226
Views
76
CrossRef citations to date
0
Altmetric
Reviews

Targeting anti-HIV drugs to the CNS

, PhD, , PhD & , PhD
Pages 771-784 | Published online: 30 Jun 2009

Bibliography

  • HIV/AIDS Statistics and Surveillance. CDC, 2006. Available from: http://www.cdc.gov/hiv/topics/surveillance/ basic.htm#ddaids
  • AIDS Epidemic Update. UNAIDS, 2007. Available from: http://data.unaids.org/pub/EPISlides/2007/2007_epiupdate_en.pdf
  • Lange CG, Lederman MM, Medvik K, et al. Nadir CD4+ T-cell count and numbers of CD28+ CD4+ T-cells predict functional responses to immunizations in chronic HIV-1 infection. AIDS 2003;17:2015-23
  • Fleury S, de Boer RJ, Rizzardi GP, et al. Limited CD4+ T-cell renewal in early HIV-1 infection: effect of highly active antiretroviral therapy. Nat Med 1998;4:794-801
  • Sachsenberg N, Perelson AS, Yerly S, et al. Turnover of CD4+ and CD8+ T lymphocytes in HIV-1 infection as measured by Ki-67 antigen. J Exp Med 1998;187:1295-303
  • Paparizos VA, Kyriakis KP, Kourkounti S, et al. The Influence of a HAART regimen on the expression of HIV-associated Kaposi sarcoma. J Acquir Immune Defic Syndr 2008;49:111 Letter United States
  • Kaul M. HIV's double strike at the brain: neuronal toxicity and compromised neurogenesis. Front Biosci 2008;13:2484-94
  • Folks T, Kelly J, Benn S, et al. Susceptibility of normal human lymphocytes to infection with HTLV-III/LAV. J Immunol 1986;136:4049-53
  • Nottet HS, Persidsky Y, Sasseville VG, et al. Mechanisms for the transendothelial migration of HIV-1-infected monocytes into brain. J Immunol 1996;156:1284-95
  • An SF, Groves M, Giometto B, et al. Detection and localisation of HIV-1 DNA and RNA in fixed adult AIDS brain by polymerase chain reaction/in situ hybridisation technique. Acta Neuropathol 1999;98:481-7
  • Bagasra O, Lavi E, Bobroski L, et al. Cellular reservoirs of HIV-1 in the central nervous system of infected individuals: identification by the combination of in situ polymerase chain reaction and immunohistochemistry. Aids 1996;10:573-85
  • Wiley CA, Achim CL, Christopherson C, et al. HIV mediates a productive infection of the brain. Aids 1999;13:2055-9
  • Canto-Nogues C, Sanchez-Ramon S, Alvarez S, et al. HIV-1 infection of neurons might account for progressive HIV-1-associated encephalopathy in children. J Mol Neurosci 2005;27:79-89
  • Gorry PR, Ong C, Thorpe J, et al. Astrocyte infection by HIV-1: mechanisms of restricted virus replication, and role in the pathogenesis of HIV-1-associated dementia. Curr HIV Res 2003;1:463-73
  • Brack-Werner R. Astrocytes: HIV cellular reservoirs and important participants in neuropathogenesis. Aids 1999;13:1-22
  • Wiley CA, Schrier RD, Nelson JA, et al. Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc Natl Acad Sci USA 1986;83:7089-93
  • Grant I. Neurocognitive disturbances in HIV. Int Rev Psychiatry 2008;20:33-47
  • Letendre S, McCutchan JA, Ellis RJ. Neurologic complications of HIV disease and their treatment. Top HIV Med 2008;16:15-22
  • Ances BM, Ellis RJ. Dementia and neurocognitive disorders due to HIV-1 infection. Semin Neurol 2007;27:86-92
  • Antinori A, Arendt G, Becker JT, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology 2007;69:1789-99
  • Hinkin CH, Castellon SA, Atkinson JH, et al. Neuropsychiatric aspects of HIV infection among older adults. J Clin Epidemiol 2001;54(Suppl 1):S44-52
  • Wiseman MB, Sanchez JA, Buechel C, et al. Patterns of relative cerebral blood flow in minor cognitive motor disorder in human immunodeficiency virus infection. J Neuropsychiatry Clin Neurosci 1999;11:222-33
  • Sevigny JJ, Albert SM, McDermott MP, et al. Evaluation of HIV RNA and markers of immune activation as predictors of HIV-associated dementia. Neurology 2004;63:2084-90
  • Maschke M, Kastrup O, Esser S, et al. Incidence and prevalence of neurological disorders associated with HIV since the introduction of highly active antiretroviral therapy (HAART). J Neurol Neurosurg Psychiatry 2000;69:376-80
  • Nath A. Human immunodeficiency virus (HIV) proteins in neuropathogenesis of HIV dementia. J Infect Dis 2002;186(Suppl 2):S193-8
  • Rao KS, Reddy MK, Horning JL, et al. TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomaterials 2008;29:4429-38
  • Stewart SA, Poon B, Song JY, et al. Human immunodeficiency virus type 1 vpr induces apoptosis through caspase activation. J Virol 2000;74:3105-11
  • Corasaniti MT, Strongoli MC, Piccirilli S, et al. Apoptosis induced by gp120 in the neocortex of rat involves enhanced expression of cyclooxygenase type 2 and is prevented by NMDA receptor antagonists and by the 21-aminosteroid U-74389G. Biochem Biophys Res Commun 2000;274:664-9
  • Alirezaei M, Watry DD, Flynn CF, et al. Human immunodeficiency virus-1/surface glycoprotein 120 induces apoptosis through RNA-activated protein kinase signaling in neurons. J Neurosci 2007;27:11047-55
  • Ghafouri M, Amini S, Khalili K, et al. HIV-1 associated dementia: symptoms and causes. Retrovirology 2006;3:28
  • Cook JE, Dasgupta S, Middaugh LD, et al. Highly active antiretroviral therapy and human immunodeficiency virus encephalitis. Ann Neurol 2005;57:795-803
  • Boisse L, Gill MJ, Power C. HIV infection of the central nervous system: clinical features and neuropathogenesis. Neurol Clin 2008;26:799-819
  • Tozzi V, Balestra P, Bellagamba R, et al. Persistence of neuropsychologic deficits despite long-term highly active antiretroviral therapy in patients with HIV-related neurocognitive impairment: prevalence and risk factors. J Acquir Immune Defic Syndr 2007;45:174-82
  • Robinson-Papp J, Byrd D, Mindt MR, et al. Motor function and human immunodeficiency virus-associated cognitive impairment in a highly active antiretroviral therapy-era cohort. Arch Neurol 2008;65:1096-101
  • Rumbaugh JA, Nath A. Developments in HIV neuropathogenesis. Curr Pharm Des 2006;12:1023-44
  • Clifford DB. HIV-associated neurocognitive disease continues in the antiretroviral era. Top HIV Med 2008;16:94-8
  • Tan H, Rader AJ. Identification of putative, stable binding regions through flexibility analysis of HIV-1 gp120. Proteins 2008;74:881-94
  • Kwei GY, Novak LB, Hettrick LA, et al. Regiospecific intestinal absorption of the HIV protease inhibitor L-735,524 in beagle dogs. Pharm Res 1995;12:884-8
  • Lin JH, Chen IW, Vastag KJ, et al. pH-dependent oral absorption of L-735,524, a potent HIV protease inhibitor, in rats and dogs. Drug Metab Dispos 1995;23:730-5
  • Bocedi A, Notaril S, Narciso P, et al. Binding of anti-HIV drugs to human serum albumin. IUBMB Life 2004;56(10):609-14
  • Greene JN, Poblete SJ, Krieff D. New directions in antimicrobial therapy. Chest Surg Clin N Am 1999;9:39-61, vii-viii
  • Markowitz M, Mohri H, Mehandru S, et al. Infection with multidrug resistant, dual-tropic HIV-1 and rapid progression to AIDS: a case report. Lancet 2005;365:1031-8
  • Ho D. Residual pool of HIV after prolonged combination therapy. 5th Conference on Retroviruses and Opportunistic Infections; Chicago, IL; February 3 1998
  • Ho DD. Therapy of HIV infections: problems and prospects. Bull NY Acad Med 1996;73:37-45
  • Crowe SM, McGrath MS, Elbeik T, et al. Comparative assessment of antiretrovirals in human monocyte-macrophages and lymphoid cell lines acutely and chronically infected with the human immunodeficiency virus. J Med Virol 1989;29:176-80
  • Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 1969;40:648-77
  • Rubin LL, Staddon JM. The cell biology of the blood-brain barrier. Annu Rev Neurosci 1999;22:11-28
  • Crone C, Christensen O. Electrical resistance of a capillary endothelium. J Gen Physiol 1981;77:349-71
  • Chaudhuri JD. Blood brain barrier and infection. Med Sci Monit 2000;6:1213-22
  • Takasawa K, Terasaki T, Suzuki H, et al. In vivo evidence for carrier-mediated efflux transport of 3′-azido-3′-deoxythymidine and 2′,3′-dideoxyinosine across the blood-brain barrier via a probenecid-sensitive transport system. J Pharmacol Exp Ther 1997;281:369-75
  • Wang Y, Sawchuk RJ. Zidovudine transport in the rabbit brain during intravenous and intracerebroventricular infusion. J Pharm Sci 1995;84:871-6
  • Tsuji A. Small molecular drug transfer across the blood-brain barrier via carrier-mediated transport systems. NeuroRx 2005;2:54-62
  • Schinkel AH. The roles of P-glycoprotein and MRP1 in the blood-brain and blood-cerebrospinal fluid barriers. Adv Exp Med Biol 2001;500:365-72
  • Thiebaut F, Tsuruo T, Hamada H, et al. Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein P170: evidence for localization in brain capillaries and crossreactivity of one antibody with a muscle protein. J Histochem Cytochem 1989;37:159-64
  • Dwibhashyam VSNM, Nagappa A. Strategies for enhanced drug delivery to the central nervous system. Indian J Pharm Sci 2008;70:145-53
  • Prokai-Tatrai K, Prokai L, Bodor N. Brain-targeted delivery of a leucine-enkephalin analogue by retrometabolic design. J Med Chem 1996;39:4775-82
  • Ikeda M, Bhattacharjee AK, Kondoh T, et al. Synergistic effect of cold mannitol and Na(+)/Ca(2+) exchange blocker on blood-brain barrier opening. Biochem Biophys Res Commun 2002;291:669-74
  • Neuwelt EA, Hill SA, Frenkel EP. Osmotic blood-brain barrier modification and combination chemotherapy: concurrent tumor regression in areas of barrier opening and progression in brain regions distant to barrier opening. Neurosurgery 1984;15:362-6
  • Salahuddin TS, Johansson BB, Kalimo H, et al. Structural changes in the rat brain after carotid infusions of hyperosmolar solutions: a light microscopic and immunohistochemical study. Neuropathol Appl Neurobiol 1988;14:467-82
  • Hynynen K. Focused ultrasound for bloodâ “brain disruption and delivery of therapeutic molecules into the brain. Expert Opinion on Drug Deliv 2007;4:27-35
  • Oztas B, Kucuk M. Intracarotid hypothermic saline infusion: a new method for reversible blood-brain barrier disruption in anesthetized rats. Neurosci Lett 1995;190:203-6
  • Spigelman MK, Zappulla RA, Johnson J, et al. Etoposide-induced blood-brain barrier disruption. J Neurosurg 1984;61:674-8
  • Zhang Y, Schlachetzki F, Pardridge WM. Global non-viral gene transfer to the primate brain following intravenous administration. Mol Ther 2003;7:11-8
  • Pardridge WM. Brain drug targeting: the future of brain drug development. Cambridge, U.K.: Cambridge University Press, 2003
  • Coloma MJ, Lee HJ, Kurihara A, et al. Transport across the primate blood-brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor. Pharm Res 2000;17:266-74
  • Pardridge WM. Molecular Trojan horses for blood-brain barrier drug delivery. Curr Opin Pharmacol 2006;6:494-500
  • Tiwari SB, Amiji MM. A review of nanocarrier-based CNS delivery systems. Curr Drug Deliv 2006;3:219-32
  • Schnyder A, Huwyler J. Drug transport to brain with targeted liposomes. NeuroRx 2005;2:99-107
  • Dusserre N, Lessard C, Paquette N, et al. Encapsulation of foscarnet in liposomes modifies drug intracellular accumulation, in vitro anti-HIV-1 activity, tissue distribution and pharmacokinetics. AIDS 1995;9:833-41
  • Reddy MK, Labhasetwar V. Nanoparticle-mediated delivery of superoxide dismutase to the brain: an effective strategy to reduce ischemia-reperfusion injury. FASEB J 2009;23:1384-95
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005;4:145-60
  • Dhanikula RS, Argaw A, Bouchard JF, et al. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: enhanced efficacy and intratumoral transport capability. Mol Pharm 2008;5:105-16
  • Huang RQ, Qu YH, Ke WL, et al. Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. FASEB J 2007;21:1117-25
  • Dutta T, Jain NK. Targeting potential and anti-HIV activity of lamivudine loaded mannosylated poly (propyleneimine) dendrimer. Biochim Biophys Acta 2007;1770:681-6
  • Wolinsky JB, Grinstaff MW. Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Deliv Rev 2008;60:1037-55
  • Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers for overcoming drug resistance in cancer. Adv Drug Deliv Rev 2002;54:759-79
  • Spitzenberger TJ, Heilman D, Diekmann C, et al. Novel delivery system enhances efficacy of antiretroviral therapy in animal model for HIV-1 encephalitis. J Cereb Blood Flow Metab 2007;27:1033-42
  • Webb K, Caldwell K, Tresco PA. Fibronectin immobilized by a novel surface treatment regulates fibroblast attachment and spreading. Crit Rev Biomed Eng 2000;28:203-8
  • Lockman PR, Mumper RJ, Khan MA, et al. Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm 2002;28:1-13
  • Ojewole E, Mackraj I, Naidoo P, et al. Exploring the use of novel drug delivery systems for antiretroviral drugs. Eur J Pharm Biopharm 2008;697-710
  • Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 2001;47:65-81
  • Alyautdin RN, Tezikov EB, Ramge P, et al. Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study. J Microencapsul 1998;15:67-74
  • Tosi G, Costantino L, Rivasi F, et al. Targeting the central nervous system: in vivo experiments with peptide-derivatized nanoparticles loaded with Loperamide and Rhodamine-123. J Control Release 2007;122:1-9
  • Kaur IP, Bhandari R, Bhandari S, et al. Potential of solid lipid nanoparticles in brain targeting. J Control Release 2008;127:97-109
  • Dechy-Cabaret O, Martin-Vaca B, Bourissou D. Controlled ring-opening polymerization of lactide and glycolide. Chem Rev 2004;104:6147-76
  • Yoo JY, Kim JM, Seo KS, et al. Characterization of degradation behavior for PLGA in various pH condition by simple liquid chromatography method. Biomed Mater Eng 2005;15:279-88
  • Zhang Z, Feng SS. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials 2006;27:4025-33
  • Hanson LR, Frey WH. Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci 2008;9(Suppl 3):S5
  • Tadayoni BM, Friden PM, Walus LR, et al. Synthesis, in vitro kinetics and in vivo studies on protein conjugates of AZT: evaluation as a transport system to increase brain delivery. Bioconjug Chem 1993;4:139-45
  • Temsamani J, Rousselle C, Rees AR, et al. Vector-mediated drug delivery to the brain. Expert Opin Biol Ther 2001;1:773-82
  • Hermanson GT. Bioconjugate Techniques. London: Academic Press, 1996
  • Lockman PR, Oyewumi MO, Koziara JM, et al. Brain uptake of thiamine-coated nanoparticles. J Control Release 2003;93:271-82
  • Mishra V, Mahor S, Rawat A, et al. Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles. J Drug Target 2006;14:45-53
  • Dou H, Morehead J, Destache CJ, et al. Laboratory investigations for the morphologic, pharmacokinetic, and anti-retroviral properties of indinavir nanoparticles in human monocyte-derived macrophages. Virology 2007;358:148-58
  • Dou H, Destache CJ, Morehead JR, et al. Development of a macrophage-based nanoparticle platform for antiretroviral drug delivery. Blood 2006;108:2827-35
  • Wadia JS, Stan RV, Dowdy SF. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 2004;10:310-5
  • Richard JP, Melikov K, Vives E, et al. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 2003;278:585-90
  • Temsamani J, Vidal P. The use of cell-penetrating peptides for drug delivery. Drug Discov Today 2004;9:1012-9
  • Zheng L, Yang YD, Lu GC, et al. Extracellular HIV Tat and Tat cysteine rich peptide increase CCR5 expression in monocytes. J Zhejiang Univ Sci B 2005;6:668-72
  • Vives E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 1997;272:16010-7
  • Derossi D, Calvet S, Trembleau A, et al. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem 1996;271:18188-93
  • Schwarze SR, Ho A, Vocero-Akbani A, et al. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 1999;285:1569-72
  • Peetla C, Rao KS, Labhasetwar V. Relevance of biophysical interactions with model membrane in predicting cellular uptake: study with TAT peptide-conjugated nanoparticles. Mol Pharm 2009 In press
  • Kravcik S, Gallicano K, Roth V, et al. Cerebrospinal fluid HIV RNA and drug levels with combination ritonavir and saquinavir. J Acquir Immune Defic Syndr 1999;21:371-5
  • Sabatier JM, Vives E, Mabrouk K, et al. Evidence for neurotoxic activity of tat from human immunodeficiency virus type 1. J Virol 1991;65:961-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.