782
Views
108
CrossRef citations to date
0
Altmetric
Reviews

Oral colon-specific therapeutic approaches toward treatment of inflammatory bowel disease

&
Pages 1393-1407 | Published online: 05 Oct 2012

Bibliography

  • Nguyen HT, Dalmasso G, Torkvist L, CD98 expression modulates intestinal homeostasis, inflammation, and colitis-associated cancer in mice. J Clin Invest 2011;121:1733-47
  • Pithadia AB, Jain S. Treatment of inflammatory bowel disease (IBD). Pharmacol Rep 2011;63:629-42
  • Meissner Y, Lamprecht A. Alternative drug delivery approaches for the therapy of inflammatory bowel disease. J Pharm Sci 2008;97:2878-91
  • Collnot EM, Ali H, Lehr CM. Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. J Control Release 2012;161:235-46
  • Schuppan D, Hahn EG. MMPs in the gut: inflammation hits the matrix. Gut 2000;47:12-14
  • Papadakis KA, Targan SR. Role of cytokines in the pathogenesis of inflammatory bowel disease. Annu Rev Med 2000;51:289-98
  • Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 2003;3:521-33
  • Melgar S, Shanahan F. Inflammatory bowel disease-from mechanisms to treatment strategies. Autoimmunity 2010;43:463-77
  • Geier MS, Butler RN, Howarth GS. Inflammatory bowel disease: current insights into pathogenesis and new therapeutic options; probiotics, prebiotics and synbiotics. Int J food microbiol 2007;115:1-11
  • Schmidt KJ, Buning J, Jankowiak C, Crohn's targeted therapy: myth or real goal? Curr Drug Discov Technol 2009;6:290-8
  • Ingersoll SA, Ayyadurai S, Charania MA, The role and pathophysiological relevance of membrane transporter PepT1 in intestinal inflammation and inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 2012;302:484-92
  • Pineton de Chambrun G, Peyrin-Biroulet L, Lémann M, Colombel JF. Clinical implications of mucosal healing for the management of IBD. Nat Rev Gastroenterol Hepatol 2010;7:15-29
  • Iacucci M, de Silva S, Ghosh S. Mesalazine in inflammatory bowel disease: a trendy topic once again? Can J Gastroenterol 2010;24:127-33
  • Wachsmann P, Lamprecht A. Polymeric nanoparticles for the selective therapy of inflammatory bowel disease. Methods Enzymol 2012;508:377-97
  • Pinto JF. Site-specific drug delivery systems within the gastro-intestinal tract: from the mouth to the colon. Int J Pharm 2010;395:44-52
  • Kesisoglou F, Zimmermann EM. Novel drug delivery strategies for the treatment of inflammatory bowel disease. Expert Opin Drug Deliv 2005;2:451-63
  • Plevy SE, Targan SR. Future therapeutic approaches for inflammatory bowel diseases. Gastroenterology 2011;140:1838-46
  • Mrsny RJ. Oral drug delivery research in Europe. J Control Release 2012;161:247-53
  • Dressman JB, Berardi RR, Dermentzoglou LC, Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res 1990;7:756-61
  • Maroni A, Zema L, Del Curto MD, Oral colon delivery of insulin with the aid of functional adjuvants. Adv Drug Deliv Rev 2012;64:540-56
  • Loretz B, Foger F, Werle M, Bernkop-Schnurch A. Oral gene delivery: strategies to improve stability of pDNA towards intestinal digestion. J Drug Target 2006;14:311-19
  • Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV. Microencapsulation of probiotics for gastrointestinal delivery. J Control Release 2012;162:56-67
  • Goldin BR, Gualtieri LJ, Moore RP. The effect of Lactobacillus GG on the initiation and promotion of DMH-induced intestinal tumors in the rat. Nut Cancer 1996;25:197-204
  • Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 2012;64:557-70
  • Wang YY, Lai SK, So C, Mucoadhesive nanoparticles may disrupt the protective human mucus barrier by altering its microstructure. PLoS One 2011;6:e21547
  • Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 2009;61:158-71
  • Pullan RD, Thomas GA, Rhodes M, Thickness of adherent mucus gel on colonic mucosa in humans and its relevance to colitis. Gut 1994;35:353-9
  • Rankin BJ, Srivastava ED, Record CO, Patients with ulcerative colitis have reduced mucin polymer content in the adherent colonic mucus gel. Biochem Soc Trans 1995;23:104S
  • Corfield AP, Carroll D, Myerscough N, Probert CS. Mucins in the gastrointestinal tract in health and disease. Front Biosci 2001;6:1321-57
  • Dignass A, Lynch-Devaney K, Kindon H, Trefoil peptides promote epithelial migration through a transforming growth factor beta-independent pathway. J Clin Invest 1994;94:376-83
  • Kindon H, Pothoulakis C, Thim L, Trefoil peptide protection of intestinal epithelial barrier function: cooperative interaction with mucin glycoprotein. Gastroenterology 1995;109:516-23
  • Siccardi D, Turner JR, Mrsny RJ. Regulation of intestinal epithelial function: a link between opportunities for macromolecular drug delivery and inflammatory bowel disease. Adv Drug Deliv Rev 2005;57:219-35
  • Wang YY, Lai SK, Suk JS, Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that “Slip” through the human mucus barrier. Angew Chem Int Ed 2008;47:9726-9
  • Gaucher G, Satturwar P, Jones MC, Polymeric micelles for oral drug delivery. Eur J Pharm Biopharm 2010;76:147-58
  • Lamprecht A. IBD: selective nanoparticle adhesion can enhance colitis therapy. Nat Rev Gastrol Hepatol 2010;7:311-12
  • Neuman MG. Immune dysfunction in inflammatory bowel disease. Transl Res 2007;149:173-86
  • Monteleone G, Pallone F, MacDonald TT. Emerging immunological targets in inflammatory bowel disease. Curr Opin Pharmacol 2011;11:640-5
  • O'Neill MJ, Bourre L, Melgar S, O'Driscoll CM. Intestinal delivery of non-viral gene therapeutics: physiological barriers and preclinical models. Drug Discov Today 2011;16:203-18
  • Vercauteren D, Rejman J, Martens TF, On the cellular processing of non-viral nanomedicines for nucleic acid delivery: mechanisms and methods. J Control Release 2012;161:566-81
  • Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev 2006;58:32-45
  • Meier O, Boucke K, Hammer SV, Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. J Cell Biol 2002;158:1119-31
  • Garcia E, Pion M, Pelchen-Matthews A, HIV-1 trafficking to the dendritic cell-T-cell infectious synapse uses a pathway of tetraspanin sorting to the immunological synapse. Traffic 2005;6:488-501
  • Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 2008;126:187-204
  • Varkouhi AK, Scholte M, Storm G, Haisma HJ. Endosomal escape pathways for delivery of biologicals. J Control Release 2011;151:220-8
  • Boussif O, Lezoualc'h F, Zanta MA, A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci 1995;92:7297-301
  • Markovsky E, Baabur-Cohen H, Eldar-Boock A, Administration, distribution, metabolism and elimination of polymer therapeutics. J Control Release 2012;161:446-60
  • Dean DA. Nuclear transport: an emerging opportunity for drug targeting. Adv Drug Deliv Rev 2003;55:699-702
  • Sui M, Liu W, Shen Y. Nuclear drug delivery for cancer chemotherapy. J Control Release 2011;155:227-36
  • Wagstaff KM, Jans DA. Nuclear drug delivery to target tumour cells. Eur J Pharmacol 2009;625:174-80
  • Akita H, Kudo A, Minoura A, Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process. Biomaterials 2009;30:2940-9
  • Wang HY, Chen JX, Sun YX, Construction of cell penetrating peptide vectors with N-terminal stearylated nuclear localization signal for targeted delivery of DNA into the cell nuclei. J Control Release 2011;155:26-33
  • Luo D, Saltzman WM. Synthetic DNA delivery systems. Nat Biotechnol 2000;18:33-7
  • Cario E. Nanotechnology-based drug delivery in mucosal immune diseases: hype or hope? Mucosal Immunol 2012;5:2-3
  • Friend DR. New oral delivery systems for treatment of inflammatory bowel disease. Adv Drug Deliv Rev 2005;57:247-65
  • Gazzaniga A, Maroni A, Sangalli ME, Zema L. Time-controlled oral delivery systems for colon targeting. Expert Opin Drug Deliv 2006;3:583-97
  • Singh BN. Modified-release solid formulations for colonic delivery. Recent Pat Drug Deliv Formul 2007;1:53-63
  • Talukder RM, Fassihi R. Development and in vitro evaluation of a colon-specific controlled release drug delivery system. J Pharm Pharmacol 2008;60:1297-303
  • Fallingborg J, Christensen LA, Jacobsen BA, Rasmussen SN. Very-low intraluminal colonic pH in patientwith active Ulcerative colitis. Digest Dis Sci 1993;38:1989-93
  • Nugent SG, Kumar D, Rampton DS, Evans DF. Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut 2001;48:571-7
  • Sasaki Y, Hada R, Nakajima H, Improved localizing method of radiopill in measurement of entire gastrointestinal pH profiles: colonic luminal pH in normal subjects and patients with Crohn's disease. Am J Gastroenterol 1997;92:114-18
  • Leopold CS, Eikeler D. Eudragit E as coating material for the pH-controlled drug release in the topical treatment of inflammatory bowel disease (IBD). J Drug Target 1998;6:85-94
  • Reddy SN, Bazzocchi G, Chan S, Colonic motility and transit in health and ulcerative colitis. Gastroenterology 1991;101:1289-97
  • Carrette O, Favier C, Mizon C, Bacterial enzymes used for colon-specific drug delivery are decreased in active Crohn's disease. Dig Dis Sci 1995;40:2641-6
  • Eastwood MA. Colonic diverticulosis: medical and dietary management. Clin Gastroenterol 1975;4:85-97
  • Fu K, Harrell R, Zinski K, A potential approach for decreasing the burst effect of protein from PLGA microspheres. J Pharm Sci 2003;92:1582-91
  • Watts PJ, Barrow L, Steed KP, The transit rate of different-sized model dosage forms through the human colon and the effects of a lactulose-induced catharsis. Int J Pharm 1992;87:215-21
  • Urayama S, Chang EB. Mechanisms and treatment of diarrhea in inflammatory bowel diseases. Inflamm Bowel Dis 1997;3:114-31
  • Lamprecht A, Yamamoto H, Takeuchi H, Kawashima Y. Nanoparticles enhance therapeutic efficiency by selectively increased local drug dose in experimental colitis in rats. J Pharm Exp Ther 2005;315:196-202
  • Guliyeva U, Oner F, Ozsoy S, Haziroglu R. Chitosan microparticles containing plasmid DNA as potential oral gene delivery system. Eur J Pharm Biopharm 2006;62:17-25
  • Kietzmann D, Moulari B, Beduneau A, Colonic delivery of carboxyfluorescein by pH-sensitive microspheres in experimental colitis. Eur J Pharm Biopharm 2010;76:290-5
  • Lamprecht A, Yamamoto H, Takeuchi H, Kawashima Y. Design of pH-sensitive microspheres for the colonic delivery of the immunosuppressive drug tacrolimus. Eur J Pharm Biopharm 2004;58:37-43
  • Mura C, Nacher A, Merino V, N-succinyl-chitosan systems for 5-aminosalicylic acid colon delivery: in vivo study with TNBS-induced colitis model in rats. Int J Pharm 2011;416:145-54
  • Rodriguez M, Antunez JA, Taboada C, Colon-specific delivery of budesonide from microencapsulated cellulosic cores: evaluation of the efficacy against colonic inflammation in rats. J Pharm Pharmacol 2001;53:1207-15
  • Lamprecht A, Torres HR, Schafer U, Lehr CM. Biodegradable microparticles as a two-drug controlled release formulation: a potential treatment of inflammatory bowel disease. J Control Release 2000;69:445-54
  • Oosegi T, Onishi H, Machida Y. Novel preparation of enteric-coated chitosan-prednisolone conjugate microspheres and in vitro evaluation of their potential as a colonic delivery system. Eur J Pharm Biopharm 2008;68:260-6
  • Oosegi T, Onishi H, Machida Y. Gastrointestinal distribution and absorption behavior of Eudragit-coated chitosan-prednisolone conjugate microspheres in rats with TNBS-induced colitis. Int J Pharm 2008;348:80-8
  • Plapied L, Duhem N, des Rieux A, Preat V. Fate of polymeric nanocarriers for oral drug delivery. Curr Opin Colloid Inerface Sci 2011;16:228-37
  • Makhlof A, Tozuka Y, Takeuchi H. pH-Sensitive nanospheres for colon-specific drug delivery in experimentally induced colitis rat model. Eur J Pharm Biopharm 2009;72:1-8
  • Kountouras J, Chatzopoulos D, Zavos C. Reactive oxygen metabolites and upper gastrointestinal diseases. Hepatol Gastroenterol 2001;48:743-51
  • Eberlein M, Scheibner KA, Black KE, Anti-oxidant inhibition of hyaluronan fragment-induced inflammatory gene expression. J Inflamm 2008;5:20
  • Naito Y, Suematsu M, Yoshikawa T. Free radical biology in digestive diseases. Karger, Basel; 2011. p. 12-22
  • Winyard PG, Blake DR, Evans CH. Free radicals and inflammation. Birkhäuser Verlag, Basel; 2000. p. 135-6
  • Wilson DS, Dalmasso G, Wang L, Orally delivered thioketal nanoparticles loaded with TNF-alpha-siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater 2010;9:923-8
  • Peer D, Park EJ, Morishita Y, Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 2008;319:627-30
  • Bhavsar MD, Tiwari SB, Amiji MM. Formulation optimization for the nanoparticles-in-microsphere hybrid oral delivery system using factorial design. J Control Release 2006;110:422-30
  • Kriegel C, Amiji M. Oral TNF-alpha gene silencing using a polymeric microsphere-based delivery system for the treatment of inflammatory bowel disease. J Control Release 2011;150:77-86
  • Elzoghby AO, Samy WM, Elgindy NA. Protein-based nanocarriers as promising drug and gene delivery systems. J Control Release 2012;161:38-49
  • Bhavsar MD, Amiji MM. Gastrointestinal distribution and in vivo gene transfection studies with nanoparticles-in-microsphere oral system (NiMOS). J Control Release 2007;119:339-48
  • Bhavsar MD, Amiji MM. Development of novel biodegradable polymeric nanoparticles-in-microsphere formulation for local plasmid DNA delivery in the gastrointestinal tract. AAPS PharmSciTech 2008;9:288-94
  • Bhavsar MD, Amiji MM. Oral IL-10 gene delivery in a microsphere-based formulation for local transfection and therapeutic efficacy in inflammatory bowel disease. Gene Ther 2008;15:1200-9
  • Kriegel C, Amiji MM. Dual TNF-a/cyclin D1 gene silencing with an oral polymeric microparticle system as a novel strategy for the treatment of inflammatory bowel disease. Clin Transl Gastroenterol 2011;2:e2
  • Xiao B, Wan Y, Wang XY, Synthesis and characterization of N-(2-hydroxy)propyl-3-trimethyl ammonium chitosan chloride for potential application in gene delivery. Colloid Surface B 2012;91:168-74
  • Xiao B, Wan Y, Zhao MQ, Preparation and characterization of antimicrobial chitosan-N-arginine with different degrees of substitution. Carbohyd Polym 2011;83:144-50
  • Wan Y, Xiao B, Dalai S, Development of polycaprolactone/chitosan blend porous scaffolds. J Mater Sci Mater Med 2009;20:719-24
  • Laroui H, Dalmasso G, Nguyen HTT, Drug-loaded nanoparticles targeted to the colon with polysaccharide hydrogel reduce colitis in a mouse model. Gastroenterology 2010;138:843-U77
  • Laroui H, Theiss AL, Yan YT, Functional TNF alpha gene silencing mediated by polyethyleneimine/TNF alpha siRNA nanocomplexes in inflamed colon. Biomaterials 2011;32:1218-28
  • Theiss AL, Laroui H, Obertone TS, Nanoparticle-based therapeutic delivery of prohibitin to the colonic epithelial cells ameliorates acute murine colitis. Inflamm Bowel Dis 2011;17:1163-76
  • Theiss AL, Idell RD, Srinivasan S, Prohibitin protects against oxidative stress in intestinal epithelial cells. FASEB J 2007;21:197-206
  • Darji A, Guzman CA, Gerstel B, Oral somatic transgene vaccination using attenuated S-typhimurium. Cell 1997;91:765-75
  • Fu GF, Li X, Hou YY, Bifidobacterium longum as an oral delivery system of endostatin for gene therapy on solid liver cancer. Cancer Gene Ther 2005;12:133-40
  • Castagliuolo I, Beggiao E, Brun P, Engineered E coli delivers therapeutic genes to the colonic mucosa. Gene Ther 2005;12:1070-8
  • Steidler L, Hans W, Schotte L, Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 2000;289:1352-5
  • Moore KW, O'Garra A, de Waal Malefyt R, Interleukin-10. Ann Rev Immunol 1993;11:165-90
  • Steidler L, Neirynck S, Huyghebaert N, Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol 2003;21:785-9
  • Braat H, Rottiers P, Hommes DW, A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn's disease. Clin Gastroenterol Hepatol 2006;4:754-9
  • Bermudez-Humaran LG, Kharrat P, Chatel JM, Langella P. Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microb Cell Fact 2011;10:S1-4
  • Hamady ZZR, Scott N, Farrar MD, Treatment of colitis with a commensal gut bacterium engineered to secrete human TGF-beta 1 under the control of dietary xylan. Inflamm Bowel Dis 2011;17:1925-35
  • Hespell RB, Whitehead TR. Physiology and genetics of xylan degradation by gastrointestinal tract bacteria. J Dairy Sci 1990;73:3013-22
  • During MJ, Xu RL, Young D, Peroral gene therapy of lactose intolerance using an adeno-associated virus vector. Nat Med 1998;4:1131-5
  • Farlow SJ, Jerusalmi A, Sano T. Enhanced transduction of colonic cell lines in vitro and the inflamed colon in mice by viral vectors, derived from adeno-associated virus serotype 2, using virus-microbead conjugates bearing lectin. Bmc Biotechnol 2007;7:83
  • Devriendt B, De Geest BG, Goddeeris BM, Cox E. Crossing the barrier: targeting epithelial receptors for enhanced oral vaccine delivery. J Control Release 2012;160:431-9
  • Andrews GP, Laverty TP, Jones DS. Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm 2009;71:505-18
  • Yin YS, Chen DW, Qiao MX, Preparation and evaluation of lectin-conjugated PLGA nanoparticles for oral delivery of thymopentin. J Control Release 2006;116:337-45
  • Yin YS, Chen DW, Qiao MX, Preparation of lectin-conjugated PLGA nanoparticles and evaluation of their in vitro bioadhesive activity. Acta Pharma Sinica 2007;42:550-6
  • Tirosh B, Khatib N, Barenholz Y, Transferrin as a luminal target for negatively charged liposomes in the inflamed colonic mucosa. Mol Pharm 2009;6:1083-91
  • Pallone F, Fais S, Squarcia O, Activation of peripheral blood and intestinal lamina propria lymphocytes in Crohn's disease. In vivo state of activation and in vitro response to stimulation as defined by the expression of early activation antigens. Gut 1987;28:745-53
  • Tacchini L, Gammella E, De Ponti C, Role of HIF-1 and NF-kappaB transcription factors in the modulation of transferrin receptor by inflammatory and anti-inflammatory signals. J Biol Chem 2008;283:20674-86
  • Harel E, Rubinstein A, Nissan A, Enhanced transferrin receptor expression by proinflammatory cytokines in enterocytes as a means for local delivery of drugs to inflamed gut mucosa. PLoS One 2011;6(9):e24202
  • Yan Y, Dalmasso G, Sitaraman S, Merlin D. Characterization of the human intestinal CD98 promoter and its regulation by interferon-gamma. Am J Physiol Gastrointest Liver Physiol 2007;292:535-45
  • Verrey F, Jack DL, Paulsen IT, New glycoprotein-associated amino acid transporters. J Membr Biol 1999;172:181-92

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.