1,278
Views
76
CrossRef citations to date
0
Altmetric
Reviews

Liposomes for brain delivery

, PhD, &
Pages 1003-1022 | Published online: 04 Feb 2013

Bibliography

  • Hawkins BT, Egleton RD. Pathophysiology of the Blood–Brain Barrier: animal Models and Methods. Curr Top Dev Biol 2007;80:277-309
  • Pathan SA, Iqbal Z, Zaidi SMA, et al. CNS Drug Delivery Systems: novel Approaches. Recent Pat Drug Deliv 2009;3(1):71-89
  • Rip J, Schenk G, de Boer A. Differential receptor-mediated drug targeting to the diseased brain. Expert Opin Drug Deliv 2009;6(3):227-37
  • Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006;7(1):41-53
  • Pardridge WM. Molecular Trojan horses for blood-brain barrier drug delivery. Curr Opin Pharmacol 2006;6(5):494-500
  • Skaper SD. The biology of neurotrophins, signalling pathways, and functional peptide mimetics of neurotrophins and their receptors. Neurol Disord Drug Targets 2008;7(1):46-62
  • Deli MA. Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. Biochim Biophys Acta 2009;1788(4):892-910
  • Garcia-Garcia E, Andrieux K, Gil S, Couvreur P. Colloidal carriers and blood–brain barrier (BBB) translocation: a way to deliver drugs to the brain? Int J Pharm 2005;298(2):274-92
  • Neuwelt EA, Maravilla KR, Frenkel EP, et al. Osmotic blood-brain barrier disruption. Computerized tomographic monitoring of chemotherapeutic agent delivery. J Clin Invest 1979;64(2):684-8
  • Bobo RH, Laske DW, Akbasak A, et al. Convection-enhanced delivery of macromolecules in the brain. Proc Nat Acad Sci 1994;91(6):2076-80
  • Chauhan BN. Trafficking of intracerebroventricularly injected antisense oligonucleotides in the mouse brain. Liebert; Larchmont, NY, USA: 2002
  • Chamberlain MC, Kormanik PA, Barba D. Complications associated with intraventricular chemotherapy in patients with leptomeningeal metastases. J Neurosurg 1997;87(5):694-9
  • Guerin C, Olivi A, Weingart JD, et al. Recent advances in brain tumor therapy: local intracerebral drug delivery by polymers. Invest New Drugs 2004;22(1):27-37
  • Wang PP, Frazier J, Brem H. Local drug delivery to the brain. Adv Drug Deliv Rev 2002;54(7):987-1013
  • Gabathuler R. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Elsevier; Amsterdam, PAYS-BAS: 2010
  • Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 2012;64(7):686-700
  • Invernici G, Cristini S, Alessandri G, et al. Nanotechnology advances in brain tumors: the state of the art. Recent Patents Anticancer Drug Discov 2011;6(1):58-69
  • Yang H. Nanoparticle-mediated brain-specific drug delivery, imaging, and diagnosis. Pharm Res 2010;27(9):1759-71
  • Barbu E, Molnàr É, Tsibouklis J, Górecki DC. The potential for nanoparticle-based drug delivery to the brain: overcoming the blood–brain barrier. Expert Opin Drug Deliv 2009;6(6):553-65
  • Celia C, Cosco D, Paolino D, Fresta M. Nanoparticulate devices for brain drug delivery. Med Res Rev 2011;31(5):716-56
  • Gregoriadis G. Engineering liposomes for drug delivery: progress and problems. Trends Biotechnol 1995;13(12):527-37
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005;4(2):145-60
  • Béduneau A, Saulnier P, Benoit JP. Active targeting of brain tumors using nanocarriers. Biomaterials 2007;28(33):4947-67
  • Laquintana V, Trapani A, Denora N, et al. New strategies to deliver anticancer drugs to brain tumors. Expert Opin Drug Deliv 2009;6(10):1017-32
  • Ehrlich P. Das sauerstoff-bedurfnis des organismus: eine farbenanalytische studie. Hirschwald; Berlin: 1885
  • Goldmann E. Vitalfärbung am zentralnervensystem. Abh Preuss Akd Wiss Phys Math 1913;1(1):1-13
  • Pardridge WM. Brain drug targeting; the future of brain drug development. Cambridge University Press; Cambridge UK: 2001
  • Pardridge WM. Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv 2003;3(2):90-105, 51
  • Abbott NJ. Dynamics of CNS barriers : evolution, differentiation, and modulation. Cell Mol Neurobiol 2005;25(1):19
  • Stewart PA. Endothelial vesicles in the blood-brain barrier: are they related to permeability? Cell Mol Neurobiol 2000;20(2):149-63
  • Claudio L, Kress Y, Norton WT, Brosnan CF. Increased vesicular transport and decreased mitochondrial content in blood-brain barrier endothelial cells during experimental autoimmune encephalomyelitis. Am J Pathol 1989;135(6):1157-68
  • Oldendorf WH, Cornford ME, Brown WJ. The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1977;1(5):409-17
  • Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005;57(2):173-85
  • Persidsky Y, Ramirez S, Haorah J, Kanmogne G. Blood–brain Barrier: structural Components and Function Under Physiologic and Pathologic Conditions. J Neuroimmune Pharm 2006;1(3):223-36
  • Bernacki J, Dobrowolska A, Nierwinska K, et al. Physiology and pharmacological role of the blood-brain barrier. Polish Academy of Sciences, Institute of Pharmacology; Kraków, Pologne: 2008
  • Wolburg H, Lippoldt A. Tight junctions of the blood–brain barrier: development, composition and regulation. Vascul Pharmacol 2002;38(6):323-37
  • Jin R, Yang G, Li G. Molecular insights and therapeutic targets for blood–brain barrier disruption in ischemic stroke: critical role of matrix metalloproteinases and tissue-type plasminogen activator. Neurobiol Dis 2010;38(3):376-85
  • Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol 1990;429(1):47-62
  • Weksler BB, Subileau EA, Perrière N, et al. Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 2005;19(13):1872-4
  • Volkov AG, Paula S, Deamer DW. Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers. Bioelectrochem Bioenerg 1997;42(2):153-60
  • Nitta T, Hata M, Gotoh S, et al. Size-selective loosening of the blood-brain barrier in claudin-5–deficient mice. J Cell Biol 2003;161(3):653-60
  • Wolburg H, Wolburg-Buchholz K, Kraus J, et al. Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol 2003;105(6):586-92
  • Yu ASL, McCarthy KM, Francis SA, et al. Knockdown of occludin expression leads to diverse phenotypic alterations in epithelial cells. Am J Physiol Cell Physiol 2005;288(6):C1231-C41
  • Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008;57(2):178-201
  • Cardoso FL, Brites D, Brito MA. Looking at the blood–brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev 2010;64(2):328-63
  • Liebner S, Corada M, Bangsow T, et al. Wnt/beta–catenin signaling controls development of the blood--brain barrier. J Cell Biol 2008;183(3):409-17
  • Abbott NJ, Romero IA. Transporting therapeutics across the blood-brain barrier. Mol Med Today 1996;2(3):106-13
  • Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2005;2(1):3-14
  • Pardridge WM. Blood–brain barrier delivery. Drug Discov Today 2007;12(1–2):54-61
  • Camenisch G, Alsenz J, van de Waterbeemd H, Folkers G. Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs' lipophilicity and molecular weight. Eur J Pharm Sci 1998;6(4):313-19
  • Chen Y, Liu L. Modern methods for delivery of drugs across the blood–brain barrier. Adv Drug Deliv Rev 2012;64(7):640-65
  • Cohen BE, Bangham AD. Diffusion of small non-electrolytes across liposome membranes. Nature 1972;236(5343):173-4
  • van de Waterbeemd H, Camenisch G, Folkers G, et al. Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J Drug Target 1998;6(2):151-65
  • Begley DJ, Brightman MW. Structural and functional aspects of the blood-brain barrier. Prog Drug Res 2003;61:39-78
  • Dahlin A, Royall J, Hohmann JG, Wang J. Expression profiling of the solute carrier gene family in the mouse brain. J Pharmacol Exper Ther 2009;329(2):558-70
  • Zhang EY, Knipp GT, Ekins S, Swaan PW. Structural biology and function of solute transporters: implications for identifying and designing substrates. Drug Metab Rev 2002;34(4):709-50
  • Abbott NJ, Patabendige AAK, Dolman DEM, et al. Structure and function of the blood–brain barrier. Neurobiol Dis 2010;37(1):13-25
  • Crone C. Facilitated transfer of glucose from blood into brain tissue. J Physiol 1965;181(1):103-13
  • Simionescu M, Gafencu A, Antohe F. Transcytosis of plasma macromolecules in endothelial cells: a cell biological survey. Microsc Res Tech 2002;57(5):269-88
  • Broadwell RD, Balin BJ, Salcman M. Transcytotic pathway for blood-borne protein through the blood-brain barrier. Proc Nat Acad Sci 1988;85(2):632-6
  • Mellman I. Endocytosis and molecular sorting. Annu Rev Cell Dev Biol 1996;12:575-625
  • Pardridge WM, Eisenberg J, Yang J. Human blood-brain barrier transferrin receptor. Metabolism 1987;36(9):892-5
  • Moos T, Morgan EH. Transferrin and Transferrin Receptor Function in Brain Barrier Systems. Cell Mol Neurobiol 2000;20(1):77-95
  • Crowe A, Morgan HE. Iron and transferrin uptake by brain and cerebrospinal fluid in the rat. Elsevier; Amsterdam, PAYS-BAS: 1992
  • Morgan EH, Moos T. Mechanism and developmental changes in iron transport across the blood-brain barrier. Dev Neurosci 2002;24(2-3):106-13
  • Thorstensen K, Romslo I. The transferrin receptor: its diagnostic value and its potential as therapeutic target. Scand J Clin Lab Invest 1993;53(s215):113-20
  • Gatter KC, Brown G, Trowbridge IS, et al. Transferrin receptors in human tissues: their distribution and possible clinical relevance. J Clin Pathol 1983;36(5):539-45
  • Omary MB, Trowbridge IS, Minowada J. Human cell-surface glycoprotein with unusual properties. Nature 1980;286(5776):888-91
  • Li H, Qian ZM. Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev 2002;22(3):225-50
  • Sutherland R, Delia D, Schneider C, et al. Ubiquitous cell-surface glycoprotein on tumor cells is proliferation-associated receptor for transferrin. Proce Nat Acad Sci 1981;78(7):4515-19
  • Harel E, Rubinstein A, Nissan A, et al. Enhanced transferrin receptor expression by proinflammatory cytokines in enterocytes as a means for local delivery of drugs to inflamed gut mucosa. PLoS One 2011;6(9):e24202
  • Ulbrich K, Hekmatara T, Herbert E, Kreuter J. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur J Pharm Biopharm 2009;71(2):251-6
  • van Rooy I, Mastrobattista E, Storm G, et al. Comparison of five different targeting ligands to enhance accumulation of liposomes into the brain. J Control Release 2011;150(1):30-6
  • Jefferies WA, Brandon MR, Williams AF, Hunt SV. Analysis of lymphopoietic stem cells with a monoclonal antibody to the rat transferrin receptor. Immunology 1985;54(2):333-41
  • Jefferies WA, Brandon MR, Hunt SV, et al. Transferrin receptor on endothelium of brain capillaries. Nature 1984;312(5990):162-3
  • Pardridge WM, Buciak JL, Friden PM. Selective transport of an anti-transferrin receptor antibody through the blood-brain barrier in vivo. J Pharmacol Exper Ther 1991;259(1):66-70
  • Bickel U, Kang YS, Yoshikawa T, Pardridge WM. In vivo demonstration of subcellular localization of anti-transferrin receptor monoclonal antibody-colloidal gold conjugate in brain capillary endothelium. J Histochem Cytochem 1994;42(11):1493-7
  • Friden PM, Walus LR, Musso GF, et al. Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier. Proc Nat Acad Sci 1991;88(11):4771-5
  • Granholm AC, Bäckman C, Bloom F, et al. NGF and anti-transferrin receptor antibody conjugate: short and long-term effects on survival of cholinergic neurons in intraocular septal transplants. J Pharmacol Exper Ther 1994;268(1):448-59
  • Friden PM, Walus LR, Watson P, et al. Blood-brain barrier penetration and in vivo activity of an NGF conjugate. Science (New York, NY) 1993;259(5093):373-7
  • De Meyts P, Ursø B, Christoffersen CT, Shymko RM. Mechanism of insulin and IGF-I. Annals of the New York academy of sciences. 1995;766(1):388-401
  • Kido Y, Nakae J, Accili D. The insulin receptor and its cellular targets. J Clin Endocrinol Metabol 2001;86(3):972-9
  • Hopkins DFC, Williams G. Insulin receptors are widely distributed in human brain and bind human and porcine insulin with equal affinity. Diabet Med 1997;14(12):1044-50
  • Schwartz MW, Figlewicz DP, Baskin DG, et al. Insulin in the Brain: a Hormonal Regulator of Energy Balance. Endocr Rev 1992;13(3):387-414
  • Hervé F, Ghinea N, Scherrmann J-M. CNS delivery via adsorptive transcytosis. AAPS J 2008;10(3):455-72
  • Jain S, Mishra V, Singh P, et al. RGD-anchored magnetic liposomes for monocytes/neutrophils-mediated brain targeting. Int J Pharm 2003;261(1–2):43-55
  • Scholz M, Cinatl J, Schädel-Höpfner M, Windolf J. Neutrophils and the blood–brain barrier dysfunction after trauma. Med Res Rev 2007;27(3):401-16
  • Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 2012;64(Suppl):138-53
  • Schinkel AH. P-Glycoprotein, a gatekeeper in the blood–brain barrier. Adv Drug Deliv Rev 1999;36(2–3):179-94
  • Lee G, Bendayan R. Functional expression and localization of P-glycoprotein in the central nervous system: relevance to the pathogenesis and treatment of neurological disorders. Pharm Res 2004;21(8):1313-30
  • de Vries NA, Zhao J, Kroon E, et al. P-glycoprotein and breast cancer resistance protein: two dominant transporters working together in limiting the brain penetration of topotecan. Clin Cancer Res 2007;13(21):6440-9
  • Vlaming MLH, Lagas JS, Schinkel AH. Physiological and pharmacological roles of ABCG2 (BCRP): Recent findings in Abcg2 knockout mice. Adv Drug Deliv Rev 2009;61(1):14-25
  • Marzolini C, Paus E, Buclin T, Kim RB. Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance[ast]. Clin Pharmacol Ther 2004;75(1):13-33
  • Marroni M, Marchi N, Cucullo L, et al. Vascular and parenchymal mechanisms in multiple drug resistance: a lesson from human epilepsy. Curr Drug Targets 2003;4(4):297-304
  • Fresta M, Wehrli E, Puglisi G. Enhanced therapeutic effect of cytidine-5′-diphosphate choline when associated with G[M1] containing small liposomes as demonstrated in a rat ischemia model. Springer; New York, NY, USA: 1995
  • Fresta M, Puglisi G. Biological effects of CDP-choline loaded long circulating liposomes on rat cerebral post-ischemic reperfusion. Int J Pharm 1996;134(1–2):89-97
  • Craparo EF, Bondì ML, Pitarresi G, Cavallaro G. Nanoparticulate systems for drug delivery and targeting to the central nervous system. CNS Neurosci Ther 2011;17(6):670-7
  • Schmidt J, Metselaar JM, Wauben MHM, et al. Drug targeting by long circulating liposomal glucocorticosteroids increases therapeutic efficacy in a model of multiple sclerosis. Brain 2003;126(8):1895-904
  • Siegal T, Horowitz A, Gabizon A. Doxorubicin encapsulated in sterically stabilized liposomes for the treatment of a brain tumor model: biodistribution and therapeutic efficacy. J Neurosurg 1995;83(6):1029-37
  • Gabizon A, Goren D, Horowitz AT, et al. Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals. Adv Drug Deliv Rev 1997;24(2–3):337-44
  • Soni V, Kohli DV, Jain SK. Transferrin-conjugated liposomal system for improved delivery of 5-fluorouracil to brain. J Drug Target 2008;16(1):73-8
  • Yanagië H, Ogata A, Sugiyama H, et al. Application of drug delivery system to boron neutron capture therapy for cancer. Expert Opin Drug Deliv 2008;5(4):427-43
  • Chen H, Qin Y, Zhang Q, et al. Lactoferrin modified doxorubicin-loaded procationic liposomes for the treatment of gliomas. Eur J Pharm Sci 2011;44(1–2):164-73
  • Chen H, Tang L, Qin Y, et al. Lactoferrin-modified procationic liposomes as a novel drug carrier for brain delivery. Eur J Pharm Sci 2010;40(2):94-102
  • Bellavance M-A, Poirier M-B, Fortin D. Uptake and intracellular release kinetics of liposome formulations in glioma cells. Int J Pharm 2010;395(1–2):251-9
  • Ying X, Wen H, Lu W-L, et al. Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Release 2010;141(2):183-92
  • Qin Y, Chen H, Yuan W, et al. Liposome formulated with TAT-modified cholesterol for enhancing the brain delivery. Int J Pharm 2011;419(1–2):85-95
  • Qin Y, Chen H, Zhang Q, et al. Liposome formulated with TAT-modified cholesterol for improving brain delivery and therapeutic efficacy on brain glioma in animals. Int J Pharm 2011;420(2):304-12
  • Qin Y, Zhang Q, Chen H, et al. Comparison of four different peptides to enhance accumulation of liposomes into the brain. J Drug Target 2012;20(3):235-45
  • Bu G. Apolipoprotein E and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy. Nat Rev Neurosci 2009;10(5):333-44
  • Sauer I, Dunay IR, Weisgraber K, et al. An apolipoprotein E-derived peptide mediates uptake of sterically stabilized liposomes into brain capillary endothelial cells†. Biochemistry 2005;44(6):2021-9
  • Re F, Cambianica I, Zona C, et al. Functionalization of liposomes with ApoE-derived peptides at different density affects cellular uptake and drug transport across a blood-brain barrier model. Nanomedicine 2011;7(5):551-9
  • Hülsermann U, Hoffmann MM, Massing U, Fricker G. Uptake of apolipoprotein E fragment coupled liposomes by cultured brain microvessel endothelial cells and intact brain capillaries. J Drug Target 2009;17(8):610-18
  • Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Nat Acad Sci 1996;93(24):14164-9
  • Pardridge WM, Boado RJ, Kang YS. Vector-mediated delivery of a polyamide ("peptide") nucleic acid analogue through the blood-brain barrier in vivo. Proc Nat Acad Sci 1995;92(12):5592-6
  • Pardridge WM. Transport of small molecules through the blood-brain barrier: biology and methodology. Adv Drug Deliv Rev 1995;15(1–3):5-36
  • Bickel U, Schumacher OP, Kang YS, Voigt K. Poor permeability of morphine 3-glucuronide and morphine 6-glucuronide through the blood-brain barrier in the rat. J Pharmacol Exper Thera 1996;278(1):107-13
  • Huwyler J, Yang J, Pardridge WM. Receptor mediated delivery of daunomycin using immunoliposomes: pharmacokinetics and tissue distribution in the rat. J Pharmacol Exper Thera 1997;282(3):1541-6
  • Huwyler J, Cerletti A, Fricker G, et al. By-passing of P-glycoprotein using immunoliposomes. J Drug Target 2002;10(1):73-9
  • Schnyder A, Krähenbühl S, Drewe J, Huwyler J. Targeting of daunomycin using biotinylated immunoliposomes: pharmacokinetics, tissue distribution and in vitro pharmacological effects. J Drug Target 2005;13(5):325-35
  • Cerletti A, Drewe J, Fricker G, et al. Endocytosis and transcytosis of an immunoliposome-based brain drug delivery system. J Drug Target 2000;8(6):435-46
  • Lawrence MS, Foellmer HG, Elsworth JD, et al. Inflammatory responses and their impact on beta-galactosidase transgene expression following adenovirus vector delivery to the primate caudate nucleus. Gene Ther 1999;6(8):1368-79
  • Dewey RA, Morrissey G, Cowsill CM, et al. Chronic brain inflammation and persistent herpes simplex virus 1 thymidine kinase expression in survivors of syngeneic glioma treated by adenovirus-mediated gene therapy: implications for clinical trials. Nat Med 1999;5(11):1256-63
  • Shi N, Pardridge WM. Noninvasive gene targeting to the brain. Proc Nat Acad Sci 2000;97(13):7567-72
  • Shi N, Boado R, Pardridge W. Receptor-mediated gene targeting to tissues in vivo following intravenous administration of pegylated immunoliposomes. Pharm Res 2001;18(8):1091-5
  • Lee HJ, Engelhardt B, Lesley J, et al. Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood-brain barrier in mouse. J Pharmacol Exper Ther 2000;292(3):1048-52
  • Bickel U, Yoshikawa T, Pardridge WM. Delivery of peptides and proteins through the blood–brain barrier. Adv Drug Deliv Rev 2001;46(1–3):247-79
  • Coloma MJ, Lee H, Kurihara A, et al. Transport across the primate blood-brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor. Pharm Res 2000;17(3):266-74
  • Jones A, Shusta E. Blood–brain barrier transport of therapeutics via receptor-mediation. Pharm Res 2007;24(9):1759-71
  • Zhang Y, Schlachetzki F, Pardridge WM. Global non-viral gene transfer to the primate brain following intravenous administration. Mol Thera 2003;7(1):11-18
  • Zhang Y, Boado RJ, Pardridge WM. Marked enhancement in gene expression by targeting the human insulin receptor. J Gene Med 2003;5(2):157-63
  • Zhang Y, Jeong Lee H, Boado RJ, Pardridge WM. Receptor-mediated delivery of an antisense gene to human brain cancer cells. J Gene Med 2002;4(2):183-94
  • Moroni MC, Willingham MC, Beguinot L. EGF-R antisense RNA blocks expression of the epidermal growth factor receptor and suppresses the transforming phenotype of a human carcinoma cell line. J Biol Chem 1992;267(4):2714-22
  • De Giovanni C, Landuzzi L, Frabetti F, et al. Antisense epidermal growth factor receptor transfection impairs the proliferative ability of human rhabdomyosarcoma cells. Cancer Res 1996;56(17):3898-901
  • Zhang Y, Zhu C, Pardridge WM. Antisense gene therapy of brain cancer with an artificial virus gene delivery system. Mol Ther 2002;6(1):67-72
  • Kaplitt MG, Leone P, Samulski RJ, et al. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet 1994;8(2):148-54
  • During MJ, Naegele JR, O'Malley KL, Geller AI. Long-term behavioral recovery in parkinsonian rats by an HSV vector expressing tyrosine hydroxylase. Science (New York, NY) 1994;266(5189):1399-403
  • Mandel RJ, Rendahl KG, Spratt SK, et al. Characterization of intrastriatal recombinant adeno-associated virus-mediated gene transfer of human tyrosine hydroxylase and human GTP-cyclohydrolase I in a rat model of Parkinson's disease. J Neurosci 1998;18(11):4271-84
  • Zhang Y, Calon F, Zhu C, et al. Intravenous nonviral gene therapy causes normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism. Hum Gene Ther 2003;14(1):1-12
  • Mash DC, Pablo J, Buck BE, et al. Distribution and number of transferrin receptors in Parkinson's disease and in MPTP-treated mice. Exp Neurol 1991;114(1):73-81
  • Hwang O, Baker H, Gross S, Joh TH. Localization of GTP cyclohydrolase in monoaminergic but not nitric oxide-producing cells. Synapse 1998;28(2):140-53
  • Boado RJ, Zhang Y, Zhang Y, Pardridge WM. Humanization of anti-human insulin receptor antibody for drug targeting across the human blood–brain barrier. Biotechnol Bioeng 2007;96(2):381-91

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.