252
Views
27
CrossRef citations to date
0
Altmetric
Reviews

Recent advances in tumor vasculature targeting using liposomal drug delivery systems

, , Phd & , PhD
Pages 1297-1309 | Published online: 28 Sep 2009

Bibliography

  • Jain RK. The next frontier of molecular medicine: delivery of therapeutics. Nat Med 1998;4:655-7
  • Pluen A, Boucher Y, Ramanujan S, Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial vs. subcutaneous tumors. Proc Natl Acad Sci USA 2001;98:4628-33
  • Jain RK. Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res 1990;50(Suppl 3):814s-9s
  • Netti PA, Baxter LT, Boucher Y, Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery. Cancer Res 1995;55:5451-8
  • Tsuruo T, Tomida A. Multidrug resistance. Anticancer Drugs 1995;6:213-8
  • Peer D, Karp JM, Hong S, Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007;2:751-60
  • Lammers T, Hennink WE, Storm G. Tumour-targeted nanomedicines: principles and practice. Br J Cancer 2008;99:392-7
  • Lu Y, Yang J, Sega E. Issues related to targeted delivery of proteins and peptides. AAPS J 2006;8:E466-78
  • Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer 2003;3:401-10
  • Griffioen AW, Barendsz-Janson AF, Mayo KH, Hillen HF. Angiogenesis, a target for tumor therapy. J Lab Clin Med 1998;132:363-8
  • Pezzolo A, Parodi F, Corrias MV, Tumor origin of endothelial cells in human neuroblastoma. J Clin Oncol 2007;25:376-83
  • Shimizu K, Oku N. Cancer anti-angiogenic therapy. Biol Pharm Bull 2004;27:599-605
  • Ye J, Li Y, Hamasaki T, Inhibitory effect of electrolyzed reduced water on tumor angiogenesis. Biol Pharm Bull 2008;31:19-26
  • Thurston G, McLean JW, Rizen M, Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J Clin Invest 1998;101:1401-13
  • Pandya NM, Dhalla NS, Santani DD. Angiogenesis–a new target for future therapy. Vascul Pharmacol 2006;44:265-74
  • Staton CA, Stribbling SM, Tazzyman S, Current methods for assaying angiogenesis in vitro and in vivo. Int J Exp Pathol 2004;85:233-48
  • Hussain S, Slevin M, Matou S, Anti-angiogenic activity of sesterterpenes; natural product inhibitors of FGF-2-induced angiogenesis. Angiogenesis 2008;11:245-56
  • Shibusa T, Shijubo N, Abe S. Tumor angiogenesis and vascular endothelial growth factor expression in stage I lung adenocarcinoma. Clin Cancer Res 1998;4:1483-7
  • Rosen LS. Clinical experience with angiogenesis signaling inhibitors: focus on vascular endothelial growth factor (VEGF) blockers. Cancer Control 2002;9(Suppl 2):36-44
  • Folkman J. The role of angiogenesis in tumor growth. Semin Cancer Biol 1992;3:65-71
  • Fong TA, Shawver LK, Sun L, SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res 1999;59:99-106
  • Kan Z, Ivancev K, Lunderquist A, In vivo microscopy of hepatic tumors in animal models: a dynamic investigation of blood supply to hepatic metastases. Radiology 1993;187:621-6
  • Stewart PA, Hayakawa K, Farrell CL, Del Maestro RF. Quantitative study of microvessel ultrastructure in human peritumoral brain tissue. Evidence for a blood-brain barrier defect. J Neurosurg 1987;67:697-705
  • Yonenaga Y, Mori A, Onodera H, Absence of smooth muscle actin-positive pericyte coverage of tumor vessels correlates with hematogenous metastasis and prognosis of colorectal cancer patients. Oncology 2005;69:159-66
  • Iozzo RV, San Antonio JD. Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest 2001;108:349-55
  • Ran S, Thorpe PE. Phosphatidylserine is a marker of tumor vasculature and a potential target for cancer imaging and therapy. Int J Radiat Oncol Biol Phys 2002;54:1479-84
  • Fears CY, Gladson CL, Woods A. Syndecan-2 is expressed in the microvasculature of gliomas and regulates angiogenic processes in microvascular endothelial cells. J Biol Chem 2006;281:14533-6
  • Seymour LW. Passive tumor targeting of soluble macromolecules and drug conjugates. Crit Rev Ther Drug Carrier Syst 1992;9:135-87
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986;46(12 Pt 1):6387-92
  • Hajitou A, Pasqualini R, Arap W. Vascular targeting: recent advances and therapeutic perspectives. Trends Cardiovasc Med 2006;16:80-8
  • Sapra P, Allen TM. Ligand-targeted liposomal anticancer drugs. Prog Lipid Res 2003;42:439-62
  • Allen TM, Brandeis E, Hansen CB, A new strategy for attachment of antibodies to sterically stabilized liposomes resulting in efficient targeting to cancer cells. Biochim Biophys Acta 1995;1237(2):99-108
  • Ahmad I, Longenecker M, Samuel J, Allen TM. Antibody-targeted delivery of doxorubicin entrapped in sterically stabilized liposomes can eradicate lung cancer in mice. Cancer Res 1993;53:1484-8
  • Volkel T, Holig P, Merdan T, Targeting of immunoliposomes to endothelial cells using a single-chain Fv fragment directed against human endoglin (CD105). Biochim Biophys Acta 2004;1663:158-66
  • Voinea M, Manduteanu I, Dragomir E, Immunoliposomes directed toward VCAM-1 interact specifically with activated endothelial cells--a potential tool for specific drug delivery. Pharm Res 2005;22:1906-17
  • Bloemen PG, Henricks PA, van Bloois L, Adhesion molecules: a new target for immunoliposome-mediated drug delivery. FEBS Lett 1995;357:140-4
  • Spragg DD, Alford DR, Greferath R, Immunotargeting of liposomes to activated vascular endothelial cells: a strategy for site-selective delivery in the cardiovascular system. Proc Natl Acad Sci USA 1997;94:8795-800
  • Kessner S, Krause A, Rothe U, Bendas G. Investigation of the cellular uptake of E-Selectin-targeted immunoliposomes by activated human endothelial cells. Biochim Biophys Acta 2001;1514:177-90
  • Atobe K, Ishida T, Ishida E, In vitro efficacy of a sterically stabilized immunoliposomes targeted to membrane type 1 matrix metalloproteinase (MT1-MMP). Biol Pharm Bull 2007;30:972-8
  • Hatakeyama H, Akita H, Ishida E, Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes. Int J Pharm 2007;342:194-200
  • Kuzu I, Bicknell R, Fletcher CD, Gatter KC. Expression of adhesion molecules on the endothelium of normal tissue vessels and vascular tumors. Lab Invest 1993;69:322-8
  • Dienst A, Grunow A, Unruh M, Specific occlusion of murine and human tumor vasculature by VCAM-1-targeted recombinant fusion proteins. J Natl Cancer Inst 2005;97:733-47
  • Ryan DH, Nuccie BL, Abboud CN, Winslow JM. Vascular cell adhesion molecule-1 and the integrin VLA-4 mediate adhesion of human B cell precursors to cultured bone marrow adherent cells. J Clin Invest 1991;88:995-1004
  • Seron D, Cameron JS, Haskard DO. Expression of VCAM-1 in the normal and diseased kidney. Nephrol Dial Transplant 1991;6:917-22
  • Bodey B, Bodey BJr, Siegel SE, Kaiser HE. Over-expression of endoglin (CD105): a marker of breast carcinoma-induced neo-vascularization. Anticancer Res 1998;18:3621-8
  • Dawn G, MacKie RM. Expression of endoglin in human melanocytic lesions. Clin Exp Dermatol 2002;27:153-6
  • Bendas G, Rothe U, Scherphof GL, Kamps JA. The influence of repeated injections on pharmacokinetics and biodistribution of different types of sterically stabilized immunoliposomes. Biochim Biophys Acta 2003;1609:63-70
  • Ishida T, Harashima H, Kiwada H. Liposome clearance. Biosci Rep 2002;22(2):197-224
  • Kirpotin DB, Drummond DC, Shao Y, Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 2006;66:6732-40
  • Schiffelers RM, Koning GA, ten Hagen TL, Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J Control Release 2003;91:115-22
  • Koning GA, Fretz MM, Woroniecka U, Targeting liposomes to tumor endothelial cells for neutron capture therapy. Appl Radiat Isot 2004;61:963-7
  • Pastorino F, Brignole C, Di Paolo D, Targeting liposomal chemotherapy via both tumor cell-specific and tumor vasculature-specific ligands potentiates therapeutic efficacy. Cancer Res 2006;66:10073-82
  • Simberg D, Duza T, Park JH, Biomimetic amplification of nanoparticle homing to tumors. Proc Natl Acad Sci USA 2007;104:932-6
  • Kondo M, Asai T, Katanasaka Y, Anti-neovascular therapy by liposomal drug targeted to membrane type-1 matrix metalloproteinase. Int J Cancer 2004;108:301-6
  • Curnis F, Arrigoni G, Sacchi A, Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Res 2002;62:867-74
  • Pastorino F, Brignole C, Marimpietri D, Vascular damage and anti-angiogenic effects of tumor vessel-targeted liposomal chemotherapy. Cancer Res 2003;63:7400-9
  • Oku N, Asai T, Watanabe K, Anti-neovascular therapy using novel peptides homing to angiogenic vessels. Oncogene 2002;21:2662-9
  • Maeda N, Takeuchi Y, Takada M, Anti-neovascular therapy by use of tumor neovasculature-targeted long-circulating liposome. J Control Release 2004;100:41-52
  • Maruyama K, Takahashi N, Tagawa T, Immunoliposomes bearing polyethyleneglycol-coupled Fab′ fragment show prolonged circulation time and high extravasation into targeted solid tumors in vivo. FEBS Lett 1997;413:177-80
  • Mislick KA, Baldeschwieler JD. Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc Natl Acad Sci USA 1996;93:12349-54
  • Mounkes LC, Zhong W, Cipres-Palacin G, Proteoglycans mediate cationic liposome-DNA complex-based gene delivery in vitro and in vivo. J Biol Chem 1998;273:26164-70
  • Zuhorn IS, Kalicharan D, Robillard GT, Hoekstra D. Adhesion receptors mediate efficient non-viral gene delivery. Mol Ther 2007;15:946-53
  • Hagerstrand H, Iglic A, Bobrowska-Hagerstrand M, Amphiphile-induced vesiculation in aged hereditary spherocytosis erythrocytes indicates normal membrane stability properties under non-starving conditions. Mol Membr Biol 2001;18:221-7
  • Kitagawa S, Kasamaki M, Hyodo M. Cationic vesicles consisting of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and phosphatidylcholines and their interaction with erythrocyte membrane. Chem Pharm Bull (Tokyo) 2004;52:451-3
  • Zelphati O, Uyechi LS, Barron LG, Szoka FCJr. Effect of serum components on the physico-chemical properties of cationic lipid/oligonucleotide complexes and on their interactions with cells. Biochim Biophys Acta 1998;1390:119-33
  • Varsano S, Frolkis I, Ophir D. Expression and distribution of cell-membrane complement regulatory glycoproteins along the human respiratory tract. Am J Respir Crit Care Med 1995;152:1087-93
  • Chonn A, Cullis PR, Devine DV. The role of surface charge in the activation of the classical and alternative pathways of complement by liposomes. J Immunol 1991;146:4234-41
  • Dass CR, Choong PF. Targeting of small molecule anticancer drugs to the tumour and its vasculature using cationic liposomes: lessons from gene therapy. Cancer Cell Int 2006;6:17
  • Takakura Y, Nishikawa M, Yamashita F, Hashida M. Influence of physicochemical properties on pharmacokinetics of non-viral vectors for gene delivery. J Drug Target 2002;10:99-104
  • Torchilin VP. Polymer-coated long-circulating microparticulate pharmaceuticals. J Microencapsul 1998;15:1-19
  • Allen C, Dos Santos N, Gallagher R, Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol). Biosci Rep 2002;22:225-50
  • Song LY, Ahkong QF, Rong Q, Characterization of the inhibitory effect of PEG-lipid conjugates on the intracellular delivery of plasmid and antisense DNA mediated by cationic lipid liposomes. Biochim Biophys Acta 2002;1558:1-13
  • Zalipsky S, Brandeis E, Newman MS, Woodle MC. Long circulating, cationic liposomes containing amino-PEG-phosphatidylethanolamine. FEBS Lett 1994;353:71-4
  • Levchenko TS, Rammohan R, Lukyanov AN, Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating. Int J Pharm 2002;240:95-102
  • Campbell RB, Ying B, Kuesters GM, Hemphill R. Fighting cancer: from the bench to bedside using second generation cationic liposomal therapeutics. J Pharm Sci 2009;98:411-29
  • Campbell RB, Fukumura D, Brown EB, Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res 2002;62:6831-6
  • Ishiwata H, Suzuki N, Ando S, Characteristics and biodistribution of cationic liposomes and their DNA complexes. J Control Release 2000;69:139-48
  • Stuart DD, Kao GY, Allen TM. A novel, long-circulating, and functional liposomal formulation of antisense oligodeoxynucleotides targeted against MDR1. Cancer Gene Ther 2000;7:466-75
  • Gabizon A. Liposome circulation time and tumor targeting: implications for cancer chemotherapy. Adv Drug Deliv Rev 1995;16:285-94
  • Abu-Lila A, Suzuki T, Doi Y, Oxaliplatin targeting to angiogenic vessels by PEGylated cationic liposomes suppresses the angiogenesis in a dorsal air sac mouse model. J Control Release 2009;134:18-25
  • Harigai T, Kondo M, Isozaki M, Preferential binding of polyethylene glycol-coated liposomes containing a novel cationic lipid, TRX-20, to human subendthelial cells via chondroitin sulfate. Pharm Res 2001;18:1284-90
  • Dass CR. Improving anti-angiogenic therapy via selective delivery of cationic liposomes to tumour vasculature. Int J Pharm 2003;267:1-12
  • Krasnici S, Werner A, Eichhorn ME, Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels. Int J Cancer 2003;105:561-7
  • Oikawa T, Sasaki M, Inose M, Effects of cytogenin, a novel microbial product, on embryonic and tumor cell-induced angiogenic responses in vivo. Anticancer Res 1997;17:1881-6
  • Nakamura M, Katsuki Y, Shibutani Y, Oikawa T. Dienogest, a synthetic steroid, suppresses both embryonic and tumor-cell-induced angiogenesis. Eur J Pharmacol 1999;386:33-40
  • Tagami T, Barichello JM, Kikuchi H, The gene-silencing effect of siRNA in cationic lipoplexes is enhanced by incorporating pDNA in the complex. Int J Pharm 2007;333:62-9
  • Kalra AV, Campbell RB. Development of 5-FU and doxorubicin-loaded cationic liposomes against human pancreatic cancer: Implications for tumor vascular targeting. Pharm Res 2006;23:2809-17
  • Kunstfeld R, Wickenhauser G, Michaelis U, Paclitaxel encapsulated in cationic liposomes diminishes tumor angiogenesis and melanoma growth in a ‘humanized’ SCID mouse model. J Invest Dermatol 2003;120:476-82
  • Strieth S, Eichhorn ME, Sauer B, Neovascular targeting chemotherapy: encapsulation of paclitaxel in cationic liposomes impairs functional tumor microvasculature. Int J Cancer 2004;110:117-24
  • Schmitt-Sody M, Strieth S, Krasnici S, Neovascular targeting therapy: paclitaxel encapsulated in cationic liposomes improves antitumoral efficacy. Clin Cancer Res 2003;9:2335-41
  • Wu J, Lee A, Lu Y, Lee RJ. Vascular targeting of doxorubicin using cationic liposomes. Int J Pharm 2007;337:329-35
  • Siim BG, Lee AE, Shalal-Zwain S, Marked potentiation of the antitumour activity of chemotherapeutic drugs by the antivascular agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA). Cancer Chemother Pharmacol 2003;51:43-52
  • Siemann DW, Mercer E, Lepler S, Rojiani AM. Vascular targeting agents enhance chemotherapeutic agent activities in solid tumor therapy. Int J Cancer 2002;99:1-6
  • Gabizon A, Catane R, Uziely B, Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 1994;54:987-92
  • Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2002;2:750-63
  • Gabizon AA, Shmeeda H, Zalipsky S. Pros and cons of the liposome platform in cancer drug targeting. J Liposome Res 2006;16:175-83
  • Gabizon AA. Stealth liposomes and tumor targeting: one step further in the quest for the magic bullet. Clin Cancer Res 2001;7:223-5
  • Schulz G, Cheresh DA, Varki NM, Detection of ganglioside GD2 in tumor tissues and sera of neuroblastoma patients. Cancer Res 1984;44:5914-20
  • Abu Lila AS, Kizuki S, Doi Y, Oxaliplatin encapsulated in PEG-coated cationic liposomes induces significant tumor growth suppression via a dual-targeting approach in a murine solid tumor model. J Control Release 2009;137:8-14
  • Ribatti D. The discovery of antiangiogenic molecules: a historical review. Curr Pharm Des 2009;15:345-52
  • Ruegg C, Mutter N. Anti-angiogenic therapies in cancer: achievements and open questions. Bull Cancer 2007;94:753-62
  • Browder T, Butterfield CE, Kraling BM, Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 2000;60:1878-86
  • Klement G, Baruchel S, Rak J, Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 2000;105:R15-24
  • Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 2001;7:987-9
  • Huang X, Molema G, King S, Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature. Science 1997;275:547-50
  • Maruyama K. PEG-immunoliposome. Biosci Rep 2002;22:251-66
  • Simionescu M, Simionescu N, Santoro F, Palade GE. Differentiated microdomains of the luminal plasmalemma of murine muscle capillaries: segmental variations in young and old animals. J Cell Biol 1985;100:1396-407
  • Hardebo JE, Kahrstrom J. Endothelial negative surface charge areas and blood-brain barrier function. Acta Physiol Scand 1985;125:495-9
  • Ghosh S, Maity P. Augmented antitumor effects of combination therapy with VEGF antibody and cisplatin on murine B16F10 melanoma cells. Int Immunopharmacol 2007;7:1598-608
  • Martinelli M, Bonezzi K, Riccardi E, Sequence dependent antitumour efficacy of the vascular disrupting agent ZD6126 in combination with paclitaxel. Br J Cancer 2007;97:888-94
  • Knox JJ, Hedley D, Oza A, Combining gemcitabine and capecitabine in patients with advanced biliary cancer: a phase II trial. J Clin Oncol 2005;23:2332-8
  • Gao D, Nolan D, McDonnell K, Bone marrow-derived endothelial progenitor cells contribute to the angiogenic switch in tumor growth and metastatic progression. Biochim Biophys Acta 2009; published online 19 May 2009, doi:10.1016/j.bbcan.2009.05.001
  • Chase JL. Clinical use of anti-vascular endothelial growth factor monoclonal antibodies in metastatic colorectal cancer. Pharmacotherapy 2008;28:23S-30S
  • Ding YT, Kumar S, Yu DC. The role of endothelial progenitor cells in tumour vasculogenesis. Pathobiology 2008;75:265-73

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.