1,433
Views
108
CrossRef citations to date
0
Altmetric
Reviews

Liposomal vaccine delivery systems

, , , &
Pages 505-519 | Published online: 18 Mar 2011

Bibliography

  • Wilson-Welder JH, Torres MP, Kipper MJ, Vaccine adjuvants: current challenges and future approaches. J Pharm Sci 2009;98(4):1278-316
  • Marrack P, McKee AS, Munks MW. Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol 2009;9:287-93
  • Glenny AT, Pope CG, Waddington H, Immunological notes XXIII. The antigenic value of toxoid precipitated by potassium alum. J Pathol Bacteriol 1926;29:38-9
  • Brewer JM. (How) do aluminium adjuvants work? Immunol Lett 2006;102:10-15
  • Spreafico R, Ricciardi-Castagnoli P, Mortellaro A. The controversial relationship between NLRP3, alum, danger signals and the next-generation adjuvants. Eur J Immunol 2010;40(3):638-42
  • O'Hagan DT, Ott GS, Nest GV. Recent advances in vaccine adjuvants: the development of MF59 emulsion and polymeric microparticles. Mol Med Today 1997;3(2):69-75
  • Frey SE, Houghton M, Coates S, Safety and immunogenicity of HCV E1E2 vaccine adjuvanted with MF59 administered to healthy adult. Vaccine 2010;28:6367-73
  • Garçon N, Chomez P, Mechelen MV. GlaxoSmithKline adjuvant systems in vaccines: concepts, achievements and perspectives. Expert Rev Vaccines 2007;6(5):723-39
  • Perrie Y, Rades T. Pharmaceutics - drug delivery and targeting. 1st edition. Pharmaceutical Press, London; 2010
  • Vangasseri DP, Cui Z, Chen W, Immunostimulation of dendritic cells by cationic liposomes. Mol Membr Biol 2006;23(5):385-95
  • Christensen D, Korsholm KS, Rosenkrands I, Cationic liposomes as vaccine adjuvants. Expert Rev Vaccines 2007;6(5):785-96
  • Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965;13(1):238-52
  • Israelachvili J, Marcelja S, Horn R. Physical principles of membrane organization. Q Rev Biophys 1980;13(2):121-200
  • Kirby C, Gregoriadis G. Dehydration-rehydration vesicles: a simple method for high yield drug entrapment in liposomes. Biotechnology 1984;2:979-84
  • Gregoriadis G. Engineering liposomes for drug delivery: progress and problems. Trends Biotechnol 1995;13(12):527-37
  • Gregoriadis G. Drug entrapment in liposomes. FEBS Lett 1973;36(3):292-6
  • Christensen D, Korsholm KS, Wood GK, Liposomes in adjuvant systems for parenteral delivery of vaccines. In: Jorgensen L, Nielsen HM, editors, Delivery technologies for biopharmaceuticals. John Wiley & Sons Ltd; 2009. p. 357-76
  • Gregoriadis G, McCormack B, Obrenovic M, Vaccine entrapment in liposomes. Methods 1999;19:156-62
  • Gregoriadis G. Liposomes as immunoadjuvants and vaccine carriers: antigen entrapment. ImmunoMethods 1994;4:210-16
  • Henriksen-Lacey M, Christensen D, Bramwell VW, Liposomal cationic charge and antigen adsorption are important properties for the efficient deposition of antigen at the injection site and ability of the vaccine to induce a CMI response. J Control Release 2010;145:102-8
  • Ahsan F, Rivas IP, Khan MA, Targeting to macrophages: role of physicochemical properties of particulate carriers-liposomes and microspheres-on the phagocytosis by macrophages. J Control Release 2002;79:29-40
  • Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature 2003;422:37-44
  • Brewer JM, Tetley L, Richmond J, Lipid vesicle size determines the Th1 or Th2 response to entrapped antigen. J Immunol 1998;161:4000-7
  • Fifis T, Gamvrellis A, Crimeen-Irwin B, Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol 2004;173:3148-54
  • Mottram Pl, Leong D, Crimeen-Irwin B, Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol Pharm 2006;4(1):73-84
  • Mann JFS, Shakir E, Carter KC, Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection. Vaccine 2009;27:3643-9
  • Oussoren C, Zuidema J, Crommelin DJA, Lymphatic uptake and biodistribution of liposomes after subcutaneous injection. II. Influence of liposomal size, lipid composition and lipid dose. Biochim Biophys Acta 1997;1328:261-72
  • Foged C, Brodin B, Frokjaer S, Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm 2005;298:315-22
  • Brewer JM, Pollock KGJ, Tetley L, Vesicle size influences the trafficking, processing, and presentation of antigens in lipid vesicles. J Immunol 2004;173:6143-50
  • Manolova V, Flace A, Bauer M, Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 2008;38:1404-13
  • Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 2010;10:787-96
  • Thiele L, Rothen-Rutishauser B, Jilek S, Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages? J Control Release 2001;76:59-71
  • Steinman RM. Dendritic cells in vivo: a key target for a new vaccine science. Immunity 2008;29:319-24
  • Nakanishi T, Kunisawa J, Hayashi A, Positively charged liposome functions as an efficient immunoadjuvant in inducing immune responses to soluble proteins. Biochem Biophys Res Commun 1997;240:793-7
  • Joseph A, Itskovitz-Cooper N, Samira S, A new intranasal influenza vaccine based on a novel polycationic lipid-ceramide carbamoyl-spermine (CCS): I. Immunogenicity and efficacy studies in mice. Vaccine 2006;24(18):3990-4006
  • Perrie Y, Frederik PM, Gregoriadis G. Liposome-mediated DNA vaccination: the effect of vesicle composition. Vaccine 2001;19:3301-10
  • McBurney WT, Lendemans DG, Myschik J, In Vivo activity of cationic immune stimulating complexes (PLUSCOMS). Vaccine 2008;26:4549-56
  • Lendemans DG, Egert AM, Hook S, Cage-like complexes formed by DOTAP, Quil-A and cholesterol. Int J Pharm 2007;332:192-5
  • Schellack C, Prinz K, Egyed A, IC31, a novel adjuvant signaling via TLR9, induces potent cellular and humoral immune responses. Vaccine 2006;24:5461-72
  • Mazumdar T, Anam K, Ali N. Influence of phospholipid composition on the adjuvanticity and protective efficacy of liposome-encapsulated Leishmania donovani antigens. J Parasitol 2005;91:269-74
  • Even-Or O, Samira S, Rochlin E, Immunogenicity, protective efficacy and mechanism of novel CCS adjuvanted influenza vaccine. Vaccine 2010;28(39):6527-41
  • Nakano Y, Mori M, Nishinohara S, Surface-linked liposomal antigen induces IgE-selective unresponsiveness regardless of the lipid components of liposomes. Bioconjug Chem 2001;12(3):391-5
  • Dancey GF, Yasuda T, Kinsky SC. Effect of liposomal model membrane composition on immunogenicity. J Immunol 1978;120(4):1109-13
  • Yasuda T, Dancey GF, Kinsky SC. Immunogenicity of liposomal model membranes in mice: dependence on phospholipid composition. Proc Natl Acad Sci US A 1977;74:1234-6
  • Bakouche O, Gerlier D. Enhancement of immunogenicity of tumour virus antigen by liposomes: the effect of lipid composition. Immunology 1986;58:507-13
  • Mannock DA, Lee MYT, Lewis RNAH, Comparative calorimetric and spectroscopic studies of the effects of cholesterol and epicholesterol on the thermotropic phase behaviour of dipalmitoylphosphatidylcholine bilayer membranes. Biochim Biophys Acta Biomembr 2008;1778(10):2191-202
  • Nakano Y, Mori M, Yamamura H, Cholesterol inclusion in liposomes affects induction of antigen-specific IgG and IgE antibody production in mice by a surface-linked liposomal antigen. Bioconjug Chem 2002;13:744-9
  • van Houte AJ, Snippe H, Schmitz MG, Characterization of immunogenic properties of haptenated liposomal model membranes in mice. V. Effect of membrane composition on humoral and cellular immunogenicity. Immunology 1981;44(3):561-8
  • O'Hagan DT, Gregorio ED. The path to a successful vaccine adjuvant – ‘The long and winding road’. Drug Discov Today 2009;14(11/12):541-51
  • Schijns VEJC. Immunological concepts of vaccine adjuvant activity. Curr Opin Immunol 2000;12:456-63
  • Mosca F, Tritto E, Muzzi A, Molecular and cellular signatures of human vaccine adjuvants. Proc Natl Acad Sci USA 2008;105(30):10501-6
  • Altin JG, van Broekhoven CL, Parish CR. Targeting dendritic cells with antigen-containing liposomes: antitumour immunity. Expert Opin Biol Ther 2004;4(11):1735-47
  • Faham A, Altin JG. Antigen-containing liposomes engrafted with flagellin-related peptides are effective vaccines that can induce potent antitumor immunity and immunotherapeutic effect. J Immunol 2010;185(3):1744-54
  • Heurtault B, Gentine P, Thomann JS, Design of a liposomal candidate vaccine against Pseudomonas aeruginosa and its evaluation in triggering systemic and lung mucosal immunity. Pharm Res 2009;26(2):276-85
  • Marty C, Odermatt B, Schott H, Cytotoxic targeting of F9 teratocarcinoma tumours with anti-ED-B fibronectin scFv antibody modified liposomes. Br J Cancer 2002;87(1):106-12
  • van Broekhoven CL, Parish CR, Demangel C, Targeting dendritic cells with antigen-containing liposomes: a highly effective procedure for induction of antitumor immunity and for tumor immunotherapy. Cancer Res 2004;64(12):4357-65
  • Herzog C, Hartmann K, Kunzi V, Eleven years of Inflexal® V-a virosomal adjuvanted influenza vaccine. Vaccine 2009;27:4381-7
  • Morefield GL, Jiang D, Romero-Mendez IZ, Effect of phosphorylation of ovalbumin on adsorption by aluminium-containing adjuvants and elution upon exposure to interstitial fluid. Vaccine 2005;23:1502-6
  • Iyer S, Robinett R, HogenEsch H, Mechanism of adsorption of hepatitis B surface antigen by aluminium hydroxide adjuvant. Vaccine 2004;22:1475-9
  • Perrie Y, Gregoriadis G. Liposome-entrapped plasmid DNA: characterisation studies. Biochim Biophys Acta 2000;1475:125-32
  • Perrie Y, McNeil S, Vangala A. Liposome-mediated DNA Immunisation via the subcutaneous route. J Drug Target 2003;11(8-10):555-63
  • Szoka FCJ, Yuhong X, Zelphati O. How are nucleic acids released in cells from cationic lipid-nucleic acid complexes? J Liposome Res 1996;6:567-87
  • Engler OB, Schwendener RA, Dai WJ, A liposomal peptide vaccine inducing CD8+ T cells in HLA-A2.1 transgenic mice, which recognise human cells encoding hepatitis C virus (HCV) proteins. Vaccine 2004;23(1):58-68
  • Ingale S, Wolfert MA, Gaekwad J, Robust immune responses elicited by a fully synthetic three-component vaccine. Nat Chem Biol 2007;3(10):663-7
  • Roth A, Rohrbach F, Weth R, Induction of effective and antigen-specific antitumour immunity by a liposomal ErbB2/HER2 peptide-based vaccination construct. Br J Cancer 2005;92(8):1421-9
  • Sangha R, Butts C. L-BLP25: a peptide vaccine strategy in non small cell lung cancer. Clin Cancer Res 2007;13(15 Pt 2):s4652-4
  • Bacon AD, Laing P, Gregoriados G, Method to enhance an immune response of nucleic acid vaccination. UK. 2009; US7604803
  • Vangala A, Bramwell VW, McNeil S, Comparison of vesicle based antigen delivery systems for delivery of hepatitis B surface antigen. J Control Release 2007;119:102-10
  • Mitchell LA, Joseph A, Kedar E, Mucosal immunization against hepatitis A: antibody responses are enhanced by co-administration of synthetic oligodeoxynucleotides and a novel cationic lipid. Vaccine 2006;24:5300-10
  • Jacquet A, Vanderschrick J-F, Vandenbranden M, Vaccination with the recombinant allergen ProDer p 1 complexed with the cationic lipid DiC14-amidine prevents allergic responses to house dust mite. Mol Ther 2006;11(6):960-8
  • Yan W, Huang L. The effects of salt on the physicochemical properties and immunogenicity of protein based vaccine formulated in cationic liposome. Int J Pharm 2009;368:56-62
  • Agger EM, Rosenkrands I, Olsen AW, Protective immunity to tuberculosis with Ag85B-ESAT-6 in a synthetic cationic adjuvant system IC31. Vaccine 2006;24:5452-60
  • Henriksen-Lacey M, Bramwell VW, Christensen D, Liposomes based on dimethyldioctadecylammonium promote a depot effect and enhance immunogenicity of soluble antigen. J Control Release 2009;142(2):180-6
  • Davidsen J, Rosenkrands I, Christensen D, Characterisation of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6,6′-dibehenate) - A novel adjuvant inducing both strong CMI and antibody responses. Biochim Biophys Acta 2005;1718:22-31
  • Agger EM, Rosenkrands I, Hansen J, Cationic liposomes formulated with synthetic mycobacterial cordfactor (CAF01): a versatile adjuvant for vaccines with different immunological requirements. PloS one 2008;3(9):e3116
  • Matsunaga I, Moody DB. Mincle is a long sought receptor for mycobacterial cord factor. J Exp Med 2009;206(13):2865-8
  • Ishikawa E, Ishikawa T, Morita YS, Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 2009;206(13):2879-88
  • Schoenen H, Bodendorfer B, Hitchens K, Cutting edge: mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J Immunol 2010;184:2756-60
  • Benvegnu T, Lemiegre L, Cammas-Marion S. New generation of liposomes called archaeosomes based on natural or synthetic archaeal lipids as innovative formulations for drug delivery. Rec Patents Drug Deliv Formulation 2009;3(3):206-20
  • Calcagnile S, Zuccotti GV. The virosomal adjuvanted influenza vaccine. Expert Opin Biol Ther 2010;10(2):191-200
  • Krishnan L, Sprott GD. Archaeosome adjuvants: immunological capabilities and mechanism(s) of action. Vaccine 2008;26(17):2043-55
  • Patel GB, Chen W. Archaeosome immunostimulatory vaccine delivery system. Curr Drug Deliv 2005;2(4):407-21
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010;11(5):373-84
  • Ishii KJ, Koyama S, Nakagawa A, Host innate immune receptors and beyond: making sense of microbial infections. Cell Host Microbe 2008;3:352-63
  • Didierlaurent AM, Morel S, Lockman L, AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J Immunol 2009;183:6186-97
  • Brandt L, Elhay M, Rosenkrands I, ESAT-6 subunit vaccination against Mycobacterium tuberculosis. Infect Immun 2000;68(2):791-5
  • Korsholm KS, Petersen RV, Agger EM, T-helper 1 and T-helper 2 adjuvants induce distinct differences in the magnitude, quality and kinetics of the early inflammatory response at the site of injection. Immunology 2010;129(1):75-86
  • Langermans JA, Doherty TM, Vervenne RA, Protection of macaques against Mycobacterium tuberculosis infection by a subunit vaccine based on a fusion protein of antigen 85B and ESAT-6. Vaccine 2005;23(21):2740-50
  • Tanaka T, Legat A, Adam E, DiC14-amidine cationic liposomes stimulate myeloid dendritic cells through Toll-like receptor 4. Eur J Immunol 2008;38:1-17
  • Lonez C, Lensink MF, Vandenbranden M, Cationic lipids activate cellular cascades. Which receptors are involved? Biochim Biophys Acta 2009;1790(6):425-30
  • Nordly P, Korsholm KS, Pedersen EA, Incorporation of a synthetic mycobacterial monomycoloyl glycerol analogue stabilizes dimethyldioctadecylammonium liposomes and potentiates their adjuvant effect in vivo. Eur J Pharm Biopharm 2011;77(1):89-98
  • Andersen CS, Agger EM, Rosenkrands I, A simple mycobacterial monomycolated glycerol lipid has potent immunostimulatory activity. J Immunol 2009;182(1):424-32
  • Hiszczynska-Sawicka E, Li H, Xu JB, Comparison of immune response in sheep immunized with DNA vaccine encoding Toxoplasma gondii GRA7 antigen in different adjuvant formulations. Exp Parasitol 2010;124:365-72
  • Riedl K, Riedl R, Gabain AV, The novel adjuvant IC31® strongly improves influenza vaccine-specific cellular and humoral immune responses in young adult and aged mice. Vaccine 2008;26:3461-8
  • Stop TB Partnership. Tuberculosis vaccine candidates - 2009; 2009
  • Zaks K, Jordan M, Guth A, Efficient immunization and cross-priming by vaccine adjuvants containing TLR3 or TLR9 agonists complexed to cationic liposomes. J Immunol 2006;176:7335-45
  • Mastelic B, Ahmed S, Egan WM, Mode of action of adjuvants: implications for vaccine safety and design. Biologicals 2010;38(5):594-601
  • Seder RA, Darrah PA, Roederer M. T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol 2008;8:247-58
  • Numata F, Nishimura K, Ishida H, Lethal and adjuvant activities of cord factor (trehalose-6.6-di-mycolate) and synthetic analogs in mice. Chem Pharm Bulletin 1985;33(10):4544-55
  • Vangala A, Kirby D, Rosenkrands I, A comparative study of cationic liposome and niosome-based systems for protein subunit vaccines: characterisation, environmental scanning electron microscopy and immunisation studies in mice. J Pharm Pharmacol 2006;58:787-99
  • Gall D. The adjuvant activity of aliphatic nitrogenous bases. Immunology 1966;11:369-86
  • Holten-Andersen L, Doherty TM, Korsholm KS, Combination of the cationic surfactant dimethyldioctadecyl ammonium bromide and synthetic mycobacterial cord factor as an efficient adjuvant for tuberculosis subunit vaccines. Infect Immun 2004;72(3):1608-17
  • Kamath AT, Rochat A-F, Christensen D, A liposome-based mycobacterial vaccine induces potent adult and neonatal multifunctional T cells through the exquisite targeting of dendritic cells. PloS one 2009;4(6):e5771
  • Christensen D, Foged C, Rosenkrands I, CAF01 liposomes as a mucosal vaccine adjuvant: In vitro and in vivo investigations. Int J Pharm 2010;390(1):19-24
  • Lindenstrom T, Agger EM, Korsholm KS, Tuberculosis subunit vaccination provides long-term protective immunity characterized by multifunctional CD4 memory T cells. J Immunol 2009;182(12):8047-55
  • Agger EM, Cassidy JP, Brady J, Adjuvant modulation of the cytokine balance in Mycobacterium tuberculosis subunit vaccine; immunity, pathology and protection. Immunology 2008;124(2):175-85
  • Werninghaus K, Babiak A, Gross O, Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRgamma-Syk-Card9-dependent innate immune activation. J Exp Med 2009;206(1):89-97
  • Nordly P, Rose F, Christensen D, Immunity by formulation design: induction of high CD8(+) T-cell responses by poly(I:C) incorporated into the CAF01 adjuvant via a double emulsion method. J Control Release 25 Nov 2010. [Epub ahead of print] PMID: 21111765
  • Christensen D, Foged C, Rosenkrands I, Trehalose preserves DDA/TDB liposomes and their adjuvant effect during freeze-drying. Biochim Biophys Acta 2007;1768(9):2120-9
  • Mohammed AR, Bramwell VW, Coombes AG, Lyophilisation and sterilisation of liposomal vaccines to produce stable and sterile products. Methods 2006;40(1):30-8
  • Sullivan SM, Doukas J, Hartikka J, Vaxfectin: a versatile adjuvant for plasmid DNA- and protein-based vaccines. Expert Opin Drug Deliv 2010;7(12):1433-46
  • Hansen J, Jensen KT, Follmann F, Liposome delivery of Chlamydia muridarum major outer membrane protein primes a Th1 response that protects against genital chlamydial infection in a mouse model. J Infect Dis 2008;198(5):758-67
  • Andersen CA, Rosenkrands I, Olsen AW, Novel generation mycobacterial adjuvant based on liposome-encapsulated monomycoloyl glycerol from Mycobacterium bovis bacillus Calmette-Guerin. J Immunol 2009;183(4):2294-302
  • Bhowruth V, Minnikin DE, Agger EM, Adjuvant properties of a simplified C32 monomycolyl glycerol analogue. Bioorg Med Chem Lett 2009;19(7):2029-32
  • Aagaard C, Hoang TT, Izzo A, Protection and polyfunctional T cells induced by Ag85B-TB10.4/IC31 against Mycobacterium tuberculosis is highly dependent on the antigen dose. PloS one 2009;4(6):e5930
  • Chen W, Yan W, Huang L. A simple but effective cancer vaccine consisting of an antigen and a cationic lipid. Cancer Immunol Immunother 2008;57(4):517-30
  • Bernstein DI, Farley N, Bravo FJ, The adjuvant CLDC increases protection of a herpes simplex type 2 glycoprotein D vaccine in guinea pigs. Vaccine 2010;28(21):3748-53
  • Logue CH, Phillips AT, Mossel EC, Treatment with cationic liposome-DNA complexes (CLDCs) protects mice from lethal Western equine encephalitis virus (WEEV) challenge. Antiviral Res 2010;87(2):195-203
  • Troyer RM, Propst KL, Fairman J, Mucosal immunotherapy for protection from pneumonic infection with Francisella tularensis. Vaccine 2009;27(33):4424-33
  • Hong DK, Chang S, Botham CM, Cationic Lipid/DNA Complex-Adjuvanted Influenza A Virus Vaccination Induces Robust Cross-Protective Immunity. 2010;84(24):12691-702
  • Cheng J-Y, Huang H-N, Tseng W-C, Transcutaneous immunization by lipoplex-patch based DNA vaccines is effective vaccination against Japanese encephalitis virus infection. J Control Release 2009;135(3):242-9
  • Wang D, Xu J, Feng Y, Liposomal oral DNA vaccine (mycobacterium DNA) elicits immune response. Vaccine 2010;28(18):3134-42
  • Karkada M, Weir GM, Quinton T, A liposome-based platform, VacciMax®, and its modified water-free platform DepoVax(TM) enhance efficacy of in vivo nucleic acid delivery. Vaccine 2010;28(38):6176-82

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.