354
Views
45
CrossRef citations to date
0
Altmetric
Reviews

Advancement in stimuli triggered in situ gelling delivery for local and systemic route

, , , , , & show all
Pages 1573-1592 | Published online: 17 Oct 2012

Bibliography

  • Zhidong L, Jaiwai L, Shufang N, Study of an alginate/HPMC based in situ gelling ophthalmic delivery system for gatifloxacin.International. J Pharm 2006;315(1–2):12-17
  • Vyas JR, Ghedia T, Gajjar V. A review on novel in situ polymeric drug delivery system. Int J Pharm Res Dev 2011;3(5):53-9
  • Coviello T, Matricardi P, Alhaique F. Drug delivery strategies using polysaccharidic gels. Expert Opin Drug Deliv 2006;3(3):395-404
  • Ajazuddin, Alexander A, Amarji B, Kanaujia P. Synthesis, characterization and in vitro studies of pegylated melphalan conjugates. Drug Dev Ind Pharm 2012; DOI: 10.3109/03639045.2012.702346
  • Ajazuddin, Saraf S. Applications of novel drug delivery system for herbal formulations. Fitoterapia 2010;81:680-9
  • Manvi F. In situ forming hydrogels for sustained ophthalmic drug delivery. J Control Release 2007;122(2):119-34
  • Pahuja P, Arora S, Pawar P. Ocular drug delivery system: a reference to natural polymers. Expert Opin Drug Deliv 2012;9(7):837-61
  • Agrawal AK, Das M, Jain S. In situ gel systems as ‘smart' carriers for sustained ocular drug delivery. Expert Opin Drug Deliv 2012;9(4):383-402
  • Ma WD, Xu H, Wang C, Pluronic F127-g-poly(acrylic acid) copolymers as in situ gelling vehicle for ophthalmic drug delivery system. Int J Pharm 2008;350(1–2):247-56
  • Başaran E, Yazan Y. Ocular application of chitosan. Expert Opin Drug Deliv 2012;9(6):701-12
  • Srividya B, Cardoza RM, Amin PD. Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. J Control Release 2001;73(2-3):205-11
  • Haoyun W, Zhidong L, Junjie P, Design and evaluation of baicalin-containing in situ pH-triggered gelling system. Int J Pharm 2011;410:31-40
  • Watts P, Smith A. PecSys: in situ gelling system for optimised nasal drug delivery. Expert Opin Drug Deliv 2009;6(5):543-52
  • Raghava S, Hammond M, Kompella U. Periocular routes for retinal drug delivery. Expert Opin Drug Deliv 2004;1(1):99-114
  • Marra M, Gukasyan HJ, Raghava S, Kompella BU. 2nd ophthalmic drug development and delivery summit. Expert Opin Drug Deliv 2007;4(1):77-85
  • Ozsoy Y, Güngör S. Nasal route: an alternative approach for antiemetic drug delivery. Expert Opin Drug Deliv 2011;8(11):1439-53
  • Luppi B, Bigucci F, Abruzzo A, Freeze-dried chitosan/pectin nasal inserts for antipsychotic drug delivery. Eur J Pharm Biopharm 2010;75(3):381-7
  • Dhanda DS, Kompella UB. Metered Dose Inhalers (MDIs) and Dry Powder Inhalers (DPIs) for pulmonary drug delivery: CMC issues. Clin Res Regul Aff 2005;22(1):31-55
  • Majithiya RJ, Ghosh PK, Umrethia ML, Murthy RS. Thermoreversible-mucoadhesive gel for nasal delivery of sumatriptan. AAPS Pharm Sci Tech 2006;7(3):703-63
  • Lissette SV, Samantha S, Berta AN, Intranasal delivery of Norwalk virus-like particles formulated in an in situ gelling. Vaccine 2011(29):5221-31
  • Pandey RS, Babbar AK, Kaul A, Evaluation of ISCOM matrices clearance from rabbit nasal cavity by gamma scintigraphy. Int J Pharm 2010;398(1-2):231-6
  • Rathod H, Patel V, Modasiya M. In Situgel: development, evaluation and optimization using 32 factorial design. J Pharm Sci Research 2011;2:1156-62
  • Aaron SM, Uday BK. Supercritical fluid technology in pharmaceutical research. In: Encyclopedia of pharmaceutical technology. Informa Healthcare: New York, NY. 3rd edition. 2006. p. 3568-82
  • Roop K. Khar, Vyas SP. Controlled drug delivery: concepts and advances, Vallabh Prakashan; 2010. New Delhi
  • Hammond M, Kompella UB. Nanotechnology and nanoparticles: clinical, ethical, and regulatory issues. In: Nanoparticle technology for drug delivery: Informa Healthcare. 1st edition. 2006. p. 381-96
  • Kubo W, Miyazaki S, Dairaku M, Oral sustained delivery of ambroxol from in situ-gelling pectin formulations. Int J Pharm 2004;271(1-2):233-40
  • Guerrero Q, Quintanar AG, Nava-Arzaluz MG, Piñón-Segundo E. Silica xerogels as pharmaceutical drug carriers. Expert Opin Drug Deliv 2009;6(5):485-98
  • Yu T, Malcolm K, Woolfson D, Vaginal gel drug delivery systems: understanding rheological characteristics and performance. Expert Opin Drug Deliv 2011;8(10):1309-22
  • Kunihiko I, Masayuki Y, Akie T, Reina T. In situ gelling xyloglucan/pectin formulations for oral sustained. Int J Pharm 2008;356:95-101
  • Malik K, Singh I, Nagpal M, Atrigel: A potential parenteral controlled drug delivery system. Der Pharmacia Sinica 2010;1(1):74-81
  • Simoes SM, Veiga F, Torres-Labandeira JJ, Syringeable pluronic– a-cyclodextrin supramolecular gels for sustained delivery. Eur J Pharm Biopharm 2012;80:103-12
  • Hatefi A, Amsden B. Biodegradable injectable in situ forming drug delivery systems. J Control Release 2002;80:9-28
  • Li Z, Guan J. Thermosensitive hydrogels for drug delivery. Expert Opin Drug Deliv 2011;8(8):991-1007
  • Phelps J, Bentley MVLB, Lopes LB. In situ gelling hexagonal phases for sustained release of an anti-addiction drug. Colloids Surfaces B Biointerfaces 2011;87:391-8
  • Chang CM, Bodmeier R. Low viscosity monoglyceride-based drug delivery systems transforming into a highly viscous cubic phase. Int J Pharm 1998;173:51-60
  • Nakai T, Hirakura T, Sakurai S, Injectable hydrogel for sustained protein release by salt-induced association of hyaluronic acid nanogel. Macromol Biosci 2012;12(4):475-83
  • Venkatesan P, Manavalan R, Vallippan K. Microencapsulation: A vital technique in novel. drug delivery system. J Pharm SciResearch 2009;26-35
  • Yang L, Webster J. Nanotechnology controlled drug delivery for treating bone diseases. Expert Opin Drug Deliv 2009;6(8):851-64
  • GuhaSarkar S, Banerjee R. Intravesical drug delivery: Challenges, current status, opportunities and novel strategies. J Control Release 2010;148(2):147-59
  • Amrite CA, Cheruvu NPS, Kompella UB, Lung gene therapy: clinical and regulatory issues. Clin Res Regul Aff 2004;21(1):1-28
  • Gan L, Ganb Y, Zhu C, Novel microemulsion in situ electrolyte-triggered gelling system for ophthalmic delivery of lipophilic cyclosporine A: in vitro and in vivo results. Int J Pharm 2009;365(1-2):143-9
  • Hiraoka T, Daito M, Okamoto F. Contrast sensitivity and optical quality of the eye after instillation of timolol maleate gel-forming solution and brinzolamide ophthalmicnext term suspension ophthalmology. Ophthalmology 2010;117(11):2080-7
  • Cao Y, Zhang C, Shen W, Cheng Z. Poly(N-isopropylacrylamide)–chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J Control Release 2007;120(3):186-94
  • Lin HR, Sung KC. Carbopol/pluronic phase change solutions for ophthalmic drug delivery. J Control Release 2000;69(3):379-88
  • Kamel AH. In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate. Int J Pharm 2002;241(1):47-55
  • Naga S, Anumolu S, Singh Y, P.J. Design and evaluation of novel fast forming pilocarpine-loaded ocular hydrogels for sustained pharmacological response. J Control Release 2009;137(2):152-9
  • Gupta S, Vyas SP. Carbopol/chitosan based ph triggered in situ gelling system for ocular delivery of timolol maleate. Scintia Pharmaceutica 2010;78(4):959-76
  • Gillian S, Singkaa L, Samaha NA, Enhanced topical delivery and anti-inflammatory activity of methotrexate from an activated nanogel. Eur J Pharm Biopharm 2010;76(2):275-81
  • Gratieri T, Gelfusoa GM, Freitasa O, Rochab EM. Enhancing and sustaining the topical ocular delivery of fluconazole using chitosan solution and poloxamer/chitosan forming gel. Eur J Pharm Biopharm 2011;79(2):320-7
  • Chen CC, Fang CJ, Ai-Suwayehc SA, Transdermal delivery of selegiline from alginate–Pluronic composite thermogels. Int J Pharm 2011;415(1-2):119-28
  • Asasutjarit R, Thanasanchokpibull S, Fuongfuchat A, Veeranondha S. Optimization and evaluation of thermoresponsive diclofenac sodium ophthalmic. Int J Pharm 2011;411:128-35
  • Sandri G, Bonferoni MC, Rossi S, Thermosensitive eyedrops containing platelet lysate for the treatment of corneal ulcers. Int J Pharm 2012;426:1-6
  • Wu H, Liu Z, Peng J, Design and evaluation of baicalin-containing in situ pH-triggered gelling system for sustained ophthalmic drug delivery. Int J Pharm 2011;410:31-40
  • Rupenthal ID, Green CR, Alany RG. Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 2: precorneal retention and in vivo pharmacodynamic study. Int J Pharm 2011;411:78-85
  • Wu J, Wei W, Wang LY, A thermosensitive hydrogel based on quaternized chitosan and poly(ethylene glycol) for nasal drug delivery system. Biomaterials 2007;28(13):2220-32
  • Chung TW, Liu Z, Yang JS. Effects of interpenetration of thermo-sensitive gels by crosslinking of chitosan on nasal delivery of insulin: in vitro characterization and in vivo study. Carbohydr Polym 2010;82(2):316-22
  • Cao SL, Ren XW, Zhang QZ, In situ gel based on gellan gum as new carrier for nasal administration of mometasone furoate. Int J Pharm 2009;365(1-2):109-15
  • Albertini B, Passerini N, Sabatino MD, Poloxamer 407 microspheres for orotransmucosal drug delivery. Part I: formulation, manufacturing and characterization. Int J Pharm 2010;399(1-2):71-9
  • Nazar H, Fatouros DG, Bouropoulos N, Thermosensitive hydrogels for nasal drug delivery: the formulation and characterisation of systems based on N-trimethyl chitosan chloride. Eur J Pharm Biopharm 2011;77(2):225-32
  • Verheul RJ, Slutter B, Bal SM, Bouwstra JW. A Covalently stabilized trimethyl chitosan-hyaluronic acid nanoparticles for nasal and intradermal vaccination. J Control Release 2011;156(1):46-52
  • Curcio M, Spizzirri G, Iemma F, Grafted thermo-responsive gelatin microspheres as delivery systems in triggered drug release. Eur J Pharm Sci 2010;76(1):48-55
  • Parshad H, Frydenvang K, Liliefors T, Assessment of drug salt release from solutions, suspensions and in situ suspensions using a rotating dialysis cell. Eur J Pharm Sci 2003;19(4):263-72
  • Miyazaki S, Kawasaki N, Kubo W, Comparison of in situ gelling formulations for the oral delivery of cimetidine. Int J Pharm 2001;220(1-2):161-8
  • Heylings JR, Farnworth MJ, Swain CM, Identification of an alginate-based formulation of paraquat to reduce the exposure of the herbicide following oral ingestion. Toxicology 2007;241(1-2):1-10
  • Nokhodchi A, Tailor A. In situ cross-linking of sodium alginate with calcium and aluminum ions to sustain the release of theophylline from polymeric matrices. Il Farmaco 2004;59(12):999-1004
  • Miyazaki S, Kubo W, Attwood D. Oral sustained delivery of theophylline using in situ gelation of sodium alginate. J Control Release 2000;67(2-3):275-80
  • Dong WY, Korber M, Esguerra VL, Bodmeier R. Stability of poly(d,l-lactide-co-glycolide) and leuprolide acetate in in-situ forming drug delivery systems. J Control Release 2006;115(2):158-67
  • Miyazaki S, Kubo W, Itoh K, The effect of taste masking agents on in situ gelling pectin formulations for oral sustained delivery of paracetamol and ambroxol. Int J Pharm 2005;297(1-2):38-49
  • Hu Feng, Zhu C. Preparation and characterization of rifampicin-PLGA microspheres/sodium alginate in situ gel combination delivery system. Colloids Surf B Biointerfaces 2012;95:162-9
  • Abashzadeh S, Dinarvand R, Sharifzadeh M, Formulation and evaluation of an in situ gel forming system for controlled delivery of triptorelin acetate. Eur J Pharm Sc 2011;44:514-21
  • Nakatani M, Shinohara Y, Takii M, Periocular injection of in situ hydrogels containing Leu eIle, an inducer for neurotrophic factors, promotes retinal ganglion cell survival af ter optic nerve injury. Exp Eye Res 2011;93:873-9
  • Velpandian T. Intraocular penetration of antimicrobial agents in ophthalmic infections and drug delivery strategies. Expert Opin Drug Deliv 2009;6(3):255-70
  • Huynh T, Nguyen MK, Lee DS. Biodegradable pH/temperature-sensitive oligo(b -amino ester urethane) hydrogels for controlled release of doxorubicin. Acta Biomater 2011;7:3123-30
  • Asai D, Xu D, Liu W, Protein polymer hydrogels by in situ, rapid and reversible self-gelation. Biomaterials 2012;33:5451-8
  • Rehman UT, Tavelin S, Gröbner G. Chitosan in situ gelation for improved drug loading and retention in poloxamer 407 gels. Int J Pharm 2011;409:19-29
  • Wang K, Jia Q, Yuan J, Li S. A novel, simple method to simulate gelling process of injectable biodegradable in situ forming drug delivery system based on determination of electrical conductivity. Int J Pharm 2011;404(1-2):176-9
  • Motulsky A, Lafleur M. Characterization and biocompatibility of organogels based on l-alanine for parenteral drug delivery implants Biomaterials. Biomaterials 2005;26(31):6242-53
  • Schuetz YB, Gurny R, Jordan OA. Novel thermoresponsive hydrogel based on chitosan. Eur J Pharm Biopharm 2008;68(1):19-25
  • Gariepy ER, Leclair G, Hildgen P, Gupta A. Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. J Control Release 2002;82(2-3):373-83
  • Weng L, Romanov L, Rooney J, Chen W. Non-cytotoxic, in situ gelable hydrogels composed of ncarboxyethyl chitosan and oxidized dextran. Biomaterials 2008;29(29):3905-13
  • Nie S, Hsiao WL, Pan W, Yang J. Thermoreversible Pluronic® F127-based hydrogel containing liposomes for the controlled delivery of paclitaxel: in vitro drug release, cell cytotoxicity, and uptake studies. Int J Nanomedicine 2011;6:151-66
  • Singh A, Suri S, Roy K. In-situ crosslinking hydrogels for combinatorial delivery of chemokines and siRNA-DNA carrying microparticles to dendritic cells. Biomaterials 2009;30(28):5187-200
  • Sharma G, Italia JL, Sonaje K, Tikoo K. Biodegradable in situ gelling system for subcutaneous administration of ellagic acid and ellagic acid loaded nanoparticles: evaluation of their antioxidant potential against cyclosporine induced nephrotoxicity in rats. J Control Release 2007;118(1):27-37
  • Zhao L, Zhu L, Liu F, pH triggered injectable amphiphilic hydrogel containing doxorubicin and paclitaxel. Int J Pharm 2011;410:83-91
  • Hsiao MH, Larsson M, Larsson A, Evenbratt H. Design and characterization of a novel amphiphilic chitosan nanocapsule-based thermo-gelling biogel with sustained in vivo release of the hydrophillic anti-epilepsy drug ethosuximide. J Control Release 2012;161(3):942-8
  • Jin R, Moreira Teixeira LS, Dijkstra PJ, Chondrogenesis in injectable enzymatically crosslinked heparin/dextran hydrogels. J Control Release 2011;152:186-95
  • Packhaeuser CB, Kissel T. On the design of in situ forming biodegradable parenteral depot systems based on insulin loaded dialkylaminoalkyl-amine-poly(vinyl alcohol)-g-poly (lactide-co-glycolide) nanoparticles. J Control Release 2007;123:131-40
  • Khodaverdi E, Hadizadeh F, Mirzazadeh FS, Preparation and analysis of a sustained drug delivery system by PLGA–PEG–PLGA triblock copolymers. Polym Bull 2012;69(4):429-38
  • Khodaverdi E, Tekie SM, Mohajeri S, Preparation and investigation of sustained drug delivery systems using an injectable, thermosensitive, in situ forming hydrogel composed of PLGA–PEG–PLGA. AAPS PharmSciTech 2012;13(2):590-600
  • Papagiannaros A, Hatziantoniou S, Dimas K. A liposomal formulationnext term of doxorubicin, composed of hexadecylphosphocholine (HePC): physicochemical characterization and cytotoxic activity against human cancer cell lines. Biomed Pharmacother 2006;60(1):36-42
  • Luciani P, Fevre M, Leroux JC. Development and physico-chemical characterization of a liposomal formulation of istaroxime. Eur J Pharm Biopharm 2011;79(2):285-93
  • Ofokansi KC, Adikwu MU. Formulation and evaluation of microspheres based on gelatin-mucin admixtures for the rectal delivery of cefuroxime sodium. Trop J Pharm Res 2007;6(4):825-32
  • Chan AW, Mazeaud I, Becker T, Neufeld RJ. Granulation of subtilisin by internal gelation of alginate microspheres for application in detergent formulation. Enzyme Microb Technol 2006;38(1-2):265-72
  • Hori Y, Winans AM, Irvine DJ. Modular injectable matrices based on alginate solution/microsphere mixtures that gel in situ and co-deliver immunomodulatory factors. Acta Biomater 2009;5(4):969-82
  • Patel JK, Patel VP, Detroja CM. Development and evaluation of floating in situ gelling system of Clarithromycin. Int J Pharm Res Dev 2011;3(5):32-40
  • Li X, Yue Y, Zhou Y, An oil-free microemulsion for intravenous delivery of diallyl trisulfide: formulation and evaluation. Int J Pharm 2011;407(1-2):158-66
  • Fuente M, Ravina M, Paolicelli P, Sanchez A. Chitosan-based nanostructures: a delivery platform for ocular therapeutics. Adv Drug Deliv Rev 2010;62(1):100-17
  • Oh DH, Balkrishanan P, Oh YK, Kim DD. Effect of process parameters on nanoemulsion droplet size and distribution in SPG membrane emulsification. Int J Pharm 2011;404(1-2):191-7
  • Kailasan A, Yuan Q, Yang H. Synthesis and characterization of thermoresponsive polyamidoamine–polyethylene glycol–poly(d,l-lactide) core–shell nanoparticlesnext term.2009. Acta Biomater 2010;6(3):1131-9
  • Laurent S, Dutz S, Hafeli UO, Mahmoudi M. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 2011;166(1-2):8-23
  • Makhlofa A, Werle M, Tozuka Y, Takeuchi H. Nanoparticles of glycol chitosan and its thiolated derivative significantly improved the pulmonary delivery of calcitonin. Int J Pharm 2010;397(1-2):92-5
  • Peng KB, Chen CF, Chu M, Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable thermosensitive hydrogel nanoparticles. Biomaterials 2010;31(19):5227-36

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.