338
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Nanocarrier systems for delivery of siRNA to ovarian cancer tissues

, &
Pages 743-754 | Published online: 04 Jun 2012

Bibliography

  • Rao DD, Vorhies JS, Senzer N, SiRNA vs.shRNA: similarities and differences. Adv Drug Deliv Rev 2009;61:746-59
  • Numnum TM, Makhija S, Lu B, Improved anti-tumor therapy based upon infectivity-enhanced adenoviral delivery of RNA interference in ovarian carcinoma cell lines. Gynecol Oncol 2008;108:34-41
  • Burnett JC, Rossi JJ, Tiemann K. Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol J 2011;6:1130-46
  • Garson K, Shaw TJ, Clark KV, Models of ovarian cancer-Are we there yet? Mol Cell Endocrinol 2005;239:15-26
  • Gorringe KL, Campbella IG. Large-scale genomic analysis of ovarian carcinomas. Mol Oncol 2009;3:157-64
  • Vaughan S, Coward JI Jr, Bast RC, Rethinking ovarian cancer:recommendations for improving outcomes. Nat Rev Cancer 2011;11:719-25
  • Kurman RJ, Shih IM. The Origin and pathogenesis of epithelial ovarian cancer-a proposed unifying theory. Am J Surg Pathol 2010;34:433-43
  • Despierre E, Lambrechts D, Neven P, The molecular genetic basis of ovarian cancer and its roadmap towards a better treatment. Gynecol Oncol 2010;117:358-65
  • The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011;474:609-15
  • Vanderhyden BC, Dorward AM. Ovarian cancer and the environment: rodent models. In: McQueen CA. editor. Comprehensive Toxicology. Volume 11 2nd edition. Elsevier Ltd; Elsevier: 2010. p. 483-98
  • Ashworth A, Balkwill F, Bast RC, Opportunities and challenges in ovarian cancer research, a perspective from the 11th Ovarian cancer action/HHMT Forum. Gynecol Oncol 2008;108:652-7
  • Maloney A, Clarke PA, Naaby-Hansen S, Gene and protein expression profiling of human ovarian cancer cells treated with the heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Cancer Res 2007;67:3239-53
  • Chon HS, Lancaster JM. Microarray-based gene expression studies in ovarian cancer. Cancer Control 2011;18:8-15
  • Agarwal R, Linch M, Kaye SB. Novel therapeutic agents in ovarian cancer. Eur J Surg Oncol 2006;32:875-86
  • Disaia PJ, Bloss JD. Treatment of ovarian cancer:new strategies. Gynecol Oncol 2003;90:S24-32
  • Kieback DJ, Hasenburg A, Runnebaum IB, Gene therapy of ovarian cancer-state of the art and future perspectives. In: Altchek A, Deligdisch L, Kase NG, editors. Diagnosis and Management of Ovarian Disorders. 2nd edition. Elsevier Science; USA: 2003. p. 277-304
  • Sawicki JA, Anderson DG, Langer R. Nanoparticle delivery of suicide DNA for epithelial ovarian cancer therapy. Adv Exp Med Biol 2008;622:209-19
  • Singh P, Joshi S, Russell P, Purine nucleoside phosphorylase mediated molecular chemotherapy and conventional chemotherapy: a tangible union against chemoresistant cancer. BMC Cancer 2011;11:368
  • Dachs GU, Tupper J, Tozer GM. From bench to bedside for gene-directed enzyme prodrug therapy of cancer. Anticancer Drugs 2005;16:349-59
  • Imamura O, Okada H, Takashima Y, SiRNA-mediated Erc gene silencing suppresses tumor growth in Tsc2 mutant renal carcinoma model. Cancer Lett 2008;268:278-85
  • Kenny GD, Kamaly N, Kalber TL, Novel multifunctional nanoparticle mediates siRNA tumour delivery, visualisation and therapeutic tumour reduction in vivo. J Control Release 2011;149:111-16
  • Guo P, Coban O, Snead NM, Engineering RNA for Targeted siRNA delivery and medical application. Adv Drug Deliv Rev 2010;62:650-66
  • Akhtar S, Benter I. Toxicogenomics of non-viral drug delivery systems for RNAi: potential impact on siRNA-mediated gene silencing activity and specificity. Adv Drug Deliv Rev 2007;59:164-82
  • Tanaka K, Kanazawa T, Ogaw T, Disulfide crosslinked stearoyl carrier peptides containing arginine and histidine enhance siRNA uptake and gene silencing. Int J Pharm 2010;398:219-24
  • Bhaskar S, Tian F, Stoeger T, Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier:perspectives on tracking and neuroimaging. Part Fibre Toxicol 2010;7:3
  • Torchilin VP. Nanocarriers for drug delivery: needs and requirements. In: Torchilin VP, editor. Nanoparticulates as Drug Carriers. Imperial College Press; World Scientific: 2006. p. 1-6
  • Cho K, Wang X, Nie S, Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 2008;14:1310-16
  • Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 2009;8:129-38
  • David S, Pitard B, Benoit JP, Non-viral nanosystems for systemic siRNA delivery. Pharmacol Res 2010;62:100-14
  • He X, Arslan AD, Pool MD, Knockdown of splicing factor SRp20 causes apoptosis in ovarian cancer cells and its expression is associated with malignancy of epithelial ovarian cancer. Oncogene 2011;30:356-65
  • Liua X, Howard KA, Dong M, The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials 2007;28:1280-8
  • Li S, Huang L. Non-viral is superior to viral gene delivery. J Control Release 2007;123:181-3
  • Reischl D, Zimmer A. Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. Nanomed Nanotechnol Biol Med 2009;5:8-20
  • Chen Y, Huang L. Tumor-targeted delivery of siRNA by non-viral vector:safe and effective cancer therapy. Expert Opin Drug Deliv 2008;5:1301-11
  • Jain NK, Nahar M. PEGylated nanocarriers for systemic delivery. Methods Mol Biol 2010;624:221-34
  • Kim PS, Djazayeri S, Zeineldin R. Novel nanotechnology approaches to diagnosis and therapy of ovarian cancer. Gynecol Oncol 2011;120:393-403
  • Jain RK. Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev 2001;46:149-68
  • Shim MS, Kwon YJ. Efficient and targeted delivery of siRNA in vivo. FEBS J 2010;277:4814-27
  • Danhier F, Feron O, Preat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010;148:135-46
  • Nie S. Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine(Lond) 2010;5:523-8
  • Hong S, Lerouell PR, Majoros IJ. The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol 2007;14:107-15
  • Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res 2010;62:90-9
  • Martimprey H, Vauthier C, Malvy C, Polymer nanocarriers for the delivery of small fragments of nucleic acids: oligonucleotides and siRNA. Eur J Pharm Biopharm 2009;71:490-504
  • Tarapore P, Shu Y, Guo P, Application of phi29 motor pRNA for targeted therapeutic delivery of siRNA silencing metallothionein-IIA and surviving in ovarian cancers. Mol Ther 2011;19:386-94
  • Chen Q, Butler D, Querbes W, Lipophilic siRNAs mediate efficient gene silencing in oligodendrocytes with direct CNS delivery. J Control Release 2010;144:227-32
  • Cao A, Briane D, Coudert R. Cationic liposomes as transmembrane carriers of nucleic acids. Adv Planar Lipid Bilayer Liposom 2006;4:136-82
  • Kim HK, Davaa E, Myung CS, Enhanced siRNA delivery using cationic liposomes with new polyarginine-conjugated PEG-lipid. Int J Pharm 2010;392:141-7
  • Pozo-Rodriguez A, Delgado D, Angeles Solinis M, Solid lipid nanoparticles as potential tools for gene therapy: in vivo protein expression after intravenous administration. Int J Pharm 2010;385:157-62
  • Mevel M, Kamaly N, Carmona S, DODAG; a versatile new cationic lipid that mediates efficient delivery of pDNA and siRNA. J Control Release 2010;143:222-32
  • Xue HY, Wong HL. Tailoring nanostructured solid-lipid carriers for time-controlled intracellular siRNA kinetics to sustain RNAi-mediated chemosensitization. Biomaterials 2011;32:2662-72
  • Gao Y, Liu XL, Li XR. Research progress on siRNA delivery with nonviral carriers. Int J Nanomed 2011;6:1017-25
  • Liu Z, Jiao Y, Wang Y, Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 2008;60:1650-62
  • Oh JK, Lee DI, Park JM. Biopolymer-based microgels/nanogels for drug delivery applications. Prog Polym Sci 2009;34:1261-82
  • Lee DW, Yun K, Ban H, Preparation and characterization of chitosan/polyguluronate nanoparticles for siRNA delivery. J Control Release 2009;139:146-52
  • Cohen JL, Schubert S, Wich PR, Acid-degradable cationic dextran particles for the delivery of siRNA therapeutics. Bioconjug Chem 2011;22:1056-65
  • Singh HD, Wang G, Uludag H, Poly-L-lysine-coated albumin nanoparticles: stability, mechanism for increasing in vitro enzymatic resilience, and siRNA release characteristics. Acta Biomater 2010;6:4277-84
  • Eguchi A, Dowdy SF. SiRNA delivery using peptide transduction domains. Trends Pharmacol Sci 2009;30(7):341-5
  • Lochmann D, Jauk E, Zimmer A. Drug delivery of oligonucleotides by peptides. Eur J Pharm Biopharm 2004;58:237-51
  • Choi Y, Lee JY, Suh JS, The systemic delivery of siRNAs by a cell penetrating peptide, low molecular weight protamine. Biomaterials 2010;31:1429-43
  • Hobel S, Loos A, Appelhans D, Maltose- and maltotriose-modified, hyperbranched poly(ethylene imine)s (OM-PEIs): physicochemical and biological properties of DNA and siRNA complexes. J Control Release 2011;149:146-58
  • Zhu L, Mahato RI. Lipid and polymeric carrier-mediated nucleic acid delivery. Expert Opin Drug Deliv 2010;7:1209-26
  • Convertine A, Benoit D, Duvall C, Development of a novel endosomolytic diblock copolymer for siRNA delivery. J Control Release 2009;133:221-9
  • Kumar MR, Bakowsky U, Lehr CM. Preparation and characterization of cationic PLGA nanospheres as DNA carriers. Biomaterials 2004;25:1771-7
  • Felber AE, Castagner B, Elsabahy M, SiRNA nanocarriers based on methacrylic acid copolymers. J Control Release 2011;152:159-67
  • Xu ZP, Zeng QH, Lu GQ, Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 2006;61:1027-40
  • Ladewig K, Niebert M, Xu Z, Efficient siRNA delivery to mammalian cells using layered double hydroxide nanoparticles. Biomaterials 2010;31:1821-9
  • Sun C, Lee J, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 2008;60:1252-65
  • Figuerola A, Di Corato R, Manna L, From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol Res 2010;62:126-43
  • Li J, Chen Y, Tseng Y, Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J Control Release 2010;142:416-21
  • Zhang M, Ishii A, Nishiyama N, PEGylated calcium phosphate nanocomposites as smart environment-sensitive carriers for siRNA delivery. Adv Mater 2009;21:3520-5
  • Park K. Systemic siRNA delivery using biocompatible calcium phosphate nanoparticles. J Control Release 2010;142:295
  • Kim D, Kim J, Park M, Modulation of biological processes in the nucleus by delivery of DNA oligonucleotides conjugated with gold nanoparticles. Biomaterials 2011;32:2593-604
  • Duncan B, Kim C, Rotello VM. Gold nanoparticle platforms as drug and biomacromolecule delivery systems. J Control Release 2010;148:122-7
  • Pissuwan D, Niidome T, Cortie MB. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release 2011;149:65-71
  • Patra CR, Bhattacharya R, Mukhopadhyay D, Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv Drug Deliv Rev 2010;62:346-61
  • Ghosh P, Han G, De M, Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 2008;60:1307-15
  • Tanaka T, Godine B, Bhavane R, In vivo evaluation of safety of nanoporous silicon carriers following single and multiple dose intravenous administrations in mice. Int J Pharm 2010;402:190-7
  • Tanaka T, Mangala LS, Vivas-Mejia PE, Sustained small interfering RNA delivery by mesoporous silicon particles. Cancer Res 2010;70:3687-96
  • Bhattarai SR, Muthuswamy E, Wani A, Enhanced gene and siRNA delivery by polycation-modified mesoporous silica nanoparticles loaded with chloroquine. Pharm Res 2010;27:2556-68
  • Cheung W, Pontoriero F, Taratula O, DNA and carbon nanotubes as medicine. Adv Drug Deliv Rev 2010;62:633-49
  • Hossain S, Stanislaus A, Chua MJ, Carbonate apatite-facilitated intracellularly delivered siRNA for efficient knockdown of functional genes. J Control Release 2010;147:101-8
  • Jayakumar R, Chennazhi KP, Muzzarelli RAA, Chitosan conjugated DNA nanoparticles in gene therapy. Carbohydr Polym 2010;79:1-8
  • Rudzinski WE, Aminabhavi TM. Chitosan as a carrier for targeted delivery of small interfering RNA. Int J Pharm 2010;399:1-11
  • Lai W, Lin MC. Nucleic acid delivery with chitosan and its derivatives. J Control Release 2009;134:158-68
  • Kim T, Jiang H, Jere D, Chemical modification of chitosan as a gene carrier in vitro and in vivo. Prog Polym Sci 2007;32:726-53
  • Noh SM, Park MO, Shim G, Pegylated poly-L-arginine derivatives of chitosan for effective delivery of siRNA. J Control Release 2010;145:159-64
  • Nafee N, Taetz S, Schneider M, Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomed Nanotechnol Biol Med 2007;3:173-83
  • Tahara K, Sakai T, Yamamoto H, Establishing chitosan coated PLGA nanosphere platform loaded with wide variety of nucleic acid by complexation with cationic compound for gene delivery. Int J Pharm 2008;354:210-16
  • Tan ML, Choong P, Dass CR. Cancer, chitosan nanoparticles and catalytic nucleic acids. J Pharm Pharmacol 2009;61:3-12
  • Teijeiro-Osorio D, Remunan-Lopez C, Alonso MJ. Chitosan/cyclodextrin nanoparticles can efficiently transfect the airway epithelium in vitro. Eur J Pharm Biopharm 2009;71:257-63
  • Duceppe N, Tabrizian M. Factors influencing the transfection efficiency of ultra low molecular weight chitosan/hyaluronic acid nanoparticles. Biomaterials 2009;30:2625-31
  • Gazori T, Haririan I, Fouladde S, Inhibition of EGFR expression with chitosan/alginate nanoparticles encapsulating antisense oligonucleotides in T47D cell line using RT-PCR and immunocytochemistry. Carbohydr Polym 2010;80:1042-7
  • Urban-Klein B, Werth S, Abuharbeid S, RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther 2005;12:461-6
  • Sudimack BAJ, Lee RJ. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 2000;41:147-62
  • Leamon CP, Low PS. Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discov Today 2001;6:44-51
  • Dang JM, Leong KW. Natural polymers for gene delivery and tissue engineering. Adv Drug Deliv Rev 2006;58:487-99
  • Cun D, Jensen DK, Maltesen MJ, High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: quality by design optimization and characterization. Eur J Pharm Biopharm 2011;77:26-35
  • Cun D, Foged C, Yang M, Preparation and characterization of poly(dl-lactide-co-glycolide) nanoparticles for siRNA delivery. Int J Pharm 2010;390:70-5
  • Young S, Wong M, Tabata Y, Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release 2005;109:256-74
  • Zillies J, Coester C. Evaluating gelatine based nanoparticles as a carrier system for double stranded oligonucleotides. J Pharm Pharm Sci 2005;7:17-21
  • Kushibiki T, Nagata-Nakajima N, Sugai M, Enhanced anti-fibrotic activity of plasmid DNA expressing small interference RNA for TGF-h type II receptor for a mouse model of obstructive nephropathy by cationized gelatin prepared from different amine compounds. J Control Release 2006;110:610-17
  • Ofokansi K, Winter G, Fricker G, Matrix-loaded biodegradable gelatin nanoparticles as new approach to improve drug loading and delivery. Eur J Pharm Biopharm 2010;76:1-9
  • Zeineldin R, Muller CY, Stack MS, Targeting the EGF receptor for ovarian cancer therapy. J Oncol 2010;2010:1-11
  • Tai W, Mahato R, Cheng K. The role of HER2 in cancer therapy and targeted drug delivery. J Control Release 2010;146:264-75
  • Krieger ML, Eckstein N, Schneider V, Overcoming cisplatin resistance of ovarian cancer cells by targeted liposomes in vitro. Int J Pharm 2010;389:10-17
  • Han HD, Mangala LS, Lee JW, Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clin Cancer Res 2010;16:3910-22
  • Dickerson EB, Blackburn WH, Smith MH, Chemosensitization of cancer cells by siRNA using targeted nanogel delivery. BMC Cancer 2010;10:1-11
  • Kim SH, Jeong JH, Lee SH, LHRH receptor-mediated delivery of siRNA using polyelectrolyte complex micelles self-assembled from siRNA-PEG-LHRH conjugate and PEI. Bioconjug Chem 2008;19:2156-62
  • Levy-Nissenbaum E, Radovic-Moreno AF, Wang AZ, Nanotechnology and aptamers:applications in drug delivery. Trends Biotechnol 2008;26:442-9
  • Koolpe M, Dail M, Pasquale EB. An ephrin mimetic peptide that selectively targets the EphA2 receptor. J Biol Chem 2002;277:46974-9
  • Scarberry KE, Dickerson EB, McDonald JF, Magnetic nanoparticle-peptide conjugates for in vitro and in vivo targeting and extraction of cancer cells. J Am Chem Soc 2008;130:10258-62
  • Zhao Y, Zong Z, Xu H. RhoC expression level is correlated with the clinicopathological characteristics of ovarian cancer and the expression levels of ROCK-I, VEGF, and MMP9. Gynecol Oncol 2010;116:563-71
  • Merritt WM, Lin YG, Spannuth WA, Effect of interleukin-8 gene silencing with liposome encapsulated small interfering RNA on ovarian cancer cell growth. J Natl Cancer Inst 2008;100:359-72
  • Landen Jr CN, Chavez-Reyes A, Bucana C, Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res 2005;65:6910-08
  • Landen CN, Merritt WM, Mangala LS, Intraperitoneal Delivery of liposomal siRNA for therapy of advanced ovarian cancer. Cancer Biol Ther 2006;5:1708-13
  • Mangala LS, Han HD, Berestein G, Liposomal siRNA for Ovarian Cancer. Therapeutic Applications of RNAi: Methods and Protocols. Volume 555 Humana Press, a part of Springer Science Business Media, LLC; New York: 2009. p. 29-42
  • Halder J, Kamat AA, Landen CN Jr, Focal adhesion kinase targeting using in vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma therapy. Clin Cancer Res 2006;12:4916-24
  • Rose SL, Kunnimalaiyaan M, Drenzek J, Notch 1 signaling is active in ovarian cancer. Gynecol Oncol 2010;117:130-3
  • Goldberg MS, Xinga D, Ren Y, Nanoparticle-mediated delivery of siRNA targeting Parp1 extends survival of mice bearing tumors derived from Brca1-deficient ovarian cancer cells. Proc Natl Acad Sci 2011;108:745-50
  • Spannuth WA, Mangala LS, Stone RL, Converging evidence for efficacy from parallel EphB4-targeted approaches in ovarian carcinoma. Mol Cancer Ther 2010;9:2377-88
  • Landen CN Jr, Goodman B, Katre AA, Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol Cancer Ther 2010;9:3186-99
  • Feo AD, Huang F, Sangodkar J, KLF6-SV1 is a novel antiapoptotic protein that targets the BH3-only protein NOXA for degradation and whose inhibition extends survival in an ovarian cancer. Model Cancer Res 2009;69:4733-41
  • Ye S, Hao X, Zhou T, Plexin-B1 silencing inhibits ovarian cancer cell migration and invasion. BMC Cancer 2010;10:611-22
  • Han HD, Mangala LS, Lee JW, Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clin Cancer Res 2010;16:3910-22
  • Sood AK, Mangala LS, Han H, In vivo angiogenic gene silencing using chitosan nanoparticles in ovarian carcinoma. Gynecol Oncol 2009;112:S2-S185
  • Kim SW, Kim NY, Choi YB, RNA interference in vitro and in vivo using an arginine peptide/siRNA complex system. J Control Release 2010;143:335-43
  • Patil ML, Zhang M, Minko T. Multifunctional triblock nanocarrier (PAMAM-PEG-PLL) for the efficient intracellular siRNA delivery and gene silencing. ACS Nano 2011;5:1877-87
  • Blackburn WH, Dickerson EB, Smith MH, Peptide functionalized nanogels for targeted siRNA delivery. Bioconjug Chem 2009;20:960-8
  • Chen AM, Zhang M, Wei D, Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy inmultidrug-resistant cancer cells. Small 2009;5:2673-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.