahn HJ, et al. Biodegradable PAMAM ester for enhanced transfection efficiency with low cytotoxicity. Biomaterials 2009;30:665-73
  • Kang H, De Long R, Fisher MH, Juliano RL. Tat-conjugated PAMAM dendrimers as delivery agents for antisense and siRNA oligonucleotides. Pharm Res 2005;22:2099-106
  • Luo D, Haverstick K, Belcheva N, et al. Poly(ethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery. Macromolecules 2002;35:3456-62
  • Lee JH, Lim YB, Choi JS, et al. Quaternized polyamidoamine dendrimers as novel gene delivery system: relationship between degree of quaternization and their influences. Bull Korean Chem Soc 2003;24:1637-40
  • Vijayanathan V, Thomas T, Shirahata A, Thomas TJ. DNA condensation by polyamines: a laser scattering study of structural effects. Biochemistry 2001;40:13644-51
  • Bloomfield VA. DNA condensation by multivalent cations. Biopolymers 1997;44:269-82
  • Clamme JP, Bernacchi S, Vuilleumier C, et al. Gene transfer by cationic surfactants is essentially limited by the trapping of the surfactant/DNA complexes onto the cell membrane: a fluorescence investigation. Biochim Biophys Acta 2000;1467:347-61
  • Remy JS, Sirlin C, Vierling P, Behr JP. Gene-transfer with a series of lipophilic DNA binding molecules. Bioconjugate Chem 1994;5:647-54
  • Schmiedl U, Ogan MD, Paajanen H, et al. Albumin labeled with Gd-DTPA as an intravascular, blood pool-enhancing agent for MR imaging: biodistribution and imaging studies. Radiology 1987;162:205-10
  • Kobayashi H, Reijnders K, English S, et al. Application of a macromolecular contrast agent for detection of alterations of tumor vessel permeability induced by radiation. Clin Cancer Res 2004;10:7712-20
  • Myc A, Majoros IJ, Thomas TP, Baker JR Jr. Dendrimer-based targeted delivery of an apoptotic sensor in cancer cells. Biomacromolecules 2007;8:13-8
  • Kim Y, Klutz AM, Hechler B, et al. Application of the functionalized congener approach to dendrimer-based signaling agents acting through A2A adenosine receptors. Purinergic Signal 2009;5(1):39-50
  • Alexander TY, Hisataka K, Sean JE, et al. Gadolinium-labeled dendrimers as biometric nanoprobes to detect vascular permeability. J Mater Chem 2003;13:1523-5
  • Na M, Yiyun C, Tongwen X, et al. Dendrimers as potential drug carriers. Part II. Prolonged delivery of ketoprofen by in vitro and in vivo studies. Eur J Med Chem 2006;41:670-4
  • Kolhe P, Misra E, Kannan RM, et al. Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. Int J Pharm 2003;259:143-60
  • Khandare J, Kolhe P, Pillai O, et al. Synthesis, cellular transport, and activity of polyamidoamine dendrimer-methylprednisolone conjugates. Bioconjug Chem 2005;16:330-7
  • Wiwattanapatapee R, Lomlim L, Saramunee K. Dendrimers conjugates for colonic delivery of 5-aminosalicylic acid. J Control Release 2003;88:1-9
  • Najlah M, Freeman S, Attwood D, D'Emanuele A. Synthesis, characterization and stability of dendrimer prodrugs. Int J Pharm 2006;308:175-82
  • Chauhan AS, Jain NK, Diwan PV, Khopade AJ. Solubility enhancement of indomethacin with poly(amidoamine) dendrimers and targeting to inflammatory regions of arthritic rats. J Drug Target 2004;12:575-83
  • Gardiner J, Freeman S, Leach M, et al. PAMAM dendrimers for the delivery of the antibacterial Triclosan. J Enzyme Inhib Med Chem 2008;23:623-8
  • Cheng Y, Qu H, Ma M, et al. Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolone antimicrobials: an in vitro study. Eur J Med Chem 2007;42:1032-8
  • Kaminskas LM, Boyd BJ, Karellas P, et al. The impact of molecular weight and PEG chain length on the systemic pharmacokinetics of PEGylated poly-L-Lysine dendrimers. Mol Pharm 2008;5(3):449-63
  • Chandrasekar D, Sistla R, Ahmad FJ, et al. The development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats. Biomaterials 2007;28:504-12
  • Jevprasesphant R, Penny J, Jalal R, et al. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm 2003;252:263-6
  • Kolhatkar RB, Kitchens KM, Swaan PW, Ghandehari H. Surface acetylation of polyamidoamine (PAMAM) dendrimers decreases cytotoxicity while maintaining membrane permemability. Bioconjug chem 2007;18:2054-60
  • Yang H, Lopina ST, DiPersio LP, Schmidt SP. Stealth dendrimers for drug delivery: correlation between PEGylation, cytocompatibility, and drug payload. J Mater Sci Mater Med 2008;19:1991-7
  • Van Vlerken LE, Vyas TK, Amiji MM. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res 2007;24:1405-14
  • Harris JM, Chess RB. Effect of PEGylation on pharmaceuticals. Nat Rev Drug Discov 2003;2:214-21
  • Greenwald RB, Conover CD, Choe YH. Poly(ethylene glycol) conjugated drugs and prodrugs: a comprehensive review. Crit Rev Ther Drug Carrier Syst 2000;17:101-61
  • Wood KC, Little SR, Langer R, Hammond PT. A family of hierarchically self-assembling linear-dendritic hybrid polymers for highly efficient targeted gene delivery. Angew Chem Int Ed Engl 2005;44:6704-708
  • Kojima C, Kono K, Maruyama K, Takagishi T. Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjug Chem 2000;11:910-7
  • Kim Y, Klutz AM, Jacobson KA. Systematic investigation of polyamidoamine dendrimers surface-modified with poly(ethylene glycol) for drug delivery applications: synthesis, characterization, and evaluation of cytotoxicity. Bioconjug Chem 2008;19:1660-72
  • Wang W, Xiong W, Wan J, et al. The decrease of PAMAM dendrimer – induced cytotoxicity by PEGylation via attenuation of oxidative stress. Nanotechnology 2009;20:1-7
  • Dung HT, Kim JS, Juliano RL, Yoo H. Preparation and evaluation of cholesteryl PAMAM dendrimers as nano delivery agents for antisense oligonucleotides. Colloids Surf A Physicochem Eng Aspects 2008;313-314:273-7
  • Kim SH, Katenellenbogen JA. Hormone – PAMAM dendrimers conjugates: Polymer dynamics and tether structure affect ligand access to receptors. Angew Chem Int Ed 2006;45:7243-48
  • Wiwattanapatapee R, Gomez BC, Malik N, Duncan R. Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system. Pharm Res 2000;17:2000
  • Santos JL, Oramas E, Pêgo AP, et al. Osteogenic differentiation of mesenchymal stem cells using PAMAM dendrimers as gene delivery vectors. J Control Release 2009;134(2):141-8
  • Choi YS, Cho TS, Kim JM, et al. Amine terminated G-6 PAMAM dendrimers and its interaction with DNA probed by Hoechst 33258. Biophys Chem 2006;121:142-9
  • Ackermann B, Engel BC, Buttlies B, Zibert A. Transgenic IL-2 expression in Ewing tumor cell lines after transfection with starburst dendrimers and cationic liposomes. Pediatr Hemtol Oncol 2002;19:509-20
  • Pawate S, Bhat NR. C-Jun N-terminal kinase (JNK) regulation of iNOS expression in glial cells: predominant role of JNK1 isoform. Antioxid Redox Signal 2006;8:903-9
  • Zhang XQ, Wang XL, Huang RX, et al. In vitro gene delivery using polyamidoamine dendrimers with a trimesyl core. Biomacromolecules 2005;6:341-50
  • Patil ML, Zhang M, Betigeri S, et al. Surface-modified and internally cationic polyamidoamine dendrimers for efficient siRNA delivery. Bioconjug Chem 2008;19:1396-403
  • Maksimenko AV, Mandrouguine V, Gottikh MB, et al. Optimization of dendrimers – mediated gene transfer by anionic oligomers. J Gene Med 2003;5:61-71
  • Bai S, Thomas C, Ahsan F. Dendrimers as a carrier for pulmonary delivery of Enoxaparin, a low-molecular weight heparin. J Pharm Sci 2007;96:2090-106
  • Devarakonda B, Hill RA, Liebenberg W, et al. Comparison of the aqueous solubilization of practically insoluble niclosamide by polyamidoamine (PAMAM) dendrimers and cyclodextrins. Int J Pharm 2005;304:193-209
  • Ma M, Cheng Y, Xu Z, et al. Evaluation of polyamidoamine (PAMAM) dendrimers as drug carriers of anti-bacterial drugs using sulfamethoxazole (SMZ) as a model drug. Eur J Med Chem 2007;42:93-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.