1,098
Views
333
CrossRef citations to date
0
Altmetric
Reviews

Nanoparticles for biomedical imaging

, , , , &
Pages 1175-1194 | Published online: 10 Sep 2009

Bibliography

  • Niemeyer CM. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 2001;40(22):4128-58
  • Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005;5(3):161-71
  • Forrest ML, Kwon GS. Clinical developments in drug delivery nanotechnology. Adv Drug Deliv Rev 2008;60(8):861-2
  • Greish K. Enhanced permeability and retention of macromolecular drugs in solid tumors: A royal gate for targeted anticancer nanomedicines. J Drug Target 2007;15(7-8):457-64
  • Hawley AE, Illum L, Davis SS. Preparation of biodegradable, surface engineered PLGA nanospheres with enhanced lymphatic drainage and lymph node uptake. Pharm Res 1997;14(5):657-61
  • Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008;7(9):771-82
  • Weissleder R. Molecular imaging in cancer. Science 2006;312(5777):1168-71
  • Smith AM, Duan HW, Mohs AM, Nie SM. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 2008;60(11):1226-40
  • Lee S, Chen XY. Dual-modality probes for in vivo molecular imaging. Mol Imaging 2009;8(2):87-100
  • Prencipe G, Tabakman SM, Welsher K, Liu Z, PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J Am Chem Soc 2009;131(13):4783-87
  • Al-Jamal WT, Al-Jamal KT, Bomans PH, Functionalized-quantum-dot-liposome hybrids as multimodal nanoparticles for cancer. Small 2008;4(9):1406-15
  • Yu SB, Watson AD. Metal-based X-ray contrast media. Chem Rev 1999;99(9):2353-77
  • Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM. Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 2006;79(939):248-53
  • Choi HS, Liu W, Misra P, Renal clearance of quantum dots. Nat Biotechnol 2007;25(10):1165-70
  • Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine-UK 2008;3(5):703-17
  • Popovtzer R, Agrawal A, Kotov NA, Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 2008;8(12):4593-6
  • McCarthy JR, Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 2008;60(11):1241-51
  • Weissleder R, Kelly K, Sun EY, Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol 2005;23(11):1418-23
  • Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 2008;60(15):1615-26
  • Cai WB, Chen XY. Nanoplatforms for targeted molecular imaging in living subjects. Small 2007;3(11):1840-54
  • Murphy CJ, Gole AM, Stone JW, Gold Nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 2008;41(12):1721-30
  • Sperling RA, Gil PR, Zhang F, Biological applications of gold nanoparticles. Chem Soc Rev 2008;37(9):1896-908
  • Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small 2008;4(1):26-49
  • Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2004;104(1):293-346
  • Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 195111:55-75
  • Kimling J, Maier M, Okenve B, Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 2006;110(32):15700-7
  • Brust M, Walker M, Bethell D, Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system. J Chem Soc Chem Comm 1994;7(7):801-2
  • Brust M, Fink J, Bethell D, Synthesis and reactions of functionalized gold nanoparticles. J Chem Soc Chem Comm 1995;21(16):1655-6
  • Pandey P, Singh SP, Arya SK, Application of thiolated gold nanoparticles for the enhancement of glucose oxidase activity. Langmuir 2007;23(6):3333-7
  • Wangoo N, Bhasin KK, Mehta SK, Suri CR. Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: bioconjugation and binding studies. J Colloid Interface Sci 2008;323(2):247-54
  • Wilson R. The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 2008;37(9):2028-45
  • Blaszkiewicz P. Synthesis of water-soluble ionic and nonionic iodinated X-Ray contrast-media. Invest Radiol 1994;29:S51-3
  • Galperin A, Margel D, Baniel J, Radiopaque iodinated polymeric nanoparticles for X-ray imaging applications. Biomaterials 2007;28(30):4461-8
  • Kattumuri V, Katti K, Bhaskaran S, Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies. Small 2007;3(2):333-41
  • Kim D, Park S, Lee JH, Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 2007;129:7661-65
  • Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 2003;15(10):1957-62
  • Zhao W, Brook MA, Li YF. Design of gold nanoparticle-based colorimetric biosensing assays. Chembiochem 2008;9(15):2363-71
  • Elghanian R, Storhoff JJ, Mucic RC, Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997;277(5329):1078-81
  • Mirkin CA. Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks. Inorg Chem 2000;39(11):2258-72
  • Liu JW, Lu Y. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J Am Chem Soc 2004;126(39):12298-305
  • Li HQ, Wang CG, Ma ZF, Su ZM. Colorimetric detection of immunoglobulin G by use of functionalized gold nanoparticles on polyethylenimine film. Anal Bioanal Chem 2006;384(7-8):1518-24
  • Lee JS, Han MS, Mirkin CA. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem Int Ed 2007;46(22):4093-6
  • Lee JS, Ulmann PA, Han MS, Mirkin CA. A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Lett 2008;8(2):529-33
  • Gao XH, Cui YY, Levenson RM, In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004;22(8):969-76
  • Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Quantum dots versus organic dyes as fluorescent labels. Nat Methods 2008;5(9):763-75
  • Zhang H, Yee D, Wang C. Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives. Nanomedicine-UK 2008;3(1):83-91
  • Misra RD. Quantum dots for tumor-targeted drug delivery and cell imaging. Nanomedicine-UK 2008;3(3):271-4
  • Ekimov AI, Onushchenko AA. Quantum size effect in the optical-spectra of semiconductor micro-crystals. Sov Phys Semicond+ 1982;16(7):775-8
  • Efros AL, Efros AL. Interband absorption of light in a semiconductor sphere. Sov Phys Semicond+ 1982;16(7):772-5
  • Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse Cde (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 1993;115(19):8706-15
  • Hines MA, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS-Capped CdSe nanocrystals. J Phys Chem-US 1996;100(2):468-71
  • Gerion D, Pinaud F, Williams SC, Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 2001;105(37):8861-71
  • Talapin DV, Mekis I, Gotzinger S, CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals. J Phys Chem B 2004;108(49):18826-31
  • Joshi A, Narsingi KY, Manasreh MO, Temperature dependence of the band gap of colloidal CdSe/ZnS core/shell nanocrystals embedded into an ultraviolet curable resin. Appl Phys Lett 2006;89(13):131907
  • Dabbousi BO, Rodriguezviejo J, Mikulec FV, (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 1997;101(46):9463-75
  • Roy MD, Herzing AA, Lacerda SHDP, Becker ML. Emission-tunable microwave synthesis of highly luminescent water soluble CdSe/ZnS quantum dots. Chem Commun 2008;14(18):2106-8
  • Deng ZT, Lie FL, Shen SY, Water-based route to ligand-selective synthesis of ZnSe and Cd-doped ZnSe quantum dots with tunable ultraviolet A to blue photoluminescence. Langmuir 2009;25(1):434-42
  • Bruchez M, Moronne M, Gin P, Semiconductor nanocrystals as fluorescent biological labels. Science 1998;281(5385):2013-6
  • Xu J, Wang J, Mitchell M, Organic-inorganic nanocomposites via directly grafting conjugated polymers onto quantum dots. J Am Chem Soc 2007;129(42):12828-33
  • Anderson RE, Chan WCW. Systematic investigation of preparing biocompatible, single, and small ZnS-capped CdSe quantum dots with amphiphilic polymers. ACS Nano 2008;2(7):1341-52
  • Bentzen EL, Tomlinson ID, Mason J, Surface modification to reduce nonspecific binding of quantum dots in live cell assays. Bioconjug Chem 2005;16(6):1488-94
  • Xing Y, Chaudry Q, Shen C, Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc 2007;2(5):1152-65
  • Pathak S, Davidson MC, Silva GA. Characterization of the functional binding properties of antibody conjugated quantum dots. Nano Lett 2007;7(7):1839-45
  • Qian J, Yong KT, Roy I, Imaging pancreatic cancer using surface-functionalized quantum dots. J Phys Chem B 2007;111(25):6969-72
  • Wamement MR, Tomlinson ID, Chang JC, Controlling the reactivity of ampiphilic quantum dots in biological assays through hydrophobic assembly of custom PEG derivatives. Bioconjug Chem 2008;19(7):1404-13
  • Akerman ME, Chan WCW, Laakkonen P, Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 2002;99(20):12617-21
  • Cai WB, Shin DW, Chen K, Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 2006;6(4):669-76
  • Ballou B, Lagerholm BC, Ernst LA, Noninvasive imaging of quantum dots in mice. Bioconjug Chem 2004;15(1):79-86
  • Kim S, Fisher B, Eisler HY, Bawendi MG. Novel type-II quantum dots: CDTE/CDSE(core/shell) and CDSE/ZNTE (core/shell) heterostructures. J Am Chem Soc 2003;125(38):11466-67
  • Kim S, Lim YT, Soltesz EG, Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 2004;22(1):93-7
  • Tada H, Higuchi H, Wanatabe TM, Ohuchi N. In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res 2007;67(3):1138-44
  • Gao XL, Chen J, Chen JY, Quantum dots bearing lectin-functionalized nanoparticles as a platform for in vivo brain imaging. Bioconjug Chem 2008;19(11):2189-95
  • Yong KT. Mn-doped near-infrared quantum dots as multimodal targeted probes for pancreatic cancer imaging. Nanotechnology 2009;20(1):015102
  • Jin T, Yoshioka Y, Fujii F, Gd3+-functionalized near-infrared quantum dots for in vivo dual modal (fluorescence/magnetic resonance) imaging. Chem Commun 2008;44:5764-6
  • Thorek DLJ, Tsourkas A. Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials 2008;29(26):3583-90
  • Shi XY, Wang SH, Swanson SD, Dendrimer-functionalized shell-crosslinked iron oxide nanoparticles for in-vivo magnetic resonance imaging of tumors. Adv Mater 2008;20(9):1671-78
  • Peng XH, Qian XM, Mao H, Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomed 2008;3(3):311-21
  • Hwu YSL Jr, Josephrajan T, Hsu MH, Shieh targeted paclitaxel by conjugation to iron oxide and gold nanoparticles. J Am Chem Soc 2009;131(1):66-8
  • Jarrett BR, Frendo M, Vogan J, Louie AY. Size-controlled synthesis of dextran sulfate coated iron oxide nanoparticles for magnetic resonance imaging. Nanotechnology 2007;18(3):35603
  • Sun C, Lee JSH, Zhang MQ. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 2008;60(11):1252-65
  • Neumaier CE, Baio G, Ferrini S, MR and iron magnetic nanoparticles. Imaging opportunities in preclinical and translational research. Tumori 2008;94(2):226-33
  • Jun YW, Lee JH, Cheon J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed 2008;47(28):5122-35
  • Schulze E, Ferrucci JT, Poss K, Cellular uptake and trafficking of a prototypical magnetic iron-oxide label in-vitro. Invest Radiol 1995;30(10):604-10
  • Saini S, Stark DD, Hahn PF, Ferrite particles - a superparamagnetic Mr contrast agent for the reticuloendothelial system. Radiology 1987;162(1):211-6
  • Gandon Y, Brunet F, Guyader D, Superparamagnetic iron-oxide (Sio) - an Mr imaging contrast-medium for the reticuloendothelial system. Ann Radiol 1989;32(4):267-72
  • Wunderbaldinger P, Josephson L, Weissleder R. Crosslinked iron oxides (CLIO): a new platform for the development of targeted MR contrast agents. Acad Radiol 2002;9:S304-6
  • Mergo PJ, Engelken JD, Helmberger T, Ros PR. MRI in focal liver disease: a comparison of small and ultra-small superparamagnetic iron oxide as hepatic contrast agents. J Magn Reson Imaging 1998;8(5):1073-8
  • Kawahara I, Nakamoto M, Kitagawa N, Potential of magnetic resonance plaque imaging using superparamagnetic particles of iron oxide for the detection of carotid plaque. Neurol Med Chir 2008;48(4):157-62
  • Feltin N, Pileni MP. New technique for synthesizing iron ferrite magnetic nanosized particles. Langmuir 1997;13(15):3927-33
  • Prakash A, McCormick AV, Zachariah MR. Aero-sol-gel synthesis of nanoporous iron-oxide particles: a potential oxidizer for nanoenergetic materials. Chem Mater 2004;16(8):1466-71
  • Srivastava DN, Perkas N, Gedanken A, Felner I. Sonochemical synthesis of mesoporous iron oxide and accounts of its magnetic and catalytic properties. J Phys Chem B 2002;106(8):1878-83
  • Bautista MC, Bomati-Miguel O, Morales MD, Surface characterisation of dextran-coated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation. J Magn Magn Mater 2005;293(1):20-7
  • Hua CC, Zakaria S, Farahiyan R, Size-controlled synthesis and characterization of Fe3O4 nanoparticles by chemical coprecipitation method. Sains Malays 2008;37(4):389-94
  • Fauconnier N, Pons JN, Roger J, Bee A. Thiolation of maghemite nanoparticles by dimercaptosuccinic acid. J Colloid Interface Sci 1997;194(2):427-33
  • Mohammadi Z, Cole A, Berkland CJ. In situ synthesis of iron oxide within polyvinylamine nanoparticle reactors. J Phys Chem C 2009;113(18):7652-8
  • Jun YW, Huh YM, Choi JS, Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 2005;127(16):5732-3
  • Sun SH, Zeng H, Robinson DB, Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 2004;126(1):273-9
  • Lee JH, Huh YM, Jun Y, Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 2007;13(1):95-9
  • Di Marco M, Guilbert I, Port M, Colloidal stability of ultrasmall superparamagnetic iron oxide (USPIO) particles with different coatings. Int J Pharm 2007;331(2):197-203
  • Park JY, Daksha P, Lee GH, Highly water-dispersible PEG surface modified ultra small superparamagnetic iron oxide nanoparticles useful for target-specific biomedical applications. Nanotechnology 2008;19(36):365603
  • Peng S, Wang C, Xie J, Sun SH. Synthesis and stabilization of monodisperse Fe nanoparticles. J Am Chem Soc 2006;128(33):10676-7
  • Kohler N, Fryxell GE, Zhang MQ. A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. J Am Chem Soc 2004;126(23):7206-11
  • Sun EY, Josephson L, Kelly KA, Weissleder R. Development of nanoparticle libraries for biosensing. Bioconjug Chem 2006;17(1):109-13
  • Waters EA, Wickline SA. Contrast agents for MRI. Basic Res Cardiol 2008;103(2):114-21
  • Weissleder R, Imhof H. Molecular imaging - a new focal point of radiology. Radiologe 2007;47(1):6-7
  • Wunderbaldinger P, Josephson L, Bremer C, Detection of lymph node metastases by contrast-enhanced MRI in an experimental model. Magn Reson Med 2002;47(2):292-7
  • Lewin M, Carlesso N, Tung CH, Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 2000;18(4):410-4
  • Kircher MF, Allport JR, Graves EE, In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res 2003;63(20):6838-46
  • Kircher MF, Mahmood U, King RS, A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res 2003;63(23):8122-5
  • Montet X, Weissleder R, Josephson L. Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas. Bioconjug Chem 2006;17(4):905-11
  • Schellenberger EA, Hogemann D, Josephson L, Weissleder R. Annexin V-CLIO: a nanoparticle for detecting apoptosis by MRI. Acad Radiol 2002;9:S310-1
  • Hu FQ, Wei L, Zhou Z, Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer. Adv Mater 2006;18(19):2553-56
  • Song HT, Choi JS, Huh YM, Surface modulation of magnetic nanocrystals in the development of highly efficient magnetic resonance probes for intracellular labeling. J Am Chem Soc 2005;127(28):9992-3
  • Miyoshi S, Flexman JA, Cross DJ, Transfection of neuroprogenitor cells with iron nanoparticles for magnetic resonance imaging tracking: Cell viability, differentiation, and intracellular localization. Mol Imaging Biol 2005;7(4):286-95
  • Xie J, Chen K, Lee HY, Ultrasmall c(RGDyK)-coated Fe3O4 nanoparticles and their specific targeting to integrin alpha(v)beta(3)-rich tumor cells. J Am Chem Soc 2008;130(24):7542-43
  • Huh YM, Jun YW, Song HT, In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 2005;127(35):12387-91
  • Iijima S. Helical microtubules of graphitic carbon. Nature 1991;354(6348):56-8
  • Bachilo SM, Strano MS, Kittrell C, Structure-assigned optical spectra of single-walled carbon nanotubes. Science 2002;298(5602):2361-6
  • Kam NWS, Jessop TC, Wender PA, Dai HJ. Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 2004;126(22):6850-1
  • Pantarotto D, Briand JP, Prato M, Bianco A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun 2004;7(1):16-7
  • Dai HJ, Hafner JH, Rinzler AG, Nanotubes as nanoprobes in scanning probe microscopy. Nature 1996;384(6605):147-50
  • Lacerda L, Soundararajan A, Singh R, Dynamic imaging of functionalized multi-walled carbon nanotube systemic circulation and urinary excretion. Adv Mater 2008;20(2):225-30
  • Guo T, Nikolaev P, Thess A, Catalytic growth of single-walled nanotubes by laser vaporization. Chem Phys Lett 1995;243(1-2):49-54
  • Hafner JH, Bronikowski MJ, Azamian BR, Catalytic growth of single-wall carbon nanotubes from metal particles. Chem Phys Lett 1998;296(1-2):195-202
  • Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 1996;381(6584):678-80
  • Bianco A, Kostarelos K, Partidos CD, Prato M. Biomedical applications of functionalised carbon nanotubes. Chem Commun 2005;5:571-7
  • Sirdeshmukh R, Teker K, Panchapakesan B. Functionalization of carbon nanotubes with antibodies for breast cancer detection applications. Proceedings of the 2004 International Conference on MEMS, NANO, and Smart Systems 2004:48-53
  • Cherukuri P, Bachilo SM, Litovsky SH, Weisman RB. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J Am Chem Soc 2004;126(48):15638-9
  • Svenson S, Tomalia DA. Commentary - dendrimers in biomedical applications - reflections on the field. Adv Drug Deliv Rev 2005;57(15):2106-29
  • Kobayashi H, Brechbiel MW. Nano-sized MRI contrast agents with dendrimer cores. Adv Drug Deliv Rev 2005;57(15):2271-86
  • Tomalia DA, Reyna LA, Svenson S. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc T 2007;35:61-7
  • Langereis S, Dirksen A, Hackeng TM, Dendrimers and magnetic resonance imaging. New J Chem 2007;31(7):1152-60
  • Langereis S, de Lussanet QG, van Genderen MHP, Evaluation of Gd(III)DTPA-terminated poly(propylene imine) dendrimers as contrast agents for MR imaging. NMR Biomed 2006;19(1):133-41
  • Tomalia DA. Starburst(R) dendrimers - nanoscopic supermolecules according dendritic rules and principles. Macromol Symp 1996;101:243-55
  • Hawker CJ, Frechet JMJ. Preparation of polymers with controlled molecular architecture - a new convergent approach to dendritic macromolecules. J Am Chem Soc 1990;112(21):7638-47
  • Tomalia DA. Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic organic chemistry. Aldrichim Acta 2004;37(2):39-57
  • Wiener EC, Brechbiel MW, Brothers H, Dendrimer-based metal-chelates - a new class of magnetic-resonance-imaging contrast agents. Magn Reson Med 1994;31(1):1-8
  • Bryant LH, Brechbiel MW, Wu CC, Synthesis and relaxometry of high-generation (G = 5, 7, 9, and 10) PAMAM dendrimer-DOTA-gadolinium chelates. J Magn Reson Imaging 1999;9(2):348-52
  • Kobayashi H, Kawamoto S, Jo SK, Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores. Bioconjug Chem 2003;14(2):388-94
  • Konda SD, Aref M, Brechbiel M, Wiener EC. Development of a tumor-targeting MR contrast agent using the high-affinity folate receptor - work in progress. Invest Radiol 2000;35(1):50-7
  • Konda SD, Wang S, Brechbiel M, Wiener EC. Biodistribution of a Gd-153-folate dendrimer, generation=4, in mice with folate-receptor positive and negative ovarian tumor xenografts. Invest Radiol 2002;37(4):199-204
  • Wiener EC, Konda SD, Wang S, Brechbiel M. Imaging folate binding protein expression with MRI. Acad Radiol 2002;9:S316-9
  • Wu CC, Brechbiel MW, Kozak RW, Gansow OA. Metal-chelate- dendrimer-antibody constructs for use in radioimmunotherapy and imaging. Bioorg Med Chem Lett 1994;4(3):449-54
  • van Baal I, Malda H, Synowsky SA, Multivalent peptide and protein dendrimers using native chemical ligation. Angew Chem Int Ed 2005;44(32):5052-7
  • Konda SD, Aref M, Wang S, Specific targeting of folate-dendrimer MRI contrast agents to the high affinity fo late receptor expressed in ovarian tumor xenografts. Magn Reson Mater Phy 2001;12(2-3):104-13
  • Swanson SD, Kukowska-Latallo JF, Patri AK, Targeted gadolinium-loaded dendrimer nanoparticles for tumor-specific magnetic resonance contrast enhancement. Int J Nanomed 2008;3(2):201-10
  • De Geest BG, Sanders NN, Sukhorukov GB, Release mechanisms for polyelectrolyte capsules. Chem Soc Rev 2007;36(4):636-49
  • Hartig SM, Greene RR, Dikov MM, Multifunctional nanoparticulate polyelectrolyte complexes. Pharm Res 2007;24(12):2353-69
  • Liu ZH, Jiao YP, Wang YF, Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 2008;60(15):1650-62
  • de Vasconcelos CL, Bezerril PM, dos Santos DES, Effect of molecular weight and ionic strength on the formation of polyelectrolyte complexes based on poly(methacrylic acid) and chitosan. Biomacromolecules 2006;7(4):1245-52
  • Hartig SM, Carlesso G, Davidson JM, Prokop A. Development of improved nanoparticulate polyelectrolyte complex physicochemistry by nonstoichiometric mixing of polyions with similar molecular weights. Biomacromolecules 2007;8(1):265-72
  • Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 1997;277(5330):1232-7
  • Hartig SM, Greene RR, Carlesso G, Kinetic analysis of nanoparticulate polyelectrolyte complex interactions with endothelial cells. Biomaterials 2007;28(26):3843-55
  • Tiyaboonchai W, Woiszwillo J, Middaugh CR. Formulation and characterization of amphotericin B-polyethylenimine-dextran sulfate nanoparticles. J Pharm Sci-US 2001;90(7):902-14
  • Tiyaboonchai W, Woiszwillo J, Sims RC, Middaugh CR. Insulin containing polyethylenimine-dextran sulfate nanoparticles. Int J Pharm 2003;255(1-2):139-51
  • Bailey MM, Berkland CJ. Nanoparticle formulations in pulmonary drug delivery. Med Res Rev 2009;29(1):196-212
  • Zaitsev S, Cartier R, Vyborov O, Polyelectrolyte nanoparticles mediate vascular gene delivery. Pharm Res 2004;21(9):1656-61
  • Ii'ina AV, Varlamov VP. Chitosan-based polyelectrolyte complexes: a review. Appl Biochem Micro+ 2005;41(1):5-11
  • Huang M, Vitharana SN, Peek LJ, Polyelectrolyte complexes stabilize and controllably release vascular endothelial growth factor. Biomacromolecules 2007;8(5):1607-14
  • Huang M, Huang ZL, Bilgen M, Berkland C. Magnetic resonance imaging of contrast-enhanced polyelectrolyte complexes. Nanomed Nanotechnol Biol Med 2008;4:30-40
  • Liu T, Tang A, Zhang GY, Calcium phosphate nanoparticles as a novel nonviral vector for efficient trasfection of DNA in cancer gene therapy. Cancer Biother Radiopharm 2005;20(2):141-9
  • Maitra A. Calcium phosphate nanoparticles: second-generation nonviral vectors in gene therapy. Expert Rev Mol Diagn 2005;5(6):893-905
  • Morgan TT, Muddana HS, Altinoglu EI, Encapsulation of organic molecules in calcium phosphate nanocomposite particles for intracellular imaging and drug delivery. Nano Lett 2008;8(12):4108-15
  • Kester M, Heakal Y, Fox T, Calcium phosphate nanocomposite particles for in vitro imaging and encapsulated chemotherapeutic drug delivery to cancer cells. Nano Lett 2008;8(12):4116-21
  • Altinoglu EI, Russin TJ, Kaiser JM, Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. ACS Nano 2008;2(10):2075-84
  • Roy I, Mitra S, Maitra A, Mozumdar S. Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery. Int J Pharm 2003;250(1):25-33
  • Bisht S, Bhakta G, Mitra S, Maitra A. pDNA loaded calcium phosphate nanoparticles: highly efficient non-viral vector for gene delivery. Int J Pharm 2005;288(1):157-68
  • Sokolova V, Kovtun A, Heumann R, Epple M. Tracking the pathway of calcium phosphate/DNA nanoparticles during cell transfection by incorporation of red-fluorescing tetramethylrhodamine isothiocyanate-bovine serum albumin into these nanoparticles. J Biol Inorg Chem 2007;12(2):174-9
  • Lanza GM, Winter PM, Caruthers SD, Nanomedicine opportunities for cardiovascular disease with perfluorocarbon nanoparticles. Nanomedicine-UK 2006;1(3):321-9
  • Tran TD, Caruthers SD, Hughes M, Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics. Int J Nanomed 2007;2(4):515-26
  • Winter PM, Cai K, Caruthers SD, Emerging nanomedicine opportunities with perfluorocarbon nanoparticles. Expert Rev Med Devices 2007;4(2):137-45
  • Hughes M, Caruthers S, Tran T, Perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics. P IEEE 2008;96(3):397-415
  • Marsh JN, Partlow KC, Abendschein DR, Molecular imaging with targeted perfluorocarbon nanoparticles: quantification of the concentration dependence of contrast enhancement for binding to sparse cellular epitopes. Ultrasound Med Biol 2007;33(6):950-8
  • Caruthers SD, Winter PM, Wickline SA, Lanza GM. Targeted magnetic resonance imaging contrast agents. Methods Mol Med 2006;124:387-400
  • Schmieder AH, Winter PM, Caruthers SD, Molecular MR imaging of melanoma angiogenesis with alpha(nu)beta(3)-targeted paramagnetic nanoparticles. Magnet Reson Med 2005;53(3):621-7
  • Ahrens ET, Flores R, Xu HY, Morel PA. In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 2005;23(8):983-7
  • Partlow KC, Chen JJ, Brant JA, F-19 magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB J 2007;21(8):1647-54
  • Wickline SA, Neubauer AM, Winter PM, Molecular imaging and therapy of atherosclerosis with targeted nanoparticles. J Magn Reson Imaging 2007;25(4):667-80
  • Muchow M, Maincent P, Muller RH. Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery. Drug Dev Ind Pharm 2008;34(12):1394-405
  • Li XW, Sun LX, Lin XH, Zheng LQ. Solid lipid nanoparticles as drug delivery system. Prog Chem 2007;19(1):87-92
  • Mulder WJM, Strijkers GJ, van Tilborg GAF, Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 2006;19(1):142-64
  • Koole R, van Schooneveld MM, Hilhorst J, Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: a new contrast agent platform for multimodality imaging. Bioconjug Chem 2008;19(12):2471-9
  • Cressman S, Dobson I, Lee JB, Tam Y, Synthesis of a labeled RGD−lipid, its incorporation into liposomal nanoparticles, and their trafficking in cultured endothelial Cells. Bioconjug Chem 2009;20(7):1404-11
  • Senarath-Yapa MD, Phimphivong S, Coym JW, Preparation and characterization of poly(lipid)-coated, fluorophore-doped silica nanoparticles for biolabeling and cellular imaging. Langmuir 2007;23(25):12624-33
  • Lanone S, Boczkowski J. Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr Mol Med 2006;6(6):651-63
  • Pan Y, Neuss S, Leifert A, Size-dependent cytotoxicity of gold nanoparticles. Small 2007;3(11):1941-9
  • Powers KW, Palazuelos M, Moudgil BM, Roberts SM. Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 2007;1(1):42-51
  • Simon A, Thiebault C, Reynaud C, Toxicity of oxide nanoparticles and carbon nanotubes on cultured pneumocytes: impact of size, structure and surface charge. Toxicol Lett 2006;164:S222-S222
  • Jiang JK, Oberdorster G, Biswas P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 2009;11(1):77-89
  • Dobrovolskaia MA, Mcneil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol 2007;2(8):469-78
  • Clift MJD, Rothen-Rutishauser B, Brown DM, The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol Appl Pharm 2008;232(3):418-27
  • Aillon KL, Xie Y, El-Gendy N, Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 2009;61(6):457-66.
  • Fischer HC, Chan WCW. Nanotoxicity: the growing need for in vivo study. Curr Opin Biotech 2007;18(6):565-71
  • NCI.Nanotechnology Characterization Laboratory. Available from: http://nclcancergov/working_assay-cascadeasp

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.