163
Views
57
CrossRef citations to date
0
Altmetric
Reviews

Computational methods to predict the reactivity of nanoparticles through structure–property relationships

, PhD, , , &
Pages 295-305 | Published online: 05 Mar 2010

Bibliography

  • Ouyang M, Huang J-L, Lieber CM. Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc Chem Res 2002;35:1018-25
  • Ajayan PM. Nanotubes from carbon. Chem Rev 1999;99:1787-800
  • European Commission. European technology platform on nanomedicine, vision paper and basis for a strategic research agenda for nanomedicine. Eur Comm: Brussels, 2005
  • Portney NG, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem 2006;384:620-30
  • Leary SP, Liu CY, Apuzzo ML. Toward the emergence of nanoneurosurgery: part III-nanomedicine: targeted nanotherapy, nanosurgery and progress toward the realization of nanoneurosurgery. Neurosurgery 2006;58:1009-26
  • Kumar MNVR. Nano and microparticles as controlled drug delivery devices. J Pharm Pharm Sci 2000;3:234-58
  • Bergemann C, Müller-Schulte D, Oster J, Magnetic ion-exchange nano-and macroparticles for medical, biochemical and molecular biological applications. J Magn Mater 1999;194:45-52
  • Kim Y, Dalhaimer P, Christian DA, Discher DE. Polymeric worm micelles as nano-carriers for drug delivery. Nanotechnology 2005;16:S484-91
  • Gallo M, Favila A, Glossman-Mitnik D. DFT studies of functionalized carbon nanotubes and fullerenes as nanovectors for drug delivery of antitubercular compounds. Chem Phys Lett 2007;447:105-9
  • Simon F, Peterlik H, Pfeiffer R, Fullerene release from the inside of carbon nanotubes: a possible route toward drug delivery. Chem Phys Lett 2007;445:288-92
  • Vinogradov SV, Bronich TK, Kabanov AV. Nanosized cationic hydrogels for drug delivery: preparation,properties and interaction with cells. Adv Drug Deliv Rev 2002;54:135-47
  • Zahr AS, de Villiers M, Pishko MV. Encapsulation of drug nanoparticles in self-assembled. Macromolecular nanoshells. Langmuir 2005;21:403-10
  • Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf B Biointerfaces 1999;16:3-27
  • Donaldson K, Tran L, Jimenez LA, Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Particle Fibre Toxicol 2005;2:1-14
  • Tsakovska I, Gallegos Saliner A, Bassan A, Worth A. Computational modelling of nanoparticles. Poster presented at the 2nd Nanotoxicology Conference; 19-21 Apr 2007; Venice. Available from: http://ecb.jrc.ec.europa.eu/qsar/information-sources/
  • Poater A, Gallegos Saliner A, Worth A. Modelling nanoneedles: a journey towards nanomedicine. Poster presented at the 2nd Nanotoxicology Conference; 19-21 Apr 2007; Venice. Available from: http://ecb.jrc.ec.europa.eu/qsar/information-sources/
  • Worth A, Bassan A, Gallegos Saliner A, Tsakovska I. Towards in silico approaches for investigating the activity of nanoparticles. Communication presented at the 2nd Nanotoxicology Conference; 19-21 Apr 2007; Venice. Available from: http://ecb.jrc.ec.europa.eu/qsar/information-sources/
  • Gallegos Saliner A, Poater A, Worth AP. Toward in silico approaches for investigating the activity of nanoparticles in therapeutic development. Idrugs 2008;11:728-32
  • Gallegos Saliner A, Poater A, Jeliazkova N, Toxmatch–A chemical classification and activity prediction tool based on similarity measures. Regul Toxicol Pharmacol 2008;52:77-84
  • Poater A, Gallegos Saliner A, Carbó-Dorca R, Modelling the structure-property relationships of nanoneedles: a journey towards nanomedicine. J Comput Chem 2009;30:275-84
  • Gallegos Saliner A, Burello E, Worth A. Review of computational approaches for predicting the physicochemical and biological properties of nanoparticles. JRC report EUR 23974 EN. European Commission – Joint Research Centre, Ispra, Italy. Available from: http://ecb.jrc.ec.europa.eu/qsar/publications/
  • Bewick S, Yang R, Zhang M. Complex mathematical models of biology at the Nanoscale. WIREs Nanomedicine & Nanobiotechnology 2009;1 DOI: 10.1002/wnan.61
  • Parr RG, Yang W. Density functional theory of atoms and molecules. Oxford University Press, New York; 1989
  • Dreizler RM, Gross EKU. Density functional theory: an approach to the many-body problem. Springer-Verlag, Berlin; 1990
  • Koch W, Holthausen MC. A chemist's guide to density functional theory. 2nd edition. Wiley, Weinheim; 2001
  • Szabo A, Ostlund NS. In Modern Quantum Chemistry, Dover publications, Inc., Mc Graw-Hill, .New York; 1982
  • Jensen F. In Introduction to computational chemistry. Wiley, New York; 1998
  • Cramer CJ. In Essentials of computational chemistry. Wiley, New York; 2003
  • Wang JL, Mezey PG. The electronic structures and properties of open-ended and capped carbon nano-needles. J Chem Inf Model 2006;46:801-7
  • Wang JL, Lushington GH, Mezey PG. Stability and electronic properties of nitrogen nanoneedles and nanotubes. J Chem Inf Model 2006;46:1965-71
  • Rafii-Tabar H. Computational modelling of thermo-mechanical and transport properties of carbon nanotubes. Phys Rep 2004;390:235-452
  • Lynch I, Cedervall T, Lundqvist M, The nanoparticle–protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv Colloid Interface Sci 2007;134-135:167-174
  • Chermette H. Chemical reactivity indexes in density functional theory. J Comput Chem 1999;20:129-54
  • Geerlings P, De Proft F, Langenaeker W. Conceptual density functional theory. Chem Rev 2003;103:1793-873
  • Fukui K, Yonezawa T, Shingu H. A molecular orbital theory of reactivity in aromatic hydrocarbons. J Chem Phys 1952;20:722-5
  • Fukui K, Yonezawa T, Nagata C, Shingu H. Molecular orbital theory of orientation in aromatic, heteroaromatic, and other conjugated molecules. J Chem Phys 1954;22:1433-42
  • Pearson RG. In Chemical hardness: applications from molecules to solids. Wiley-VCH, Weinheim; 1997
  • Sanderson RT. An interpretation of bond lengths and a classification of bonds. Science 1951;114:670-2
  • Sanderson RT. In Chemical bonds and bond energy. Academic Press, New York; 1976
  • Parr RG, Chattaraj PK. Principle of maximum hardness. J Am Chem Soc 1991;113:1854-1855
  • Chattaraj PK, Sengupta S. Popular electronic structure principles in a dynamical context. J Phys Chem 1996;100:16126-30
  • Parr RG, Donnelly RA, Levy M, Palke WE. Electronegativity: the density functional viewpoint. J Chem Phys 1978;68:3801-7
  • Parr RG, Pearson RG. Absolute hardness: comparison parameter to absolute electronegativity. J Am Chem Soc 1983;105:7512-6
  • Pearson RG. Chemical hardness: applications from molecules to solids. Wiley-VCH, New York; 1997
  • Koopmans T. Ordering of wave functions and eigenvalues to the individual electrons of an atom. Physica (Utrecht) 1934;1:104-13
  • Parr RG, von Szentpaly L, Liu S. Electrophilicity index. J Am Chem Soc 1999;121:1922-4
  • Parr RG, Yang W. Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 1984;106:4049-50
  • Kohn W, Becke AD, Parr RG. Density functional theory of electronic structure. J Phys Chem 1996;100:12974-80
  • Perdew JP, Parr RG, Levy M, Balduz JL. Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 1982;49:1691-4
  • Yang W, Parr RG, Pucci RJ. Electron density, kohn-sham frontier orbitals, and fukui-functions. Chem Phys 1984;81:2862-3
  • Yang W, Mortier WJ. The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 1986;108:5708-11
  • Poater A, Jaque P, Toro-Labbé A, Solà M. Molecular structure and bonding of copper cluster monocarbonyls CunCO (n=1,9). J Phys Chem B 2006;110:6526-36
  • Bickelhaupt FM, Nibbering NM, van Wezenbeek EM, Baerends EJ. The central bond in the three CN* Dimers NC-CN, CN-CN, and CN-NC: electronic pair bonding and pauli repulsion effects. J Phys Chem 1992;96:4864-73
  • Ziegler T, Rauk A. A theoretical study of the ethylene-metal bond in complexes between copper(1+), silver(1+), gold(1+), platinum(0) or platinum(2+) and ethylene, based on the Hartree-Fock-Slater transition-state method. Inorg Chem 1979;18:1558-65
  • Ziegler T, Rauk A. Carbon monoxide, carbon monosulfide, molecular nitrogen, phosphorus trifluoride, and methyl isocyanide as σ donors and π acceptors. A theoretical study by the Hartree-Fock-Slater transition-state method. Inorg Chem 1979;18:1755-9
  • Ziegler T, Rauk A. On the calculation of bonding energies by the Hartree-Fock-Slater method. I. The transition state method. Theor Chim Acta 1977;46:1-10
  • Kitaura K, Morokuma K. A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation. Int J Quantum Chem 1976;10:325-31
  • Lein M, Szabó A, Kovács A, Frenking G. Energy decomposition analysis of the chemical bond in main group and transition metal compounds. Faraday Discuss 2003;124:365-78
  • Mayer I. Charge, Bond order and valence in the ab initio SCF theory. Chem Phys Lett 1983;97:270-4
  • Mayer I. Bond order and valence: relations to Mulliken's population analysis. Int J Quantum Chem 1984;26:151-4
  • Mayer I. On bond orders and valences in the ab initio quantum chemical theory. Int J Quantum Chem 1986;29:73-84
  • Mayer I. Bond orders and valences from ab initio wave functions. Int J Quantum Chem 1986;29:477-83
  • Poater A, Moradell S, Pinilla E, A trinuclear Pt(II) compound with short Pt–Pt–Pt contacts. An analysis of the influence of π–π stacking interactions on the strength and length of the Pt–Pt bond. Dalton Trans 2006:1188-96
  • Poater A. Oxidation of Copper(I) hexaaza macrocyclic dinuclear complexes. J Phys Chem A 2009;113:9030-40
  • Poater A, Ragone F, Correa A, Cavallo L. Exploring the reactivity of Ru-based metathesis catalysts with a pi-acid ligand trans to the Ru-Ylidene bond. J Am Chem Soc 2009;131:9000-6
  • Costas M, Ribas X, Poater A, Copper(II) hexaaza macrocyclic binuclear complexes obtained from the reaction of their copper(I) derivates and molecular dioxygen. Inorg Chem 2006;45:3569-81
  • Duffin R, Tran L, Brown D, Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Inhal Toxicol 2007;19:849-56
  • Lacerda L, Bianco A, Prato M, Kostarelos K. Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv Drug Deliv Rev 2006;58:1460-1470
  • Klumpp C, Kostarelos K, Prato M, Bianco A. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta Biomembr 2006;1758:404-12
  • Kostarelos K, Lacerda L, Pastorin G, Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2007;2:108-13
  • Prato M, Kostarelos K, Bianco A. Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 2008;41:60-8
  • Molema G. Drug targeting. Wiley-VCH Verlag GmbH, Weinheim; 2001. p. 1-22
  • Lin C-C, Metters AT. Hydrogels in controlled release formulations: network design and mathematical modelling. Adv Drug Deliv Rev 2006;58:1379-408
  • Bosi S, Da Ros T, Spalluto G, Prato M. Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem 2003;38:913-23
  • Bradley D. Getting the nano-needle. Drug Discov Today 1997;2:452
  • Obataya I, Nakamura C, Han SW, Nakamura N, Miyake J. Direct insertion of proteins into a living cell using an atomic force microscope with a nanoneedle. Nanobiotechnol 2005;1:347-52
  • Hara C, Tateyama K, Okano H, Miyawaki A. An efficient gene delivery system into cells using a nano-size silicon needle. Neurosci Res 2007;58:S242
  • Alexiou C, Schmid RJ, Jurgons R, Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur Biophys J 2006;35:446-50
  • Alonso M, Poater J, Solà M. Aromaticity changes along the reaction coordinate connecting the cyclobutadiene dimer to cubane and the benzene dimer to hexaprismane. Struct Chem 2007;18:773-83

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.