467
Views
23
CrossRef citations to date
0
Altmetric
Reviews

Challenges and advances in the development of inhalable drug formulations for cystic fibrosis lung disease

, , MD, , PhD & , PhD
Pages 451-466 | Published online: 05 Mar 2011

Bibliography

  • Cystic Fibrosis Foundation. Available from: http://www.cff.org [Last accessed 19 October 2010]
  • Farrell PM, Rosenstein BJ, White TB, Guidelines for diagnosis of cystic fibrosis in newborns through older adults: cystic fibrosis foundation consensus report. The J Pediatrics 2008;153(2):S4-14
  • Cystic Fibrosis Mutation Database. Available from: http://www.genet.sickkids.on.ca/cftr [Last accessed 19 October 2010]
  • Wilschanski M, Durie PR. Patterns of GI disease in adulthood associated with mutations in the CFTR gene. Gut 2007;56(8):1153-63
  • Watson MS, Cutting GR, Desnick RJ, Cystic fibrosis population carrier screening: 2004 revision of American College of Medical Genetics mutation panel. Genet Med 2004;6(5):387-91
  • Cotran RS, Kumar V, Collins T, Robbins pathologic basis of disease. Saunders, Philadelphia; 1999
  • Ramsey BW. Management of pulmonary disease in patients with cystic fibrosis. N Engl J Med 1996;335:179-88
  • Clunes MT, Boucher RC. Cystic fibrosis: the mechanisms of pathogenesis of an inherited lung disorder. Drug Discov Today Dis Mech 2007;4(2):63-72
  • Clunes MT, Boucher RC. Front-runners for pharmacotherapeutic correction of the airway ion transport defect in cystic fibrosis. Curr Opin Pharmacol 2008;8(3):292-9
  • Rubin BK. Mucus, phlegm, and sputum in cystic fibrosis. Respir Care 2009;54(6):726-32
  • Rubin BK. Mucus and mucins. Otolaryngol Clin North Am 2010;43(1):27-34
  • Murphy TM, Rosenstein BJ. Advances in the science and treatment of cystic fibrosis lung diseases: a continuing medical education resource. Duke University Medical Center & Health System; Durham, North Carolina 1998
  • Sanders NN, De Smedt SC, Van Rompaey E, Cystic fibrosis sputum: a barrier to the transport of nanospheres. Am J Respir Crit Care Med 2000;162(5):1905-11
  • Cohn JA, Neoptolemos JP, Feng J, Increased risk of idiopathic chronic pancreatitis in cystic fibrosis carriers. Hum Mutat 2005;26(4):303-7
  • Shahram B, Anders E, Johan A, Cystic fibrosis gene mutations and gastrointestinal diseases. J Cyst Fibros 2010;9(4):288-91
  • Wang X, Kim J, McWilliams R, Increased prevalence of chronic rhinosinusitis in carriers of a cystic fibrosis mutation. Arch Otolaryngol Head Neck Surg 2005;131(3):237-40
  • Ziedalski TM, Kao PN, Henig NR, Prospective analysis of cystic fibrosis transmembrane regulator mutations in adults with bronchiectasis or pulmonary nontuberculous mycobacterial infection. Chest 2006;130(4):995-1002
  • Wang X, Moylan B, Leopold DA, Mutation in the gene responsible for cystic fibrosis and predisposition to chronic rhinosinusitis in the general population. JAMA 2000;284(14):1814-19
  • Girodon E, Cazeneuve C, Lebargy F, CFTR gene mutations in adults with disseminated bronchiectasis. Eur J Hum Genet 1997;5(3):149-55
  • Kunzelmann K, Mall M. Pharmacotherapy of the ion transport defect in cystic fibrosis. Clin Exp Pharmacol Physiol 2001;28(11):857-67
  • Rubin BK. Emeging therapies for cystic fibrosis lung disease. Chest 1999;115:1120-6
  • Grasemann H, Ratjen F. Emerging therapies for cystic fibrosis lung disease. Expert Opin Emerg Drugs 2010;15(4):653-9
  • Anderson P. Emerging therapies in cystic fibrosis. Ther Adv Respir Dis 2010;4(3):177-85
  • Riordan JR, Rommens JM, Kerem B, Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989;245(4922):1066-73
  • Drug Development Pipeline. Available from: http://www.cff.org/research/DrugDevelopmentPipeline [Last accessed 12 April 2010]
  • Cystic Fibrosis Patient Registry Annual Data Report 2008 Available from: http://www.cff.org/UploadedFiles/research/ClinicalResearch/2008-Patient-Registry-Report.pdf [Last accessed 18 October 2010]
  • Doring G, Conway S, Heijerman H, Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: a European consensus. Eur Respir J 2000;16(4):749-67
  • Moss RB. Allergic bronchopulmonary aspergillosis and Aspergillus infection in cystic fibrosis. Curr Opin Pulm Med 2010;16(6):598-603
  • Proesmans M, Vermeulen F, De Boeck K. What's new in cystic fibrosis? From treating symptoms to correction of the basic defect. Eur J Pediatr 2008;167(8):839-49
  • Flume PA, O'Sullivan BP, Robinson KA, Cystic fibrosis pulmonary guidelines: chronic medications for maintenance of lung health. Am J Respir Crit Care Med 2007;176(10):957-69
  • Clement A, Tamalet A, Leroux E, Long term effects of azithromycin in patients with cystic fibrosis: a double blind, placebo controlled trial. Thorax 2006;61(10):895-902
  • Equi A, Balfour-Lynn IM, Bush A, Long term azithromycin in children with cystic fibrosis: a randomised, placebo-controlled crossover trial. Lancet 2002;360(9338):978-84
  • Saiman L, Marshall BC, Mayer-Hamblett N, Azithromycin in patients with cystic fibrosis chronically infected with pseudomonas aeruginosa: a randomized controlled trial. JAMA 2003;290(13):1749-56
  • Wolter J, Seeney S, Bell S, Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial. Thorax 2002;57:212-16
  • Friedlander AL, Albert RK. Chronic macrolide therapy in inflammatory airways diseases. Chest 2010;138(5):1202-12
  • Ribeiro CMP, Hurd H, Wu Y, Azithromycin treatment alters gene expression in inflammatory, lipid metabolism, and cell cycle pathways in well-differentiated human airway epithelia. PLoS ONE 2009;4(6):e5806
  • Kanoh S, Rubin BK. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin Microbiol Rev 2010;23(3):590-615
  • Shinkai M, Lopez-Boado YS, Rubin BK. Clarithromycin has an immunomodulatory effect on ERK-mediated inflammation induced by Pseudomonas aeruginosa flagellin. J Antimicrob Chemother 2007;59(6):1096-101
  • Cigana C, Nicolis E, Pasetto M, Anti-inflammatory effects of azithromycin in cystic fibrosis airway epithelial cells. Biochem Biophys Res Commun 2006;350(4):977-82
  • Walker TS, Tomlin KL, Worthen GS, Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils. Infect Immun 2005;73(6):3693-701
  • Tomkiewicz R, Kishore C, Freeman J, DNA and actin filament ultrastructure in cystic fibrosis sputum. In: Baum G, Priel Z, Roth Y, Liron N, Ostield E, editors, Cilia, mucus, and mucociliary interactions. Marcel Dekker, Inc., New York; 1998. p. 333-41
  • Sheils CA, Kas J, Travassos W, Actin filaments mediate DNA fiber formation in chronic inflammatory airway disease. Am J Pathol 1996;148(3):919-27
  • Parks Q, Young R, Poch K, Neutrophil enhancement of Pseudomonas aeruginosa biofilm development: human F-actin and DNA as targets for therapy. J Med Microbiol 2009;58(Pt 4):492-502
  • Broughton-Head VJ, Shur J, Carroll MP, Unfractionated heparin reduces the elasticity of sputum from patients with cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2007;293(5):L1240-9
  • Flume PA, Mogayzel PJ Jr, Robinson KA, Cystic fibrosis pulmonary guidelines: pulmonary complications: hemoptysis and pneumothorax. Am J Respir Crit Care Med 2010;182(3):298-306
  • Flume PA, Yankaskas JR, Ebeling M, Massive hemoptysis in cystic fibrosis. Chest 2005;128(2):729-38
  • Shur J, Nevell TG, Ewen RJ, Cospray-dried unfractionated heparin with L-leucine as a dry powder inhaler mucolytic for cystic fibrosis therapy. J Pharm Sci 2008;97(11):4857-68
  • Nilsson H, Dragomir A, Ahlander A, Effects of hyperosmotic stress on cultured airway epithelial cells. Cell Tissue Res 2007;330(2):257-69
  • Donaldson SH, Bennett WD, Zeman KL, Mucus clearance and lung function in cystic fibrosis with hypertonic saline. N Engl J Med 2006;354(3):241-50
  • Hirsh AJ. Altering airway surface liquid volume: inhalation therapy with amiloride and hyperosmotic agents. Adv Drug Deliv Rev 2002;54(11):1445-62
  • Elkins MR, Robinson M, Rose BR, A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis. N Engl J Med 2006;354(3):229-40
  • Elkins MR, Bye PT. Inhaled hypertonic saline as a therapy for cystic fibrosis. Curr Opin Pulm Med 2006;12(6):445-52
  • Eng PA, Morton J, Douglass JA, Short-term efficacy of ultrasonically nebulized hypertonic saline in cystic fibrosis. Pediatr Pulmonol 1996;21(2):77-83
  • Daviskas E, Anderson Sandra D, Eberl S, Inhalation of dry powder mannitol improves clearance of mucus in patients with bronchiectasis. Am J Respir Crit Care Med 1999;159(6):1843-8
  • Jaques A, Daviskas E, Turton JA, Inhaled mannitol improves lung function in cystic fibrosis. Chest 2008;133(6):1388-96
  • Daviskas E, Anderson SD, Eberl S, Effect of increasing doses of mannitol on mucus clearance in patients with bronchiectasis. Eur Respir J 2008;3(1):765-72
  • Wills PJ. Inhaled mannitol in cystic fibrosis. Expert Opin Investig Drugs 2007;16(7):1121-6
  • Robinson M, Daviskas E, Eberl S, The effect of inhaled mannitol on bronchial mucus clearance in cystic fibrosis patients: a pilot study. Eur Respir J 1999;14(3):678-85
  • Sloane PA, Rowe SM. Cystic fibrosis transmembrane conductance regulator protein repair as a therapeutic strategy in cystic fibrosis. Curr Opin Pulm Med 2010;16(6):591-7
  • Amaral M, Kunzelmann K. Molecular targeting of CFTR as a therapeutic approach to cystic fibrosis. Trends Pharmacol Sci 2007;28(9):334, 447
  • Kellerman D, Rossi Mospan A, Engels J, Denufosol: a review of studies with inhaled P2Y2 agonists that led to phase 3. Pulm Pharmacol Ther 2008;21(4):600-7
  • Kellerman D, Evans R, Mathews D, Inhaled P2Y(2) receptor agonists as a treatment for patients with cystic fibrosis lung disease. Adv Drug Deliv Rev 2002;54(11):1463-74
  • Van Goor F, Hadida S, Grootenhuis PDJ, Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci 2009;106(44):18825-30
  • Accurso FJ, Rowe SM, Clancy JP, Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation. N Engl J Med 2010;363(21):1991-2003
  • Sermet-Gaudelus I, Boeck KD, Casimir GJ, Ataluren (PTC124) induces cystic fibrosis transmembrane conductance regulator protein expression and activity in children with nonsense mutation cystic fibrosis. Am J Respir Crit Care Med 2010;182(10):1262-72
  • Available from: http://clinicaltrials.gov/ct2/show/NCT01117012 [Last accessed 12 April 2010]
  • Available from: http://clinicaltrials.gov/ct2/show/NCT00803205 [Last accessed 12 April 2010]
  • Griesenbach U, Alton EW. Gene transfer to the lung: lessons learned from more than 2 decades of CF gene therapy. Adv Drug Deliv Rev 2009;61(2):128-39
  • Boucher RC. Status of gene therapy for cystic fibrosis lung disease. J Clin Invest 1999;103(4):441-5
  • Atkinson TJ. Cystic fibrosis, vector-mediated gene therapy, and relevance of toll-like receptors: a review of problems, progress, and possibilities. Curr Gene Ther 2008;8(3):201-7
  • Boyd AC. Gene and stem cell therapy. In: Bush A, Alton EWFW, Davies JC, Griesenbach U, Jaffe A, editors, Progress in respiratory research: cystic fibrosis in the 21st Century, Karger, Basel; 2006. Vol. 34, pp. 221-9
  • Teichler Zallen D. US gene therapy in crisis. Trends Genet 2000;16(6):272-5
  • Raper SE, Chirmule N, Lee FS, Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 2003;80(1-2):148-58
  • Alexander BL, Ali RR, Alton EWF, Progress and prospects: gene therapy clinical trials (part 1). Gene Ther 2007;14(20):1439-47
  • Knowles MR, Hohneker KW, Zhou Z, A controlled study of adenoviral-vector-mediated gene transfer in the nasal epithelium of patients with cystic fibrosis. N Engl J Med 1995;333(13):823-31
  • Zuckerman JB, Robinson CB, MacCoy KS, A phase I study of adenovirus-mediated transfer of the human cystic fibrosis transmembrane conductance regulator gene to a lung segment of individuals with cystic fibrosis. Hum Gene Ther 1999;10(18):2973-85
  • Zabner J, Ramsey BW, Meeker DP, Repeat administration of an adenovirus vector encoding cystic fibrosis transmembrane conductance regulator to the nasal epithelium of patients with cystic fibrosis. J Clin Invest 1996;97(6):1504-11
  • Flotte TR, Zeitlin PL, Reynolds TC, Phase I trial of intranasal and endobronchial administration of a recombinant adeno-associated virus serotype 2 (rAAV2)-CFTR vector in adult cystic fibrosis patients: a two-part clinical study. Hum Gene Ther 2003;14(11):1079-88
  • Aitken ML, Moss RB, Waltz DA, A phase I study of aerosolized administration of tgAAVCF to cystic fibrosis subjects with mild lung disease. Hum Gene Ther 2001;12(15):1907-16
  • Barnes PJ. Nuclear factor-[kappa]B. Int J Biochem Cell Biol 1997;29(6):867-70
  • Lambert G, Becker B, Schreiber R, Control of cystic fibrosis transmembrane conductance regulator expression by BAP31. J Biol Chem 2001;276(23):20340-5
  • Mall M, Grubb BR, Harkema JR, Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nat Med 2004;10(5):487-93
  • Vij N, Fang S, Zeitlin PL. Selective inhibition of endoplasmic reticulum-associated degradation rescues ΔF508-cystic fibrosis transmembrane regulator and suppresses interleukin-8 levels. J Biol Chem 2006;281(25):17369-78
  • Gary DJ, Puri N, Won Y-Y. Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J Control Release 2007;121(1-2):64-73
  • Durcan N, Murphy C, Cryan S-A. Inhalable siRNA: potential as a therapeutic agent in the lungs. Mol Pharm 2008;5(4):559-66
  • Mok H, Lee SH, Park JW, Multimeric small interfering ribonucleic acid for highly efficient sequence-specific gene silencing. Nat Mater 2010;9(3):272-8
  • Bolcato-Bellemin A-L, Bonnet M-E, Creusat Gl, Sticky overhangs enhance siRNA-mediated gene silencing. Proc Natl Acad Sci USA 2007;104(41):16050-5
  • Lee S-Y, Huh MS, Lee S, Stability and cellular uptake of polymerized siRNA (poly-siRNA)/polyethylenimine (PEI) complexes for efficient gene silencing. J Control Release 2010;141(3):339-46
  • Available from: http://clinicaltrials.gov/ct2/show/NCT00645788 [Last accessed 12 April 2010]
  • Available from: http://clinicaltrials.gov/ct2/show/NCT00910351 [Last accessed 12 April 2010]
  • Crowther Labiris NR, Holbrook AM, Chrystyn H, Dry powder versus intravenous and nebulized gentamicin in cystic fibrosis and bronchiectasis. A Pilot Study. Am J Respir Crit Care Med 1999;160(5):1711-16
  • Konstan MW, Flume PA, Kappler M, Safety, efficacy and convenience of tobramycin inhalation powder in cystic fibrosis patients: the EAGER trial. J Cystic Fibrosis 2011;10(1):54-61
  • Geller DE, Konstan MW, Noonberg SB, Novel tobramycin inhalation powder in cystic fibrosis subjects: pharmacokinetics and safety. Pediatr Pulmonol 2007;42(4):307-13
  • Pilcer GVF, Amighi K. Preparation and characterization of spray-dried tobramycin powders containing nanoparticles for pulmonary delivery. Int J Pharm 2009;365(1-2):162-9
  • Le Brun PPH, de Boer AH, Mannes GPM, Dry powder inhalation of antibiotics in cystic fibrosis therapy: part 2 Inhalation of a novel colistin dry powder formulation: a feasibility study in healthy volunteers and patients. Eur J Pharm Biopharm 2002;54(1):25-32
  • de Boer AH, Le Brun PPH, van der Woude HG, Dry powder inhalation of antibiotics in cystic fibrosis therapy, part 1: development of a powder formulation with colistin sulfate for a special test inhaler with an air classifier as de-agglomeration principle. Eur J Pharm Biopharm 2002;54(1):17-24
  • Westerman EM, de Boer AH, Le Brun PPH, Dry powder inhalation of colistin sulphomethate in healthy volunteers: a pilot study. Int J Pharm 2007;335(1-2):41-5
  • Son Y-J, McConville JT. Advancements in dry powder delivery to the lung. Drug Dev Ind Pharm 2008;34(9):948-59
  • Newman SP. Dry powder inhalers for optimal drug delivery. Expert Opin Biol Ther 2004;4(1):23-33
  • Islam N, Gladki E. Dry powder inhalers (DPIs)–A review of device reliability and innovation. Int J Pharm 2008;360(1-2):1-11
  • Atkins PJ. Dry powder inhalers: an overview. Respir Care 2005;50(10):1304-12, discussion 1312
  • Prime D, Atkins PJ, Slater A, Review of dry powder inhalers. Adv Drug Deliv Rev 1997;26(1):51-8
  • Geller DE. Comparing clinical features of the nebulizer, metered-dose inhaler, and dry powder inhaler. Respir Care 2005;50(10):1313-21
  • Dalby R, Spallek M, Voshaar T. A review of the development of Respimat® Soft Mist(TM) Inhaler. Int J Pharm 2004;283(1-2):1-9
  • Watts AB, McConville JT, Williams RO. Current therapies and technological advances in aqueous aerosol drug delivery. Drug Dev Ind Pharm 2008;34(9):913-22
  • Berger W. Aerosol devices and asthma therapy. Curr Drug Deliv 2009;6(1):38-49
  • Geller DE, Kesser KC. The I-neb adaptive aerosol delivery system enhances delivery of alpha1-antitrypsin with controlled inhalation. J Aerosol Med Pulm Drug Deliv 2010;23(s1): S-55-9
  • Kesser KC, Geller DE. New aerosol delivery devices for cystic fibrosis. Respir Care 2009;54(6):754-67, discussion 767-8
  • Hanes J, Demeester J. Drug and gene delivery to mucosal tissues: the mucus barrier. Adv Drug Deliv Rev 2009;61(2):73-4
  • Sanders N, Rudolph C, Braeckmans K, Extracellular barriers in respiratory gene therapy. Adv Drug Deliv Rev 2009;61(2):115-27
  • Cone RA. Barrier properties of mucus. Adv Drug Deliv Rev 2009;61(2):75-85
  • Lai SK, Wang Y-Y, Wirtz D, Micro- and macrorheology of mucus. Adv Drug Deliv Rev 2009;61(2):86-100
  • Patton JS. Mechanisms of macromolecule absorption by the lungs. Adv Drug Deliv Rev 1996;19(1):3-36
  • Wine JJ. The genesis of cystic fibrosis lung disease. J Clin Invest 1999;103(3):309-12
  • Cu Y, Saltzman WM. Mathematical modeling of molecular diffusion through mucus. Adv Drug Deliv Rev 2009;61(2):101-14
  • Bansil R, Stanley E, Lamont JT. Mucin biophysics. Annu Rev Physiol 1995;57(1):635-57
  • Thornton DJ, Sheehan JK. From mucins to mucus: toward a more coherent understanding of this essential barrier. Proc Am Thorac Soc 2004;1(1):54-61
  • Mrsny RJ. Lessons from nature: ‘Pathogen-Mimetic’ systems for mucosal Nano-medicines. Adv Drug Deliv Rev 2009;61(2):172-92
  • Voynow JA, Rubin BK. Mucins, mucus, and sputum. Chest 2009;135(2):505-12
  • Lai SK, Wang Y-Y, Hida K, Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses. Proc Natl Acad Sci 2010;107(2):598-603
  • Yudin AI, Hanson FW, Katz DF. Human cervical mucus and its interaction with sperm: a fine-structural view. Biol Reprod 1989;40(3):661-71
  • Psychoyos A, Borg V, Cohen J, Human cervical mucus during the menstrual cycle and pregnancy in normal and pathological conditions. J Reprod Med 1975;14(5):192-6
  • Suk JS, Lai SK, Wang Y-Y, The penetration of fresh undiluted sputum expectorated by cystic fibrosis patients by non-adhesive polymer nanoparticles. Biomaterials 2009;30(13):2591-7
  • Broughton-Head VJV, Smith JRJ, Shur JJ, Actin limits enhancement of nanoparticle diffusion through cystic fibrosis sputum by mucolytics. Pulm Pharmacol Ther 2007;20(6):708-17
  • Dawson M, Wirtz D, Hanes J. Enhanced viscoelasticity of human cystic fibrotic sputum correlates with increasing microheterogeneity in particle transport. J Biol Chem 2003;278(50):50393-401
  • Lai SK, Wang Y-Y, Cone R, Altering mucus rheology to ‘Solidify’ human mucus at the nanoscale. PLoS ONE 2009;4(1):e4294
  • Olmsted SS, Padgett JL, Yudin AI, Diffusion of macromolecules and virus-like particles in human cervical mucus. Biophys J 2001;81(4):1930-7
  • Perricone MA, Rees DD, Sacks CR, Inhibitory effect of cystic fibrosis sputum on adenovirus mediated gene transfer in cultured epithelial cells. Hum Gene Ther 2000;11(14):1997-2008
  • Sanders NN, Van Rompaey E, De Smedt SC, Structural alterations of gene complexes by cystic fibrosis sputum. Am J Respir Crit Care Med 2001;164(3):486-93
  • Davies JC, Bilton D. Bugs, biofilms, and resistance in cystic fibrosis. Respir Care 2009;54(5):628-40
  • Hoiby N, Bjarnsholt T, Givskov M, Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 2010;35(4):322-32
  • Yeates DB, Aspin N, Levison H, Mucociliary tracheal transport rates in man. J Appl Physiol 1975;39(3):487-95
  • Suarez S, Hickey AJ. Drug properties affecting aerosol behavior. Respir Care 2000;45(6):652-66
  • Mall MA. Role of cilia, mucus, and airway surface liquid in mucociliary dysfunction: lessons from mouse models. J Aerosol Med Pulm Drug Deliv 2008;21(1):13-24
  • Sinn PL, Shah AJ, Donovan MD, Viscoelastic gel formulations enhance airway epithelial gene transfer with viral vectors. Am J Respir Cell Mol Biol 2005;32(5):404-10
  • Deneuville E, Perrot-Minot C, Pennaforte F, Revisited physicochemical and transport properties of respiratory mucus in genotyped cystic fibrosis patients. Am J Respir Crit Care Med 1997;156(1):166-72
  • King M. The role of mucus viscoelasticity in cough clearance. Biorheology 1987;24(6):589-97
  • Aronoff SC. Outer membrane permeability in Pseudomonas cepacia: diminished porin content in a beta-lactam-resistant mutant and in resistant cystic fibrosis isolates. Antimicrob Agents Chemother 1988;32(11):1636-9
  • Nicas TI, Hancock RE. Pseudomonas aeruginosa outer membrane permeability: isolation of a porin protein F-deficient mutant. J Bacteriol 1983;153(1):281-5
  • Burns JL, Hedin LA, Lien DM. Chloramphenicol resistance in Pseudomonas cepacia because of decreased permeability. Antimicrob Agents Chemother 1989;33(2):136-41
  • Burns JL, Clark DK. Salicylate-inducible antibiotic resistance in Pseudomonas cepacia associated with absence of a pore-forming outer membrane protein. Antimicrob Agents Chemother 1992;36(10):2280-5
  • Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 1994;264(5157):382-8
  • Dostal RE, Seale JP, Yan BJ. Resistance to ciprofloxacin of respiratory pathogens in patients with cystic fibrosis. Med J Austr 1992;156(1):20-4
  • Watkins J, Francis J, Kuzemko JA. Does monotherapy of pulmonary infections in cystic fibrosis lead to early development of resistant strains of Pseudomonas aeruginosa? Scand J Gastroenterol 1988;143:81-5
  • Cheer SM, Waugh J, Noble S. Inhaled tobramycin (TOBI): a review of its use in the management of Pseudomonas aeruginosa infections in patients with cystic fibrosis. Drugs 2003;63(22):2501-20
  • Smith AL, Ramsey BW, Hedges DL, Safety of aerosol tobramycin administration for 3 months to patients with cystic fibrosis. Pediatr Pulmonol 1989;7(4):265-71
  • Burns JL, Van Dalfsen JM, Shawar RM, Effect of chronic intermittent administration of inhaled tobramycin on respiratory microbial flora in patients with cystic fibrosis. J Infect Dis 1999;179(5):1190-6
  • Prober CG, Walson PD, Jones J. Technical report: precautions regarding the use of aerosolized antibiotics. Committee on Infectious Diseases and Committee on Drugs. Pediatrics 2000;106(6):E89
  • Tsifansky MD, Yeo Y, Evgenov OV, Microparticles for inhalational delivery of antipseudomonal antibiotics. AAPS J 2008;10(2):254-60
  • Adi H, Young PM, Chan H-K, Controlled release antibiotics for dry powder lung delivery. Drug Dev Ind Pharm 2010;36(1):119-26
  • Adi H, Young PM, Chan HK, Cospray dried antibiotics for dry powder lung delivery. J Pharm Sci 2008;97(8):3356-66
  • Fish DN, Choi MK, Jung R. Synergic activity of cephalosporins plus fluoroquinolones against Pseudomonas aeruginosa with resistance to one or both drugs. J Antimicrob Chemother 2002;50(6):1045-9
  • Pickles RJ, Fahrner JA, Petrella JM, Retargeting the coxsackievirus and adenovirus receptor to the apical surface of polarized epithelial cells reveals the glycocalyx as a barrier to adenovirus-mediated gene transfer. J Virol 2000;74(13):6050-7
  • Walters RW, Grunst T, Bergelson JM, Basolateral localization of fiber receptors limits adenovirus infection from the apical surface of airway epithelia. J Biol Chem 1999;274(15):10219-26
  • Harvey B-G, Leopold PL, Hackett NR, Airway epithelial CFTR mRNA expression in cystic fibrosis patients after repetitive administration of a recombinant adenovirus. J Clin Invest 1999;104(9):1245-55
  • Moss RB, Milla C, Colombo J, Repeated aerosolized AAV-CFTR for treatment of cystic fibrosis: a randomized placebo-controlled phase 2B trial. Hum Gene Ther 2007;18(8):726-32
  • Sinn PL, Burnight ER, McCray PB. Progress and prospects: prospects of repeated pulmonary administration of viral vectors. Gene Ther 2009;16(9):1059-65
  • Dean DA, Strong DD, Zimmer WE. Nuclear entry of nonviral vectors. Gene Ther 2005;12(11):881-90
  • Lechardeur D, Sohn KJ, Haardt M, Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther 1999;6(4):482-97
  • Pollard H, Toumaniantz G, Amos JL, Ca2+-sensitive cytosolic nucleases prevent efficient delivery to the nucleus of injected plasmids. J Gene Med 2001;3(2):153-64
  • Lam AP, Dean DA. Progress and prospects: nuclear import of nonviral vectors. Gene Ther 2010;17(4):439-47
  • Chowdhury EH. Nuclear targeting of viral and non-viral DNA. Expert Opin Drug Deliv 2009;6(7):697-703
  • Viola JR, El-Andaloussi S, Oprea II, Non-viral nanovectors for gene delivery: factors that govern successful therapeutics. Expert Opin Drug Deliv 2010;7(6):721-35
  • Minchin RF, Yang S. Endosomal disruptors in non-viral gene delivery. Expert Opin Drug Deliv 2010;7(3):331-9
  • Xu P, Quick G, Yeo Y. Gene delivery through the use of a hyaluronate-associated intracellularly degradable cross-linked polyethyleneimine. Biomaterials 2009;30(29):5834-43
  • Mugabe C, Azghani AO, Omri A. Liposome-mediated gentamicin delivery: development and activity against resistant strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients. J Antimicrob Chemother 2005;55(2):269-71
  • Rukholm G, Mugabe C, Azghani AO, Antibacterial activity of liposomal gentamicin against Pseudomonas aeruginosa: a time-kill study. Int J Antimicrob Agents 2006;27(3):247-52
  • Beaulac C, Sachetelli S, Lagace J. In-vitro bactericidal efficacy of sub-MIC concentrations of liposome-encapsulated antibiotic against gram-negative and gram-positive bacteria. J Antimicrob Chemother 1998;41(1):35-41
  • Beaulac C, Sachetelli S, Lagace J. In vitro bactericidal evaluation of a low phase transition temperature liposomal tobramycin formulation as a dry powder preparation against gram negative and gram positive bacteria. J Liposome Res 1999;9(3):301-12
  • Halwani M, Mugabe C, Azghani AO, Bactericidal efficacy of liposomal aminoglycosides against Burkholderia cenocepacia. J Antimicrob Chemother 2007;60(4):760-9
  • Alipour M, Suntres ZE, Halwani M, Activity and interactions of liposomal antibiotics in presence of polyanions and sputum of patients with cystic fibrosis. PLoS ONE 2009;4(5):e5724
  • Demaeyer P, Akodad EM, Gravet E, Disposition of liposomal gentamicin following intrabronchial administration in rabbits. J Microencapsul 1993;10(1):77-88
  • Omri A, Beaulac C, Bouhajib M, Pulmonary retention of free and liposome-encapsulated tobramycin after intratracheal administration in uninfected rats and rats infected with Pseudomonas aeruginosa. Antimicrob Agents Chemother 1994;38(5):1090-5
  • Marier JF, Lavigne J, Ducharme MP. Pharmacokinetics and efficacies of liposomal and conventional formulations of tobramycin after intratracheal administration in rats with pulmonary Burkholderia cepacia infection. Antimicrob Agents Chemother 2002;46(12):3776-81
  • Meers P, Neville M, Malinin V, Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J Antimicrob Chemother 2008;61(4):859-68
  • Beaulac C, Clement-Major S, Hawari J, Eradication of mucoid Pseudomonas aeruginosa with fluid liposome-encapsulated tobramycin in an animal model of chronic pulmonary infection. Antimicrob Agents Chemother 1996;40(3):665-9
  • Dames P, Gleich B, Flemmer A, Targeted delivery of magnetic aerosol droplets to the lung. Nat Nano 2007;2(8):495-9
  • Sanders NN, Van Rompaey E, De Smedt SC, On the transport of lipoplexes through cystic fibrosis sputum. Pharm Res 2002;19(4):451-6
  • Kushwah R, Oliver JR, Cao H, Nacystelyn enhances adenoviral vector-mediated gene delivery to mouse airways. Gene Ther 2007;14(16):1243-8
  • Ferrari S, Kitson C, Farley R, Mucus altering agents as adjuncts for nonviral gene transfer to airway epithelium. Gene Ther 2001;8(18):1380-6
  • Lai SK, O'Hanlon DE, Harrold S, Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci USA 2007;104(5):1482-7
  • Lai SK, Wang Y-Y, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 2009;61(2):158-71
  • Tang BC, Dawson M, Lai SK, Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc Natl Acad Sci USA 2009;106(46):19268-73
  • Wang YY, Lai SK, Suk JS, Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that ‘Slip’ through the human mucus barrier. Angew Chem Int Ed 2008;47(50):9726-9
  • Sanders NN, De Smedt SC, Demeester J. Mobility and stability of gene complexes in biogels. J Control Release 2003;87(1-3):117-29
  • Sanders NN, De Smedt SC, Cheng SH, Pegylated GL67 lipoplexes retain their gene transfection activity after exposure to components of CF mucus. Gene Ther 2002;9(6):363-71
  • Vij N, Min T, Marasigan R, Development of PEGylated PLGA nanoparticle for controlled and sustained drug delivery in cystic fibrosis. J Nanobiotechnol 2010;8(1):22
  • Mishra S, Webster P, Davis ME. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol 2004;83(3):97-111
  • Gryparis EC, Hatziapostolou M, Papadimitriou E, Anticancer activity of cisplatin-loaded PLGA-mPEG nanoparticles on LNCaP prostate cancer cells. Eur J Pharm Biopharm 2007;67(1):1-8
  • Romberg B, Hennink W, Storm G. Sheddable coatings for long-circulating nanoparticles. Pharm Res 2008;25(1):55-71
  • Hong RL, Huang CJ, Tseng YL, Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C-26 tumor-bearing mice: is surface coating with polyethylene glycol beneficial? Clin Cancer Res 1999;5(11):3645-52
  • Kaasgaard T, Mouritsen OG, Jorgensen K. Screening effect of PEG on avidin binding to liposome surface receptors. Int J Pharm 2001;214(1-2):63-5
  • Hatakeyama H, Akita H, Kogure K, Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Gene Ther 2007;14(1):68-77
  • Buyens K, Lucas B, Raemdonck K, A fast and sensitive method for measuring the integrity of siRNA-carrier complexes in full human serum. J Control Release 2008;126(1):67-76
  • Ito T, Iida-Tanaka N, Niidome T, Hyaluronic acid and its derivative as a multi-functional gene expression enhancer: protection from non-specific interactions, adhesion to targeted cells, and transcriptional activation. J Control Release 2006;112(3):382-8
  • Jiang G, Min S, Kim M, Alginate/PEI/DNA polyplexes: a new gene delivery system. Yao Xue Xue Bao 2006;41(5):439-45
  • Cheung CY, Murthy N, Stayton PS, A pH-sensitive polymer that enhances cationic lipid-mediated gene transfer. Bioconjug Chem 2001;12(6):906-10
  • Garcia-Contreras L, Hickey AJ. Pharmaceutical and biotechnological aerosols for cystic fibrosis therapy. Adv Drug Deliv Rev 2002;54(11):1491-504
  • Alipour M, Suntres ZE, Omri A. Importance of DNase and alginate lyase for enhancing free and liposome encapsulated aminoglycoside activity against Pseudomonas aeruginosa. J Antimicrob Chemother 2009;64(2):317-25
  • Yang Y, Tsifansky MD, Wu C-J, Inhalable antibiotic delivery using a dry powder co-delivering recombinant deoxyribonuclease and ciprofloxacin for treatment of cystic fibrosis. Pharm Res 2010;27(1):151-60
  • Yang Y, Tsifansky MD, Shin S, Mannitol-guided delivery of ciprofloxacin in artificial cystic fibrosis mucus model. Biotechnol Bioeng. Available from: http://onlinelibrary.wiley.com/doi/10.1002/bit.23046/pdf 15 Jan 2011. [Epub ahead of print]
  • Adi H, Young PM, Chan H-K, Co-spray dried mannitol-ciprofloxacin dry powder inhaler for cystic fibrosis and chronic obstructive pulmonary disease. Eur J Pharm Sci 2010;40:239-47
  • McGill SL, Smyth HDC. Disruption of the mucus barrier by topically applied exogenous particles. Mol Pharm 2010;7(6):2280-8
  • Chen EYT, Wang Y-C, Chen C-S, Functionalized positive nanoparticles reduce mucin swelling and dispersion. PLoS ONE 2010;5(11):e15434
  • Dorin JR. Animal models. In: Bush A, EWA, Davies JC, Griesenbach U, Jaffe A, editors, Progress in respiratory research: cystic fibrosis in the 21st century. Karger, Basel; 2006. p. 84-92
  • Clarke LL, Grubb BR, Yankaskas JR, Relationship of a non-cystic fibrosis transmembrane conductance regulator- mediated chloride conductance to organ-level disease in Cftr(-/-) mice. Proc Natl Acad Sci USA 1994;91(2):479-83
  • Cash HA, Woods DE, McCullough B, A rat model of chronic respiratory infection with Pseudomonas aeruginosa. Am Rev Respir Dis 1979;119(3):453-9
  • Kukavica-Ibrulj I, Levesque RC. Animal models of chronic lung infection with Pseudomonas aeruginosa: useful tools for cystic fibrosis studies. Lab Anim 2008;42(4):389-412
  • Ostrowski LE, Yin W, Diggs PS, Expression of CFTR from a ciliated cell-specific promoter is ineffective at correcting nasal potential difference in CF mice. Gene Ther 2007;14(20):1492-501
  • Griesenbach U, Alton EWFW. Cystic fibrosis: ferreting with fibroblasts for cystic fibrosis. Gene Ther 2009;16(1):1-2
  • Sehgal A, Presente A, Engelhardt JF. Developmental expression patterns of CFTR in ferret tracheal surface airway and submucosal gland epithelia. Am J Respir Cell Mol Biol 1996;15(1):122-31
  • Sun X, Yan Z, Yi Y, Adeno-associated virus-targeted disruption of the CFTR gene in cloned ferrets. J Clin Invest 2008;118(4):1578-83
  • Sun X, Sui H, Fisher JT, Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis. J Clin Invest 2010;120(9):3149-60
  • Rogers CS, Hao Y, Rokhlina T, Production of CFTR-null and CFTR-ΔF508 heterozygous pigs by adeno-associated virus–mediated gene targeting and somatic cell nuclear transfer. J Clin Invest 2008;118(4):1571-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.