1,697
Views
284
CrossRef citations to date
0
Altmetric
Reviews

Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems

&
Pages 343-357 | Published online: 04 Feb 2011

Bibliography

  • Bangham AD, Horne RW. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 1964;8:660-8
  • Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008;7(9):771-82
  • Park JH, von Maltzahn G, Ruoslahti E, Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angew Chem Int Ed Engl 2008;47(38):7284-8
  • Cullis PR, Chonn A, Semple SC. Interactions of liposomes and lipid-based carrier systems with blood proteins: relation to clearance behaviour in vivo. Adv Drug Deliv Rev 1998;32(1-2):3-17
  • Radomski A, Jurasz P, Alonso-Escolano D, Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol 2005;146(6):882-93
  • Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol 2007;2(8):469-78
  • Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001;53(2):283-318
  • Nemmar A, Hoylaerts MF, Hoet PH, Ultrafine particles affect experimental thrombosis in an in vivo hamster model. Am J Respir Crit Care Med 2002;166(7):998-1004
  • Perrault SD, Walkey C, Jennings T, Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 2009;9(5):1909-15
  • Simberg D, Duza T, Park JH, Biomimetic amplification of nanoparticle homing to tumors. Proc Natl Acad Sci USA 2007;104(3):932-6
  • Pirollo KF, Chang EH. Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends Biotechnol 2008;26(10):552-8
  • Berry CC, Wells S, Charles S, Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials 2004;25(23):5405-13
  • Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005;113(7):823-39
  • Aggarwal P, Hall JB, McLeland CB, Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 2009;61(6):428-37
  • Lynch I, Cedervall T, Lundqvist M, The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv Colloid Interface Sci 2007;134-135:167-74
  • Szebeni J. Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology 2005;216(2-3):106-21
  • Anderson NL, Polanski M, Pieper R, The human plasma proteome: a nonredundant list developed by combination of four separate sources. Mol Cell Proteomics 2004;3(4):311-26
  • Cedervall T, Lynch I, Foy M, Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed Engl 2007;46(30):5754-6
  • Moore A, Weissleder R, Bogdanov A Jr. Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. J Magn Reson Imaging 1997;7(6):1140-5
  • Cedervall T, Lynch I, Lindman S, Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 2007;104(7):2050-5
  • Walczyk D, Bombelli FB, Monopoli MP, What the cell ‘sees’ in bionanoscience. J Am Chem Soc 2010;132(16):5761-8
  • Rabilloud T. Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2002;2(1):3-10
  • Gessner A, Lieske A, Paulke B, Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur J Pharm Biopharm 2002;54(2):165-70
  • Chonn A, Semple SC, Cullis PR. Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes. J Biol Chem 1992;267(26):18759-65
  • Dobrovolskaia MA, Patri AK, Zheng J, Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine 2008;5(3):106-17
  • Kim HR, Andrieux K, Delomenie C, Analysis of plasma protein adsorption onto PEGylated nanoparticles by complementary methods: 2-DE, CE and Protein Lab-on-chip system. Electrophoresis 2007;28(13):2252-61
  • Gref R, Luck M, Quellec P, ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 2000;18(3-4):301-13
  • Shen Y, Jacobs JM, Camp DG II, Ultra-high-efficiency strong cation exchange LC/RPLC/MS/MS for high dynamic range characterization of the human plasma proteome. Anal Chem 2004;76(4):1134-44
  • Simberg D, Park JH, Karmali PP, Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials 2009;30(23-24):3926-33
  • Lynch I, Salvati A, Dawson KA. Protein-nanoparticle interactions: what does the cell see? Nat Nanotechnol 2009;4(9):546-7
  • Goppert TM, Muller RH. Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int J Pharm 2005;302(1-2):172-86
  • Vroman L, Adams AL, Fischer GC, Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood 1980;55(1):156-9
  • Nagayama S, Ogawara K, Fukuoka Y, Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int J Pharm 2007;342(1-2):215-21
  • Lacerda SH, Park JJ, Meuse C, Interaction of gold nanoparticles with common human blood proteins. ACS Nano 2010;4(1):365-79
  • Froehlich E, Mandeville JS, Jennings CJ, Dendrimers bind human serum albumin. J Phys Chem B 2009;113(19):6986-93
  • Price ME, Cornelius RM, Brash JL. Protein adsorption to polyethylene glycol modified liposomes from fibrinogen solution and from plasma. Biochim Biophys Acta 2001;1512(2):191-205
  • Cornelius RM, Archambault J, Brash JL. Identification of apolipoprotein A-I as a major adsorbate on biomaterial surfaces after blood or plasma contact. Biomaterials 2002;23(17):3583-7
  • Gessner A, Waicz R, Lieske A, Nanoparticles with decreasing surface hydrophobicities: influence on plasma protein adsorption. Int J Pharm 2000;196(2):245-9
  • Mattison KW, Dublin PL, Brittain IJ. Complex formation between bovine serum albumin and strong polyelectrolytes: effect of polymer charge density. J PhysChem 1998;102:3830-36
  • Hattori T, Kimura K, Seyrek E, Binding of bovine serum albumin to heparin determined by turbidimetric titration and frontal analysis continuous capillary electrophoresis. Anal Biochem 2001;295(2):168-67
  • Arima Y, Kawagoe M, Toda M, Complement activation by polymers carrying hydroxyl groups. ACS Appl Mater Interfaces 2009;1(10):2400-7
  • Kuroki Y, Honma T, Chiba H, A novel type of binding specificity to phospholipids for rat mannose-binding proteins isolated from serum and liver. FEBS Lett 1997;414(2):387-92
  • Chacko BK, Appukuttan PS. Dextran-binding human plasma antibody recognizes bacterial and yeast antigens and is inhibited by glucose concentrations reached in diabetic sera. Mol Immunol 2003;39(15):933-9
  • Fujita T, Matsushita M, Endo Y. The lectin-complement pathway–its role in innate immunity and evolution. Immunol Rev 2004;198:185-202
  • Moghimi SM, Patel HM. Tissue specific opsonins for phagocytic cells and their different affinity for cholesterol-rich liposomes. FEBS Lett 1988;233(1):143-7
  • Kamps JA, Scherphof GL. Receptor versus non-receptor mediated clearance of liposomes. Adv Drug Deliv Rev 1998;32(1-2):81-97
  • Bradley AJ, Devine DV, Ansell SM, Inhibition of liposome-induced complement activation by incorporated poly(ethylene glycol)-lipids. Arch Biochem Biophys 1998;357(2):185-94
  • Oku N, Tokudome Y, Namba Y, Effect of serum protein binding on real-time trafficking of liposomes with different charges analyzed by positron emission tomography. Biochim Biophys Acta 1996;1280(1):149-54
  • Gessner A, Lieske A, Paulke BR, Functional groups on polystyrene model nanoparticles: influence on protein adsorption. J Biomed Mater Res A 2003;65(3):319-26
  • Pedersen MB, Zhou X, Larsen EK, Curvature of synthetic and natural surfaces is an important target feature in classical pathway complement activation. J Immunol 2010;184(4):1931-45
  • Geys J, Nemmar A, Verbeken E, Acute toxicity and prothrombotic effects of quantum dots: impact of surface charge. Environ Health Perspect 2008;116(12):1607-13
  • Taylor PR, Martinez-Pomares L, Stacey M, Macrophage receptors and immune recognition. Annu Rev Immunol 2005;23:901-44
  • Hsu MJ, Juliano RL. Interactions of liposomes with the reticuloendothelial system. II: nonspecific and receptor-mediated uptake of liposomes by mouse peritoneal macrophages. Biochim Biophys Acta 1982;720(4):411-19
  • Harashima H, Sakata K, Funato K, Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes. Pharm Res 1994;11(3):402-6
  • Leroux JC, De Jaeghere F, Anner B, An investigation on the role of plasma and serum opsonins on the internalization of biodegradable poly(D,L-lactic acid) nanoparticles by human monocytes. Life Sci 1995;57(7):695-703
  • Borchard G, Kreuter J. The role of serum complement on the organ distribution of intravenously administered poly (methyl methacrylate) nanoparticles: effects of pre-coating with plasma and with serum complement. Pharm Res 1996;13(7):1055-8
  • Doran JE. A critical assessment of fibronectin's opsonic role for bacteria and microaggregates. Vox Sang 1983;45(5):337-48
  • Falcone DJ. Fluorescent opsonization assay: binding of plasma fibronectin to fibrin-derivatized fluorescent particles does not enhance their uptake by macrophages. J Leukoc Biol 1986;39(1):1-12
  • Kolb-Bachofen V. Uptake of toxic silica particles by isolated rat liver macrophages (Kupffer cells) is receptor mediated and can be blocked by competition. J Clin Invest 1992;90(5):1819-24
  • Williams KJ, Werth VP, Wolff JA. Intravenously administered lecithin liposomes: a synthetic antiatherogenic lipid particle. Perspect Biol Med 1984;27(3):417-31
  • Bisgaier CL, Siebenkas MV, Williams KJ. Effects of apolipoproteins A-IV and A-I on the uptake of phospholipid liposomes by hepatocytes. J Biol Chem 1989;264(2):862-6
  • Guo LS, Hamilton RL, Goerke J, Interaction of unilamellar liposomes with serum lipoproteins and apolipoproteins. J Lipid Res 1980;21(8):993-1003
  • Kiwada H, Matsuo H, Harashima H. Identification of proteins mediating clearance of liposomes using a liver perfusion system. Adv Drug Deliv Rev 1998;32(1-2):61-79
  • Chonn A, Semple SC, Cullis PR. Beta 2 glycoprotein I is a major protein associated with very rapidly cleared liposomes in vivo, suggesting a significant role in the immune clearance of ‘non-self’ particles. J Biol Chem 1995;270(43):25845-9
  • Yan X, Kuipers F, Havekes LM, The role of apolipoprotein E in the elimination of liposomes from blood by hepatocytes in the mouse. Biochem Biophys Res Commun 2005;328(1):57-62
  • Yan X, Morselt HW, Scherphof GL, The role of beta2-glycoprotein I in liposome-hepatocyte interaction. Biochim Biophys Acta 2004;1667(2):208-14
  • Schousboe I. beta 2-Glycoprotein I: a plasma inhibitor of the contact activation of the intrinsic blood coagulation pathway. Blood 1985;66(5):1086-91
  • Schreier H, Abra RM, Kaplan JE, Murine plasma fibronectin depletion after intravenous injection of liposomes. Int J Pharm 1987;37(3):233-38
  • Hong Y, Shaw PJ, Tattam BN, Plasma protein distribution and its impact on pharmacokinetics of liposomal amphotericin B in paediatric patients with malignant diseases. Eur J Clin Pharmacol 2007;63(2):165-72
  • Moghimi SM, Muir IS, Illum L, Coating particles with a block co-polymer (poloxamine-908) suppresses opsonization but permits the activity of dysopsonins in the serum. Biochim Biophys Acta 1993;1179(2):157-65
  • Thiele L, Diederichs JE, Reszka R, Competitive adsorption of serum proteins at microparticles affects phagocytosis by dendritic cells. Biomaterials 2003;24(8):1409-18
  • Tandia BM, Vandenbranden M, Wattiez R, Identification of human plasma proteins that bind to cationic lipid/DNA complex and analysis of their effects on transfection efficiency: implications for intravenous gene transfer. Mol Ther 2003;8(2):264-73
  • Demoy M, Andreux JP, Weingarten C, In vitro evaluation of nanoparticles spleen capture. Life Sci 1999;64(15):1329-37
  • Kobzik L. Lung macrophage uptake of unopsonized environmental particulates. Role of scavenger-type receptors. J Immunol 1995;155(1):367-76
  • Furumoto K, Ogawara K, Nagayama S, Important role of serum proteins associated on the surface of particles in their hepatic disposition. J Control Release 2002;83(1):89-96
  • Le Cabec V, Emorine LJ, Toesca I, The human macrophage mannose receptor is not a professional phagocytic receptor. J Leukoc Biol 2005;77(6):934-43
  • Rappleye CA, Goldman WE. Fungal stealth technology. Trends Immunol 2008;29(1):18-24
  • Platt N, Gordon S. Scavenger receptors: diverse activities and promiscuous binding of polyanionic ligands. Chem Biol 1998;5(8):R193-203
  • Greenwalt DE, Lipsky RH, Ockenhouse CF, Membrane glycoprotein CD36: a review of its roles in adherence, signal transduction, and transfusion medicine. Blood 1992;80(5):1105-15
  • Miyanishi M, Tada K, Koike M, Identification of Tim4 as a phosphatidylserine receptor. Nature 2007;450(7168):435-9
  • Doi T, Higashino K, Kurihara Y, Charged collagen structure mediates the recognition of negatively charged macromolecules by macrophage scavenger receptors. J Biol Chem 1993;268(3):2126-33
  • Zhang LW, Monteiro-Riviere NA. Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol Sci 2009;110(1):138-55
  • Dutta D, Sundaram SK, Teeguarden JG, Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol Sci 2007;100(1):303-15
  • Raynal I, Prigent P, Peyramaure S, Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest Radiol 2004;39(1):56-63
  • Nagayama S, Ogawara K, Minato K, Fetuin mediates hepatic uptake of negatively charged nanoparticles via scavenger receptor. Int J Pharm 2007;329(1-2):192-8
  • Chung YI, Kim JC, Kim YH, The effect of surface functionalization of PLGA nanoparticles by heparin- or chitosan-conjugated Pluronic on tumor targeting. J Control Release 2010;143(3):374-82
  • Oh KS, Song JY, Cho SH, Paclitaxel-loaded Pluronic nanoparticles formed by a temperature-induced phase transition for cancer therapy. J Control Release 2010;148(3):344-50
  • Hsu SH, Wen CJ, Al-Suwayeh SA, Physicochemical characterization and in vivo bioluminescence imaging of nanostructured lipid carriers for targeting the brain: apomorphine as a model drug. Nanotechnology 2010. [Epub ahead of print]
  • Esmaeili F, Ghahremani MH, Esmaeili B, PLGA nanoparticles of different surface properties: preparation and evaluation of their body distribution. Int J Pharm 2008;349(1-2):249-55
  • Gaur U, Sahoo SK, De TK, Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system. Int J Pharm 2000;202(1-2):1-10
  • Wunderbaldinger P, Josephson L, Weissleder R. Crosslinked iron oxides (CLIO): a new platform for the development of targeted MR contrast agents. Acad Radiol 2002;9(Suppl 2):S304-6
  • Torchilin VP, Trubetskoi VS. Which polymers can make nanoparticulate drug carriers long-circulating? Adv Drug Deliv Rev 1995;16:141-55
  • Alexis F, Pridgen E, Molnar LK, Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008;5(4):505-15
  • Dos Santos N, Allen C, Doppen AM, Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: relating plasma circulation lifetimes to protein binding. Biochim Biophys Acta 2007;1768(6):1367-77
  • Park JH, von Maltzahn G, Zhang L, Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting. Small 2009;5(6):694-700
  • Needham D, McIntosh TJ, Lasic DD. Repulsive interactions and mechanical stability of polymer-grafted lipid membranes. Biochim Biophys Acta 1992;1108(1):40-8
  • Nahrendorf M, Keliher E, Marinelli B, Hybrid PET-optical imaging using targeted probes. Proc Natl Acad Sci USA 2010;107(17):7910-15
  • Choi CH, Alabi CA, Webster P, Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci USA 2010;107(3):1235-40
  • Ishida T, Ichikawa T, Ichihara M, Effect of the physicochemical properties of initially injected liposomes on the clearance of subsequently injected PEGylated liposomes in mice. J Control Release 2004;95(3):403-12
  • Salvador-Morales C, Zhang L, Langer R, Immunocompatibility properties of lipid-polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials 2009;30(12):2231-40
  • Duncanson WJ, Figa MA, Hallock K, Targeted binding of PLA microparticles with lipid-PEG-tethered ligands. Biomaterials 2007;28(33):4991-9
  • Santel A, Aleku M, Keil O, A novel siRNA-lipoplex technology for RNA interference in the mouse vascular endothelium. Gene Ther 2006;13(16):1222-34
  • Andersen AJ, Hashemi SH, Andresen TL, Complement: alive and kicking nanomedicines. J Biomed Nanotechnol 2009;5(4):364-72
  • Szebeni J, Muggia FM, Alving CR. Complement activation by Cremophor EL as a possible contributor to hypersensitivity to paclitaxel: an in vitro study. J Natl Cancer Inst 1998;90(4):300-6
  • Chanan-Khan A, Szebeni J, Savay S, Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil): possible role in hypersensitivity reactions. Ann Oncol 2003;14(9):1430-7
  • Eckardt JR, Campbell E, Burris HA, A phase II trial of DaunoXome, liposome-encapsulated daunorubicin, in patients with metastatic adenocarcinoma of the colon. Am J Clin Oncol 1994;17(6):498-501
  • Agemy L, Sugahara KN, Kotamraju VR, Nanoparticle-induced vascular blockade in human prostate cancer. Blood 2010;116(15):2847-56
  • Gorbet MB, Sefton MV. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 2004;25(26):5681-703
  • Rausch K, Reuter A, Fischer K, Evaluation of nanoparticle aggregation in human blood serum. Biomacromolecules 2010;11(11):2836-9
  • Moghimi SM, Porter CJ, Muir IS, Non-phagocytic uptake of intravenously injected microspheres in rat spleen: influence of particle size and hydrophilic coating. Biochem Biophys Res Commun 1991;177(2):861-6
  • Moghimi SM, Hedeman H, Muir IS, An investigation of the filtration capacity and the fate of large filtered sterically-stabilized microspheres in rat spleen. Biochim Biophys Acta 1993;1157(3):233-40
  • Liu J, Zeng F, Allen C. Influence of serum protein on polycarbonate-based copolymer micelles as a delivery system for a hydrophobic anti-cancer agent. J Control Release 2005;103(2):481-97
  • Simberg D, Weisman S, Talmon Y, The role of organ vascularization and lipoplex-serum initial contact in intravenous murine lipofection. J Biol Chem 2003;278(41):39858-65
  • Moret I, Esteban Peris J, Guillem VM, Stability of PEI-DNA and DOTAP-DNA complexes: effect of alkaline pH, heparin and serum. J Control Release 2001;76(1-2):169-81
  • Abbruzzese JL, Grunewald R, Weeks EA, A phase I clinical, plasma, and cellular pharmacology study of gemcitabine. J Clin Oncol 1991;9(3):491-8
  • Nicolazzi C, Mignet N, de la Figuera N, Anionic polyethyleneglycol lipids added to cationic lipoplexes increase their plasmatic circulation time. J Control Release 2003;88(3):429-43
  • Mizuarai S, Ono K, You J, Protamine-modified DDAB lipid vesicles promote gene transfer in the presence of serum. J Biochem (Tokyo) 2001;129(1):125-32
  • Klajnert B, Pikala S, Bryszewska M. Haemolytic activity of polyamidoamine dendrimers and the protective role of human serum albumin. P Roy Soc A Math Phys 2010;466(2117):1527-34
  • Han MH, Chen J, Wang J, Blood compatibility of polyamidoamine dendrimers and erythrocyte protection. J Biomed Nanotechnol 2010;6(1):82-92
  • Deng ZJ, Mortimer G, Schiller T, Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology 2009;20(45):455101
  • Labarre D, Vauthier C, Chauvierre C, Interactions of blood proteins with poly(isobutylcyanoacrylate) nanoparticles decorated with a polysaccharidic brush. Biomaterials 2005;26(24):5075-84
  • Ameller T, Marsaud V, Legrand P, Polyester-poly(ethylene glycol) nanoparticles loaded with the pure antiestrogen RU 58668: physicochemical and opsonization properties. Pharm Res 2003;20(7):1063-70

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.