203
Views
60
CrossRef citations to date
0
Altmetric
Review

Modulation of gene expression by antisense and antigene oligodeoxynucleotides and small interfering RNA

, &
Pages 3-28 | Published online: 22 Apr 2005

Bibliography

  • CROOKE ST: Progress in antisense technology. Ann. Rev Med. (2004) 55:61–95.
  • ••Comprehensive review on backbonemodification, cellular uptake and biodistribution of ODNs.
  • OPALINSKA JB, GEWIRTZ AM: Nucleic-acid therapeutics: basic principles and recent applications. Nat. Rev. Drug Discov. (2002) 1(7):503–514.
  • ••Excellent review on different types ofnucleic acids used for blocking abnormal gene expression.
  • SONG E, LEE SK, WANG J et al: RNA interference targeting Fas protects mice from fulminant hepatitis. Nat. Med. (2003) 9(3):347–351.
  • •An important study demonstrating the therapeutic usefulness of siRNA in hepatitis mouse model.
  • GUNTAKA RV VARMA BR, WEBER KT: Triplex-forming oligonucleotides as modulators of gene expression. Int. J. Biochem. Cell Biol. (2003) 35(1):22–31.
  • SEIDMAN MM, GLAZER PM: The potential for gene repair via triple helix formation. J. Clin. Invest. (2003) 112(4):487–494.
  • VASQUEZ KM, GLAZER PM: Triplex-forming oligonucleotides: principles and applications. Q. Rev. Biophys. (2002) 35(1):89–107.
  • CROOKE ST, BENNETT CF: Progress in antisense oligonucleotide therapeutics. Ann. Rev. Pharmacol Toxicol (1996) 36:107–129.
  • ZAMECNIK PC, STEPHENSON ML: Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl Acad. Sci. USA (1978) 75(1):280–284.
  • CROOKE ST: Vitravene-another piece in the mosaic. Antisense Nucleic Acid DrugDev. (1998) 8(4):vii-viii.
  • LEE M, HAN SO, KO KS et al.: Repression of GAD autoantigen expression in pancreas beta-Cells by delivery of antisense plasmid/PEG-y-PLL complex. Mo/. Ther. (2001) 4(4):339–346.
  • LONG MB, JONES JP, 3rd, SULLENGER BA et al.: Ribozyme-mediated revision of RNA and DNA. J. Clin. Invest. (2003) 112(3):312–318.
  • BUCHARDT O, EGHOLM M, BERG RH et al.: Peptide nucleic acids and their potential applications in biotechnology Trends Biotechnol (1993) 11(9):384–386.
  • WALL NR, SHI Y: Can RNA interference be exploited for therapy? Lancet (2003) 362(9393):1401–1403.
  • MAHATO RI, TAKAKURAY, HASHIDA M: Development of targeted delivery systems for nucleic acid drugs./ Drug Target. (1997) 4(6):337–357.
  • •Detailed information on how physicochemical characteristics influence the biodistribution profiles of ODNs and genes.
  • WICKSTROM E: Oligodeoxynucleotide stability in subcellular extracts and culture media. J. Biochem. Biophys. Methods (1986) 13(2):97–102.
  • MICKLEFIELD J: Backbone modification of nucleic acids: synthesis, structure and therapeutic applications. Curr. Med. Chem. (2001) 8(10):1157–1179.
  • ••Excellent review on how backbonemodification of ODNs can enhance their stability and efficacy
  • KURRECK J: Antisense technologies. Improvement through novel chemical modifications. Eur. j Biochem. (2003) 270(8):1628–1644.
  • •Comprehensive review on the chemical modification of antisense agents.
  • AKHTAR S, JULIANO RL: Cellular uptake and intracellular fate of antisense oligonucleotides. Trends Cell Biol. (1992) 2(5):139–144.
  • HU Q, BALLY MB, MADDEN TD: Subcellular trafficking of antisense oligonucleotides and down regulation of bc1-2 gene expression in human melanoma cells using a fusogenic liposome delivery system. Nucleic Acids Res. (2002) 30(161:3632–3641.
  • BULMUS V, WOODWARD M, LIN L et al.: A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs. J. Control. Release (2003) 93(2):105–120.
  • ALAHARI SK, DEAN NM, FISHER MH et al.: Inhibition of expression of the multi-drug resistance-associated P-glycoprotein of by phosphorothioate and 5' cholesterol-conjugated phosphorothioate antisense oligonucleotides. Mol Pharmacol (1996) 50(4):808–819.
  • JENSEN KD, KOPECKOVA P, KOPECEK J: Antisense oligonucleotides delivered to the lysosome escape and actively inhibit the hepatitis B virus. Bioconjug Chem. (2002) 13(5):975–984.
  • NORI A, JENSEN KD, TIJERINA M et al.: Tat-conjugated synthetic macromolecules facilitate cytoplasmic drug delivery to human ovarian carcinoma cells. Bioconjug Chem. (2003) 14(1):44–50.
  • MOULTON HM, HASE MC, SMITH KM et al.: HIV Tat peptide enhances cellular delivery of antisense morpholino oligomers. Antisense Nucleic Acid Drug Dev. (2003) 13(1):31–43.
  • DAGLE JM, WEEKS DL: Oligonucleotide-based strategies to reduce gene expression. Differentiation (2001) 69(2-3):75–82.
  • FURDON PJ, DOMINSKI Z, KOLE R: RNase H cleavage of RNA hybridized to oligonucleotides containing methylphosphonate, phosphorothioate and phosphodiester bonds. Nucleic Acids Res. (1989) 17(22):9193–9204.
  • DASH P, LOTAN I, KNAPP M et al.: Selective elimination of mRNAs in vivo: complementary oligodeoxynucleotides promote RNA degradation by an RNase H-like activity. Proc. Natl Acad. Sci. USA (1987) 84(22):7896–7900.
  • WALDER RY, WALDER JA: Role of RNase H in hybrid-arrested translation by antisense oligonucleotides. Proc. Natl Acad. Sci. USA (1988) 85(14):5011–5015.
  • DAGLE JM, WEEKS DL, WALDER JA: Pathways of degradation and mechanism of action of antisense oligonucleotides in Xenopus laevis embryos. Antisense Res. Dev. (1991) 1(1):11–20.
  • MONIA BP, LESNIK EA, GONZALEZ C et al.: Evaluation of 2'-modified oligonucleotides containing 2'-deoxy gaps as antisense inhibitors of gene expression. J. Biol. Chem. (1993) 268(19):14514–14522.
  • HEASMAN J: Morpholino oligos: making sense of antisense? Dev. Biol. (2002) 243(2): 209–214.
  • Fomivirsen approved for CMV retinitis: first antisense drug. AIDS Treat. News (1998) 302:7.
  • ECKSTEIN F: Phosphorothioate oligodeoxynucleotides: what is their origin and what is unique about them? Antisense Nucleic Acid Drug Dev. (2000) 10(2):117–121.
  • CAMPBELL JM, BACON TA, WICKSTROM E: Oligodeoxynucleoside phosphorothioate stability in subcellular extracts, culture media, sera and cerebrospinal fluid. J. Biochem. Biophys. Methods (1990) 20(3):259–267.
  • THIERRY AR, VIVES E, RICHARD JP et al.: Cellular uptake and intracellular fate of antisense oligonucleotides. Curr. Opin. Mol Ther. (2003) 5(2):133–138.
  • CROOKE ST: Progress in antisense technology: the end of the beginning. Methods Enqmol. (2000) 313:3–45.
  • TONKINSON JL, STEIN CA: Antisense oligodeoxynucleotides as clinical therapeutic agents. Cancer Invest. (1996) 14(1):54–65.
  • KRIEG AM, STEIN CA: Phosphorothioate oligodeoxynucleotides: antisense or antiprotein? Antisense Res. Dev. (1995) 5(4):241.
  • GALBRAITH WM, HOBSON WC, GICLAS PC et al.: Complement activation and hemodynamic changes following intravenous administration of phosphorothioate oligonucleotides in the monkey. Antisense Res. Dev. (1994) 4 (3): 201–206.
  • SARMIENTO UM, PEREZ JR, BECKER JM et al.: In vivo toxicological effects of rel A antisense phosphorothioates in CD-1 mice. Antisense Res. Dev. (1994) 4(2):99–107.
  • AGRAWAL S, KANDIMALLA ER: Antisense therapeutics: is it as simple as complementary base recognition? Mol. Med. Today (2000) 6(2):72–81.
  • ZAMARATSKI E, PRADEEPKUMAR PI, CHATTOPADHYAYA J: A critical survey of the structure-function of the antisense oligo/RNA heteroduplex as substrate for RNase H. J. Biochem. Biophys. Methods (2001) 48(3):189–208.
  • BAKER BF, LOT SS, CONDON TP et al.: 2'-0-(2-Methoxy)ethyl-modified anti-intercellular adhesion molecule 1 (ICAM-1) oligonucleotides selectively increase the ICAM-1 mRNA level and inhibit formation of the ICAM-1 translation initiation complex in human umbilical vein endothelial cells. J. Biol. Chem. (1997) 272(18):11994–12000.
  • RUSCKOWSKI M, QU T, ROSKEY A et al.: Biodistribution and metabolism of a mixed backbone oligonucleotide (GEM 231) following single and multiple dose administration in mice. Antisense Nucleic Acid Drug Dev. (2000) 10(5):333–345.
  • AGRAWAL S, JIANG Z, ZHAO Q et al: Mixed-backbone oligonucleotides as second generation antisense oligonucleotides: in vitro and in vivo studies. Proc. NatL Acad. Sci. USA (1997) 94(6):2620–2625.
  • VERMA S, ECKSTEIN F: Modified oligonucleotides: synthesis and strategy for users. Ann. Rev. Biochem. (1998) 67: 99–134.
  • ENGELS JW, UHLMANN E: Chemistry of oligonucleotides; in Couvreur P, Malvy C (eds):PharmaceuticalAspects of Oligonucleotides. London, Taylor & Francis, (2000), pp 35–68.
  • HEIDENREICH O, GRYAZNOV S, NERENBERG M: RNase H-independent antisense activity of oligonucleotide N3 > P5 phosphoramidates. Nucleic Acids Res. (1997) 25(4):776–780.
  • SKORSKI T, PERROTTI D, NIEBOROWSKA-SKORSKA M et al: Antileukaemia effect of c-myc N3'- > P5' phosphoramidate antisense oligonucleotides in vivo. Proc Nati Acad Sci USA (1997) 94(8):3966–3971.
  • GRYAZNOV SM, LLOYD DH, CHEN JK et al.: Oligonucleotide N3'- > P5' phosphoramidates. Proc. Nati Acad. Sci. USA (1995) 92(13):5798–5802.
  • SUMMERTON J, WELLER D: Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev. (1997) 7(3):187–195.
  • SUMMERTON J: Morpholino antisenseoligomers: the case for an RNase independent structural type. Biochim. Biophys. Acta. (1999) 1489(1):141–158. Excellent review on morpholino antisense ODNs.
  • HUDZIAK RM, BAROFSKY E, BAROFSKY DF et al.: Resistance of morpholino phosphorodiamidate oligomers to enzymatic degradation. Antisense Nucleic Acid Drug Dev. (1996) 6(4):267–272.
  • DOMINSKI Z, KOLE R: Restoration of correct splicing in thalassemic premRNA by antisense oligonucleotides. Proc. NatL Acad. Sci. USA (1993) 90(18):8673–8677.
  • SUWANMANEE T, SIERAKOWSKA H, LACERRA G et al: Restoration of human beta-globin gene expression in murine and human IVS2-654 thalassemic erythroid cells by free uptake of antisense oligonucleotides. MoL PharmacoL (2002) 62(3):545–553.
  • HEASMAN J: Morpholino oligos: making sense of antisense? Dev. Biol. (2002) 243(2):209–214.
  • SUMMERTON J, STEIN D, HUANG SB et al.: Morpholino and phosphorothioate antisense oligomers compared in cell-free and in-cell systems. Antisense Nucleic Acid Drug Dev. (1997) 7(2):63–70.
  • TAYLOR MF, PAULAUSKIS JD, WELLER DD et al.: In vitro efficacy of morpholino-modified antisense oligomers directed against tumour necrosis factor-alpha mRNA. J. Biol. Chem. (1996) 271(29):17445–17452.
  • GILES RV SPILLER DG, CLARK RE et al.: Antisense morpholino oligonucleotide analog induces missplicing of C-myc mRNA. Antisense Nucleic Acid Drug Dev. (1999) 9(2):213–220.
  • STEIN DA, SKILLING DE, IVERSEN PL et al: Inhibition of Vesivirus infections in mammalian tissue culture with antisense morpholino oligomers. Antisense Nucleic Acid DrugDev. (2001) 11(5):317–325.
  • ARORA V, IVERSEN PL: Redirection of drug metabolism using antisense technology. Curr. Opin. MoL Ther. (2001) 3(3):249–257.
  • ARORA V, GATE ML, GHOSH C et al.: Phosphorodiamidate morpholino antisense oligomers inhibit expression of human cytochrome P450 3A4 and alter selected drug metabolism. Drug Metab. Dispos. (2002) 30(7):757–762.
  • VIKRAM A, DEREK CK, MURALIMOHAN TR, DWIGHT DW, PATRICK LI: Bioavailability and Efficiency of Antisense Morpholino Oligomers Targeted to c-myc and Cytochrome P450 3A2 Following Oral Administration in Rats. J.Pharm. Sci. (2002) 91(4):1009–1018.
  • MCCAFFREY AP, MEUSE L, KARIMI M et al.: A potent and specific morpholino antisense inhibitor of hepatitis C translation in mice. Hepato/ogy (2003) 38(2):503–508.
  • IVERSEN PL, ARORA V, ACKER AJ et al.: Efficacy of antisense morpholino oligomer targeted to c-myc in prostate cancer xenograft murine model and a Phase I safety study in humans. Clin. Cancer Res. (2003) 9(7):2510–2519.
  • SCHMAJUK G, SIERAKOWSKA H, KOLE R: Antisense oligonucleotides with different backbones. Modification of splicing pathways and efficacy of uptake. J. Biol. Chem. (1999) 274(31):21783–21789.
  • SAZANI P, KANG SH, MATER MA et al.: Nuclear antisense effects of neutral, anionic and cationic oligonucleotide analogs. Nucleic Acids Res. (2001) 29(19):3965–3974.
  • SAZANI P, GEMIGNANI F, KANG SH et al.: Systemically delivered antisense oligomers upregulate gene expression in mouse tissues. Nat Biotechnol (2002) 20(12):1228–1233.
  • KRIEG AM: Immune effects and mechanisms of action of CpG motifs. Vaccine (2000) 19(0:618–622.
  • SCHEULE RK: The role of CpG motifs in immunostimulation and gene therapy. Adv Drug Deliv Rev (2000) 44(2–3):119-134. Excellent review on CpG motifs.
  • KRIEG AM, YT AK, MATSON S et al.: CpG motifs in bacterial DNA trigger direct B cell activation. Nature (1995) 374(6522):546–549.
  • PAYETTE PJ, DAVIS HL, KRIEG AM: Role of CpG motifs in immunostimulation and gene expression; in Mahato RIaK, S.W. (ed):Pharmaceutical Perspectives of Nucleic Acid-Based Therapeutics. London, Taylor & Francis, (2002), pp 467–486. Excellent review on CpG motifs.
  • KANDIMALLA ER, BHAGAT L, ZHU FG et al: A dinucleotide motif in oligonucleotides shows potent immunomodulatory activity and over-rides species-specific recognition observed with CpG motif. Proc Natl. Acad. Sci. USA (2003) 100(2014303–14308.
  • DOVE A: Antisense and sensibility. Nat. BiotechnoL (2002) 20(2):121–124.
  • LONSDORF AS, KUEKREK H, STERN BV et al: Intratumour CpG-oligodeoxynucleotide injection induces protective antitumour T cell immunity. J. Immunol (2003) 171(8):3941–3946.
  • DALPKE A, ZIMMERMANN S, HEEG K: Immunopharmacology of CpG DNA. Biol. Chem. (2002) 383(10):1491–1500.
  • AGRAWAL S, KANDIMALLA ER: Medicinal chemistry and therapeutic potential of CpG DNA. Trends MoL Med. (2002) 8(3):114–121.
  • KANDIMALLA ER, BHAGAT L, YU D et al.: Conjugation of ligands at the 5'-end of CpG DNA affects immunostimulatory activity. Bioconjug. Chem. (2002) 13(5):966–974.
  • YU D, ZHU FG, BHAGAT L et al.: PotentCpG oligonucleotides containing phosphodiester linkages: in vitro and in vivo immunostimulatory properties. Biochem. Biophys. Res. Commun. (2002) 297(1):83–90.
  • PRASEUTH D, GUIEYSSE AL, HELENE C: Triple helix formation and the antigene strategy for sequence-specific control of gene expression. Biochim. Biophys. Acta (1999) 1489(1):181–206.
  • MAHER LJ 3rd: Prospects for the therapeutic use of antigene oligonucleotides. Cancer Invest. (1996) 14(1):66–82.
  • POTAMAN VN: Applications of triple-stranded nucleic acid structures to DNA purification, detection and analysis. Expert Rev. MoL Diagn. (2003) 3(4):481–496.
  • GEWIRTZ AM, SOKOL DL, RATAJCZAK MZ: Nucleic acid therapeutics: state of the art and future prospects. Blood (1998) 92(3):712–736. Excellent review on nucleic acid-based therapeutics.
  • OLIVAS WM, MAHER LJ 3rd: Competitive triplex/quadruplex equilibria involving guanine-rich oligonucleotides. Biochemistry (1995) 34(1):278–284.
  • FARUQI AF, KRAWCZYK SH, MATTEUCCI MD et al: Potassium-resistant triple helix formation and improved intracellular gene targeting by oligodeoxyribonucleotides containing 7-deazaxanthine. Nucleic Acids Res. (1997) 25(3):633–640.
  • BASYE J, TRENT JO, GAO D et al: Triplex formation by morpholino oligodeoxyribonucleotides in the HER-2/ neu promoter requires the pyrimidine motif. Nucleic Acids Res. (2001) 29(23):4873–4880.
  • LACROIX L, ARIMONDO PB, TAKASUGI M et al: Pyrimidine morpholino oligonucleotides form a stable triple helix in the absence of magnesium ions. Biochem. Biophys. Res. Commun. (2000) 270(2):363–369.
  • FERDOUS A, WATANABE H, AKAIKE T et al: Poly(L-lysine)-graft-dextran copolymer: amazing effects on triplex stabilization under physiological pH and ionic conditions (in vitro). Nucleic Acids Res. (1998) 26(17):3949–3954.
  • MARUYAMA A, WATANABE H, FERDOUS A et al: Characterization of interpolyelectrolyte complexes between double-stranded DNA and polylysine comb-type copolymers having hydrophilic side chains. Bioconjug. Chem. (1998) 9(2):292–299.
  • FERDOUS A, AKAIKE T, MARUYAMA A: Mechanism of intermolecular purine-purine-pyrimidine triple helix stabilization by comb-type polylysine graft copolymer at physiologic potassium concentration. Bioconjug Chem. (2000) 11(4):520–526.
  • CARBONE GM, MCGUFFIE E, NAPOLI S et al: DNA binding and antigene activity of a daunomycin-conjugated triplex-forming oligonucleotide targeting the P2 promoter of the human c-myc gene. Nucleic Acids Res. (2004) 32(8):2396–2410.
  • FARIA M, WOOD CD, PERROUAULT L et al.: Targeted inhibition of transcription elongation in cells mediated by triplex-forming oligonucleotides. Proc. Natl Acad. Sci. USA (2000) 97(8):3862–3867.
  • VASQUEZ KM, NARAYANAN L, GLAZER PM: Specific mutations induced by triplex-forming oligonucleotides in mice. Science (2000) 290(5491):530–533.
  • VUORIO E, DE CROMBRUGGHE B: The family of collagen genes. Ann. Rev. Biochem. (1990) 59: 837–872.
  • VAN Der Collagen family of proteins. Faseb J. (1991) 5(13):2814–2823.
  • BRENNER DA, RIPPE RA, VELOZ Analysis of the collagen alpha 1(I) promoter. Nucleic Acids Res. (1989) 17(15):6055–6064.
  • JOSEPH J, KANDALA JC, VEERAPANANE D et al.: Antiparallel polypurine phosphorothioate oligonucleotides form stable triplexes with the rat alphal (I) collagen gene promoter and inhibit transcription in cultured rat fibroblasts. Nucleic Acids Res. (1997) 25(11):2182–2188.
  • DHALLA AK, KANDALA JC, WEBER KT et al.: Identification of negative and positive regulatory elements in the rat alpha 1(I) collagen gene promoter. Int. j Biochem. Cell Biol. (1997) 29(1):143–151.
  • WEBER KT, SWAIVIYNATHAN SK, GUNTAKA RV et al.: Angiotensin II and extracellular matrix homeostasis. Int. J. Biochem. Cell Biol. (1999) 31(3–4):395-403.
  • MUSSO M, VAN DYKE MW: Polyamine effects on purine-purine-pyrimidine triple helix formation by phosphodiester and phosphorothioate oligodeoxyribonucleotides. Nucleic Acids Res. (1995) 23(12):2320–2327.
  • NAKANISHI M, WEBER KT, GUNTAKA RV: Triple helix formation with the promoter of human alphal (I) procollagen gene by an antiparallel triplex-forming oligodeoxyribonucleotide. Nucleic Acids Res. (1998) 26(22):5218–5222. Excellent research article on TFOs.
  • FIRE A, XU S, MONTGOMERY MK et al.: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature (1998) 391(6669):806–811.
  • COUZIN J: Breakthrough of the year. Small RNAs make big splash. Science (2002) 298(5602):2296–2297.
  • PLASTERK RH: RNA silencing: the genome's immune system. Science (2002) 296(5571):1263–1265.
  • MILHAVET O, GARY DS, MATTSON MP: RNA interference in biology and medicine. Pharmacol. Rev. (2003) 55(4):629–648. Excellent review on siRNA.
  • LIEBERMAN J, SONG E, LEE SK et al: Interfering with disease: opportunities and roadblocks to harnessing RNA interference. Trends MoL Med. (2003) 9(9):397–403.
  • ZENG Y, CULLEN BR: RNA interference in human cells is restricted to the cytoplasm. RNA (2002) 8(7):855–860.
  • ZAMORE PD, TUSCHL T, SHARP PA et al.: RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell (2000) 101(1):25–33.
  • NYKANEN A, HALEY B, ZAMORE PD: ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell (2001) 107(3):309–321.
  • HAMMOND SM, BERNSTEIN E, BEACH D et al.: An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature (2000) 404(6775):293–296.
  • DYKXHOORN DM, NOVINA CD, SHARP PA: Killing the messenger: short RNAs that silence gene expression. Nat. Rev. Mol. Cell Biol. (2003) 4(6):457–467.
  • ••Excellent review on siRNA.
  • SCHWARZ DS, HUTVAGNER G, DU T et al.: Asymmetry in the assembly of the RNAi enzyme complex. Cell (2003) 115(2):199–208.
  • ••Excellent research work demonstratingthat the two strands of an siRNA duplex are not equally eligible for assembly into RISC.
  • SCHIFFELERS RM, WOODLE MC, SCARIA P: Pharmaceutical prospects for RNA interference. Pharm. Res. (2004) 21(1):1–7.
  • SCHERER LJ, ROSSI JJ: Approaches for the sequence-specific knockdown of mRNA. Nat. BiotechnoL (2003) 21(12):1457–1465.
  • ••This paper discusses the application ofantisense ODNs, ribozymes, DNAzymes and RNAi.
  • HOLEN T, AIVIARZGUIOUI M, WIIGER MT et al.: Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res. (2002) 30(8):1757–1766.
  • HENSCHEL A, BUCHHOLZ F, HABERMANN B: DEQOR: A web-based tool for the design and quality control of siRNAs. Nucleic Acids Res. (2004) 32(Web Server issue):W113–W120.
  • YANG D, BUCHHOLZ F, HUANG Z et al: Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate effective RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA (2002) 99(15):9942–9947.
  • KAWASAKI H, SUYAMA E, IY0 M, et al: siRNAs generated by recombinant human Dicer induce specific and significant but target site-independent gene silencing in human cells. Nucleic Acids Res. (2003) 31(3):981–987.
  • AN DS, XIE Y, MAO SH et al: Efficient lentiviral vectors for short hairpin RNA delivery into human cells. Hum. Gene Ther. (2003) 14(12):1207–1212.
  • XIA H, MAO Q, PAULSON HL et al: siRNA-mediated gene silencing in vitro and in vivo. Nat. BiotechnoL (2002) 20(10):1006–1010.
  • BRUMMELKAMP TR, BERNARDS R, AGAMI R: A system for stable expression of short interfering RNAs in mammalian cells. Science (2002) 296(5567):550–553.
  • SUI G, SOOHOO C, AFFAR El B, et al: A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA (2002) 99(8):5515–5520.
  • KAYKAS A, MOON RT: A plasmid-based system for expressing small interfering RNA libraries in mammalian cells. BMC Cell Biol. (2004) 5(1):16.
  • ZHENG L, LIU J, BATALOV S et al: An approach to genomewide screens of expressed small interfering RNAs in mammalian cells. Proc. NatL Acad. Sci. USA (2004) 101(1):135–140.
  • TOMAR RS, MATTA H, CHAUDHARY PM: Use of adeno-associated viral vector for delivery of small interfering RNA. Oncogene (2003) 22(30:5712–5715.
  • ZHAO LJ, PAN H, ZHU H: Specific gene inhibition by adenovirus-mediated expression of small interfering RNA. Gene (2003) 316: 137–141.
  • DEVROE E, SILVER PA: Retrovirus-delivered siRNA. BMC BiotechnoL (2002) 2(1):15.
  • MATTA H, HOZAYEV B, TOMAR R et al: Use of lentiviral vectors for delivery of small interfering RNA. Cancer Biol. Ther. (2003) 2(2):206–210.
  • TISCORNIA G, SINGER O, IKAWA M et al: A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc. NatL Acad. Sci. USA (2003) 100(4):1844–1848.
  • ABBAS-TERKI T, BLANCO-BOSE W, DEGLON N et al: Lentiviral-mediated RNA interference. Hum. Gene Ther. (2002) 13(18):2197–2201.
  • UI-TEI K, NAITO Y, TAKAHASHI F et al: Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. (2004) 32(3):936–948.
  • NAITO Y, YAMADA T, UI-TEI K et al.: siDirect: highly effective, target-specific siRNA design software for mammalian RNA interference. Nucleic Acids Res. (2004) 32(Web Server issue):W124–W129.
  • YUAN B, LATEK R, HOSSBACH M et al: siRNA Selection Server: an automated siRNA oligonucleotide prediction server. Nucleic Acids Res. (2004) 32(Web Server issue):W130–W134.
  • FRIEDRICH I, SHIR A, KLEIN S et al.: RNA molecules as anticancer agents. Semin. Cancer Biol. (2004) 14(4):223–230.
  • MAHATO RI, TAKEMURA S, AKAMATSU K et al.: Physicochemical and disposition characteristics of antisense oligonucleotides complexed with glycosylated poly(L-lysine). Biochem. PharmacoL (1997) 53(0:887–895.
  • BRUMMELKAMP TR, BERNARDS R, AGAMI R: Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell (2002) 2(3):243–247.
  • KARIKO K, BHUYAN P, CAPODICI J et al.: Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signalling through toll-like receptor 3. J. Immunol. (2004) 172(10:6545–6549.
  • ELBASHIR SM, MARTINEZ J, PATKANIOWSKA A et al.: Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. Embo/ (2001) 20(23):6877–6888.
  • JACKSON AL, BARTZ SR, SCHELTER J et al.: Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. (2003) 21(6):635–637.
  • SCACHERI PC, ROZENBLATT-ROSEN O, CAPLEN NJ et al.: Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc. NatL Acad. Sci. USA (2004) 101(7):1892–1897.
  • SNOVE O Jr, HOLEN T: Many commonly used siRNAs risk off-target activity. Biochem. Biophys. Res. Commun. (2004) 319(1):256–263.
  • SAWAI K, MAHATO RI, OKAY, et al: Disposition of oligonucleotides in isolated perfitsed rat kidney: involvement of scavenger receptors in their renal uptake. J. PharmacoL Exp. Ther. (1996) 279(1):284–290.
  • ••Excellent research paper on renaldisposition of ODNs.
  • YOSHIDA M, MAHATO RI, KAWABATA K et al.: Disposition characteristics of plasmid DNA in the single-pass rat liver perfusion system. Pharm. Res. (1996) 13(4):599–603.
  • TAKAKURAY, MAHATO RI, YOSHIDA M et al.: Uptake characteristics of oligonucleotides in the isolated rat liver perfusion system. Antisense Nucleic Acid Drug Dev. (1996) 6(3):177–183.
  • TAKAKURAY, MAHATO RI, HASHIDA M: Control of pharmacokinetic profiles of drug-macromolecule conjugates. Adv. Drug Del. Rev. (1996) 19:377.
  • TAKAKURA Y, HASHIDA M: Macromolecular carrier systems for targeted drug delivery: pharmacokinetic considerations on biodistribution. Pharm. Res. (1996) 13(6):820–831.
  • INAGAKI M, TOGAWA K, CARR BI et al.: Antisense oligonucleotides: inhibition of liver cell proliferation and in vivo disposition. Transplant. Proc. (1992) 24(6):2971–2972.
  • BIJSTERBOSCH MK, MANOHARAN M, RUMP ET et al.: In vivo fate of phosphorothioate antisense oligodeoxynucleotides: predominant uptake by scavenger receptors on endothelial liver cells. Nucleic Acids Res. (1997) 25(10:3290–3296.
  • RAPPAPORT J, HANSS B, KOPP JB et al.: Transport of phosphorothioate, et al.: Transport of phosphorothioate oligonucleotides in kidney: implications for molecular therapy. Kidney Int. (1995) 47(5):1462–1469.
  • GEARY RS, LEEDS JM, FITCHETT J et al.: Pharmacokinetics and metabolism in mice of a phosphorothioate oligonucleotide antisense inhibitor of C-raf-1 kinase expression. Drug Metab. Dispos. (1997) 25(11):1272–1281.
  • : Pharmacokinetic properties in animals; in Crooke ST (ed):Antisense Drug Technology. New York, Marcel Dekker Inc. (2001) pp 119–154.
  • DELONG RK, NOLTING A, FISHER M et al.: Comparative pharmacokinetics, tissue distribution, and tumour accumulation of phosphorothioate, phosphorodithioate, and methylphosphonate oligonucleotides in nude mice. Antisense Nucleic Acid DrugDev. (1997) 7(2):71–77.
  • YAKUBOV LA, DEEVA EA, ZARYTOVA VF et al.: Mechanism of oligonucleotide uptake by cells: involvement of specific receptors? Proc. NatL Acad. Sci. USA (1989) 86(17):6454–6458.
  • LOKE SL, STEIN CA, ZHANG XH et al.: Characterization of oligonucleotide transport into living cells. Proc. NatL Acad. Sci. USA (1989) 86(10):3474–3478.
  • WU-PONG S, BARD J, HUFFMAN J et al.: Oligonucleotide biological activity: relationship to the cell cycle and nuclear transport. Biol. Cell (1997) 89(4):257–261.
  • SHOJI Y, AKHTAR S, PERIASAMY A et al.: Mechanism of cellular uptake of modified oligodeoxynucleotides containing methylphosphonate linkages. Nucleic Acids Res. (1991) 19(20):5543–5550.
  • AKHTAR S, BASU S, WICKSTROM E et al.: Interactions of antisense DNA oligonucleotide analogs with phospholipid membranes (liposomes). Nucleic Acids Res. (1991) 19(20):5551–5559.
  • STUART DD, ALLEN TM: A new liposomal formulation for antisense oligodeoxynucleotides with small size, high incorporation efficiency and good stability. Biochim. Biophys. Acta (2000) 1463(2):219–229.
  • BENNETT CF, MIREJOVSKY D, CROOKE RM et al.: Structural requirements for cationic lipid mediated phosphorothioate oligonucleotides delivery to cells in culture. J. Drug Target. (1998) 5(3):149–162. ZELPHATI O, SZOKA FC Jr: Mechanism of oligonucleotide release from cationic liposomes. Proc. Nail. Acad. Sci. USA (1996) 93(21):11493–11498. Excellent research paper on mechanism of ODNs release from liposomes.
  • ZELPHATI O, SZOKA FC Jr: Mechanism of oligonucleotide release from cationic liposomes. Proc. Natl. Acad. Sci. USA (1996) 93(21):11493–11498.
  • •• Excellent research paper on mechanism of ODNs release from liposomes.
  • LUKACS GL, HAGGIE P, SEKSEK O, et al.: Size-dependent DNA mobility in cytoplasm and nucleus. J. Biol. Chem. (2000) 275(3):1625–1629.
  • BIESSEN EA, Vietsch H, Rump ET, et al.: Targeted delivery of oligodeoxynucleotides to parenchymal liver cells in vivo. Biochem. J. (1999) 340 ( Pt 3):783–792.
  • GINOBBI P, GEISER TA, OMBRES D et al.: Folic acid-polylysine carrier improves efficacy of c-myc antisense oligodeoxynucleotides on human melanoma (M14) cells. Anti-Cancer Res. (1997) 17(1A):29–35.
  • WANG S, LEE RJ, CAUCHON G et al: Delivery of antisense oligodeoxyribonucleotides against the human epidermal growth factor receptor into cultured KB cells with liposomes conjugated to folate via polyethylene glycol. Proc. Nail. Acad. Sci. USA (1995) 92(8):3318–3322.
  • ROJANASAKUL Y, WEISSMAN DN, SHI X et al.: Antisense inhibition of silica-induced tumour necrosis factor in alveolar macrophages. J. Biol. Chem. (1997) 272(7):3910–3914.
  • LIANG WW, SHI X, DESHPANDE D et al.: Oligonucleotide targeting to alveolar macrophages by mannose receptor-mediated endocytosis. Biochim. Biophys. Acta (1996) 1279(2):227–234.
  • SCHLEPPER-SCHAFER J, HULSMANN D, DJOVKAR A et al.: Endocytosis via galactose receptors in vivo. Ligand size directs uptake by hepatocytes and/or liver macrophages. Exp. Cell Res. (1986) 165(2):494–506.
  • KAWABATA K, TAKAKURA Y, HASHIDA M: The fate of plasmid DNA after intravenous injection in mice: involvement of scavenger receptors in its hepatic uptake. Pharm. Res. (1995) 12(6):825–830.
  • RAJUR SB, ROTH CM, MORGAN JR et al.: Covalent protein-oligonucleotide conjugates for efficient delivery of antisense molecules. Bioconjug. Chem. (1997) 8(6):935–940.
  • MATER MA, YANNOPOULOS CG, MOHAMED N et al.: Synthesis of antisense oligonucleotides conjugated to a multivalent carbohydrate cluster for cellular targeting. Bioconjug. Chem. (2003) 14(1):18–29.
  • CROOKE ST, GRAHAM MJ, ZUCKERMAN JE et al.: Pharmacokinetic properties of several novel oligonucleotide analogs in mice. J. PharmacoL Exp. Ther. (1996) 277(2):923–937.
  • BIJSTERBOSCH MK, MANOHARAN M, DORLAND R et al.: bis-Cholesteryl-conjugated phosphorothioate oligodeoxynucleotides are highly selectively taken up by the liver. J. PharmacoL Exp. Ther. (2002) 302(2):619–626.
  • MANOHARAN M: Oligonucleotide conjugates in antisense technology; in Crooke ST (ed):Antisense Drug Technology. New York, Marcel Dekker, (2001), pp 391–469. Excellent review on ODN conjugates.
  • BIJSTERBOSCH MK, MANOHARAN M, DORLAND R et al.: Delivery of cholesteryl-conjugated phosphorothioate oligodeoxynucleotides to Kupffer cells by lactosylated low-density lipoprotein. Biochem. Pharmacol. (2001) 62(5):627–633.
  • DESJARDINS J, MATA J, BROWN T et al.: Cholesteryl-conjugated phosphorothioate oligodeoxynucleotides modulate CYP2B1 expression in vivo. J. Drug Target. (1995) 2(0:477–485.
  • EPA WR, RONG P, BARTLETT PF et al.: Enhanced down regulation of the p75 nerve growth factor receptor by cholesteryl and bis-cholesteryl antisense oligonucleotides. Antisense Nucleic Acid Drug Dev. (1998) 8(6):489–498.
  • LEDOAN T, ETORE F, TENU JP et al.: Cell binding, uptake and cytosolic partition of HIV antigag phosphodiester oligonucleotides 3'-linked to cholesterol derivatives in macrophages. Bioorg Med. Chem (1999) 7(11):2263–2269.
  • GRYAZNOV SM, LLOYD DH: Modulation of oligonucleotide duplex and triplex stability via hydrophobic interactions. Nucleic Acids Res. (1993) 21(25):5909–5915.
  • LI S, DESHMUKH HM, HUANG L: Folate-mediated targeting of antisense oligodeoxynucleotides to ovarian cancer cells. Pharm. Res. (1998) 15(10):1540–1545.
  • BONORA GM, IVANOVA E, ZARYTOVA V et al.: Synthesis and characterization of high-molecular mass polyethylene glycol-conjugated oligonucleotides. Bioconjug Chem. (1997) 8(6):793–797.
  • HARADA-SHIBA M, YAMAUCHI K, HARADA A et al.: Polyion complex micelles as vectors in gene therapy-pharmacokinetics and in vivo gene transfer. Gene Ther. (2002) 9(6):407–414.
  • VINOGRADOV SV, BRONICH TK, KABANOV AV: Self-assembly of polyamine-poly(ethylene glycol) copolymers with phosphorothioate oligonucleotides. Bioconjug Chem. (1998) 9(6):805–812.
  • BRUS C, PETERSEN H, AIGNER A et al.: Physicochemical and biological characterization of polyethylenimine-graft-poly(ethylene glycol) block copolymers as a delivery system for oligonucleotides and ribozymes. Bioconjug Chem. (2004) 15(4):677–684.
  • JEONG JH, KIM SW, PARK TG: Anew antisense oligonucleotide delivery system based on self-assembled ODN-PEG hybrid conjugate micelles./ Control. Release (2003) 93(2):183–191.
  • •Research paper demonstrating that complex micelles, pegylated ODNs and PEI can effectively supress tumour growth.
  • JEONG JH, KIM SW, PARK TG: Novel intracellular delivery system of antisense oligonucleotide by self-assembled hybrid micelles composed of DNA/PEG conjugate and cationic fusogenic peptide. Bioconjug. Chem. (2003) 14(2):473–479.
  • HANGELAND JJ, LEVIS JT, LEE YC et al.: Cell type specific and ligand specific enhancement of cellular uptake of oligodeoxynucleoside methylphosphonates covalently linked with a neoglycopeptide, YEE(ah-GalNAc)3. Bioconjug. Chem. (1995) 6(6):695–701.
  • DUFF RJ, DEAMOND SF, ROBY C et al.: Intrabody tissue-specific delivery of antisense conjugates in animals: ligand-linker-antisense oligomer conjugates. Methods Enqmol. (2000) 313:297–321.
  • BIESSEN EA, VIETSCH H, RUMP ET et al.: Targeted delivery of antisense oligonucleotides to parenchymal liver cells in vivo. Methods Enqmol. (2000) 314:324–342.
  • COREY D: 48000-fold accelaration of hybridization by chemically modified oligonucleotides. J. Am. Chem. Soc. (1995) 117(30:9373–9374.
  • NEUMAN BW, STEIN DA, KROEKER AD et al: Antisense morpholino-oligomers directed against the 5' end of the genome inhibit coronavirus proliferation and growth. J. Wrol. (2004) 78(11):5891–5899.
  • MURATOVSKA A, ECCLES MR: Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett. (2004) 558(1-3):63–68.
  • BERTRAND JR, POTTIER M, VEKRIS A et al.: Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem. Biophys. Res. Commun. (2002) 296(4):1000–1004.
  • JULIANO RL, ALAHARI S, Y00 H, et al.: Antisense pharmacodynamics: critical issues in the transport and delivery of antisense oligonucleotides. Pharm. Res. (1999) 16(4):494–502.

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.