1,029
Views
58
CrossRef citations to date
0
Altmetric
Reviews

Pharmaceutical applications of the Calu-3 lung epithelia cell line

, &
Pages 1287-1302 | Published online: 04 Jun 2013

Bibliography

  • Labiris N, Dolovich M. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol 2003;56(6):588-99
  • Forbes B. Human airway epithelial cell lines for in vitro drug transport and metabolism studies. Pharm Sci Technol Today 2000;3(1):18-27
  • Rothen-Rutishauser B, Blank F, Mühlfeld C, Gehr P. In vitro models of the human epithelial airway barrier to study the toxic potential of particulate matter. Expert Opin Drug Metab Toxicol 2008;4(8):1075-89
  • Sung JC, Pulliam BL, Edwards DA. Nanoparticles for drug delivery to the lungs. Trends Biotechnol 2007;25(12):563-70
  • Gruenert DC, Finkbeiner WE, Widdicombe JH. Culture and transformation of human airway epithelial cells. Am J Physiol 1995;268(3):L347-60
  • Mariassy AT. Epihelial cells of trachea and bronchi. In: Parent R, editor. Comparative biology of the normal lung. CRC Press; London: 1992. p. 63-76
  • Sakagami M. In vivo, in vitro and ex vivo models to assess pulmonary absorption and disposition of inhaled therapeutics for systemic delivery. Adv Drug Deliv Rev 2006;58(9):1030-60
  • Shen B, Finkbeiner W, Wine J, et al. Calu-3: a human airway epithelial cell line that shows cAMP-dependent Cl-secretion. Am J Physiol 1994;266(5):L493-501
  • Fogh J, Fogh JM, Orfeo T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst 1977;59(1):221-6
  • Grainger CI, Greenwell LL, Lockley DJ, et al. Culture of Calu-3 cells at the air interface provides a representative model of the airway epithelial barrier. Pharm Res 2006;23(7):1482-90
  • Wan H, Winton HL, Soeller C, et al. Tight junction properties of the immortalized human bronchial epithelial cell lines Calu-3 and 16HBE14o. Eur Respir J 2000;15(6):1058-68
  • Fiegel J, Ehrhardt C, Schaefer UF, et al. Large porous particle impingement on lung epithelial cell monolayers—toward improved particle characterization in the lung. Pharm Res 2003;20(5):788-96
  • Ehrhardt C, Fiegel J, Fuchs S, et al. Drug absorption by the respiratory mucosa: cell culture models and particulate drug carriers. J Aerosol Med 2002;15(2):131-9
  • Forbes B, Ehrhardt C. Human respiratory epithelial cell culture for drug delivery applications. Eur J Pharm Biopharm 2005;60(2):193
  • Haghi M, Young PM, Traini D, et al. Time-and passage-dependent characteristics of a Calu-3 respiratory epithelial cell model. Drug Dev Ind Pharm 2010;36(10):1207-14
  • Teijeiro-Osorio D, Remuñán-López C, Alonso MJ. Chitosan/cyclodextrin nanoparticles can efficiently transfect the airway epithelium in vitro. Eur J Pharm Biopharm 2009;71(2):257-63
  • Matilainen L, Toropainen T, Vihola H, et al. In vitro toxicity and permeation of cyclodextrins in Calu-3 cells. J Control Release 2008;126(1):10-16
  • Salem LB, Bosquillon C, Dailey L, et al. Sparing methylation of β-cyclodextrin mitigates cytotoxicity and permeability induction in respiratory epithelial cell layers in vitro. J Control Release 2009;136(2):110-16
  • Tewes F, Brillault J, Couet W, Olivier JC. Formulation of rifampicin–cyclodextrin complexes for lung nebulization. J Control Release 2008;129(2):93-9
  • Vllasaliu D, Casettari L, Fowler R, et al. Absorption-promoting effects of chitosan in airway and intestinal cell lines: a comparative study. Int J Pharm 2012;430(1-2):151-60
  • Li L, Mathias NR, Heran CL, et al. Carbopol mediated paracellular transport enhancement in Calu 3 cell layers. J Pharm Sci 2005;95(2):326-35
  • Teijeiro-Osorio D, Remuñán-López C, Alonso MJ. New generation of hybrid poly/oligosaccharide nanoparticles as carriers for the nasal delivery of macromolecules. Biomacromolecules 2008;10(2):243-9
  • Florea BI, Meaney C, Junginger HE, Borchard G. Transfection efficiency and toxicity of polyethylenimine in differentiated Calu-3 and nondifferentiated COS-1 cell cultures. AAPS PharmSci 2002;4(3):E12
  • Bivas-Benita M, Romeijn S, Junginger HE, Borchard G. PLGA–PEI nanoparticles for gene delivery to pulmonary epithelium. Eur J Pharm Biopharm 2004;58(1):1-6
  • Grenha A, Grainger CI, Dailey LA, et al. Chitosan nanoparticles are compatible with respiratory epithelial cells in vitro. Eur J Pharm Sci 2007;31(2):73-84
  • Ong HX, Traini D, Cipolla D, et al. Liposomal nanoparticles control the uptake of ciprofloxacin across respiratory epithelia. Pharm Res 2012;29(12):3335-46; 1-12
  • Witschi C, Mrsny RJ. In vitro evaluation of microparticles and polymer gels for use as nasal platforms for protein delivery. Pharm Res 1999;16(3):382-90
  • Nguyen J, Xie X, Neu M, et al. Effects of cell penetrating peptides and pegylation on transfection efficiency of polyethylenimine in mouse lungs. J Gene Med 2008;10(11):1236-46
  • Saeed AO, Magnusson JP, Moradi E, et al. Modular construction of multifunctional bioresponsive cell-targeted nanoparticles for gene delivery. Bioconjugate Chem 2011;22(2):156-68
  • Amidi M, Romeijn SG, Borchard G, et al. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Control Release 2006;111(1–2):107-16
  • Florea BI, Thanou M, Junginger HE, Borchard G. Enhancement of bronchial octreotide absorption by chitosan and N-trimethyl chitosan shows linear in vitro/in vivo correlation. J Controld Release 2006;110(2):353-61
  • Widdicombe JH, Widdicombe JG. Regulation of human airway surface liquid. Respir Physiol 1995;99(1):3-12
  • Cavet ME, West M, Simmons NL. Transepithelial transport of the fluoroquinolone ciprofloxacin by human airway epithelial Calu-3 cells. Antimicrob Agents Chemother 1997;41(12):2693-8
  • Foster KA, Avery ML, Yazdanian M, Audus KL. Characterization of the Calu-3 cell line as a tool to screen pulmonary drug delivery. Int J Pharm 2000;208(1):1-11
  • Amoako-Tuffour M, Yeung PK, Agu RU. Permeation of losartan across human respiratory epithelium: an in vitro study with Calu-3 cells. Acta Pharm 2009;59(4):395-405
  • Borchard G, Cassará ML, Roemelé PEH, Florea BI. Transport and local metabolism of budesonide and fluticasone propionate in a human bronchial epithelial cell line (Calu‐3). J Pharm Sci 2002;91(6):1561-7
  • Angelo R, Rousseau K, Grant M, et al. Technosphere® insulin: defining the role of technosphere particles at the cellular level. J Diabetes Sci Technol 2009;3(3):545
  • Qi Y, Zhao G, Liu D, et al. Delivery of therapeutic levels of heparin and low-molecular-weight heparin through a pulmonary route. Proc Natl Acad Sci USA 2004;101(26):9867-72
  • Cooney D, Kazantseva M, Hickey AJ. Development of a size-dependent aerosol deposition model utilising human airway epithelial cells for evaluating aerosol drug delivery. Altern Lab Ani 2004;32(6):581-90
  • Bur M, Rothen-Rutishauser B, Huwer H, Lehr C-M. A novel cell compatible impingement system to study in vitro drug absorption from dry powder aerosol formulations. Eur J Pharm Biopharm 2009;72(2):350-7
  • Grainger C, Greenwell L, Martin G, Forbes B. The permeability of large molecular weight solutes following particle delivery to air-interfaced cells that model the respiratory mucosa. Eur J Pharm Biopharm 2009;71(2):318-24
  • Ong HX, Traini D, Bebawy M, Young PM. Epithelial profiling of antibiotic controlled release respiratory formulations. Pharm Res 2011;28(9):2327-38
  • Haghi M, Salama R, Traini D, et al. Modification of disodium cromoglycate passage across lung epithelium in vitro via incorporation into polymeric microparticles. AAPS J 2012;14(1):79-86; 1-8
  • Haghi M, Traini D, Bebawy M, Young PM. Deposition, diffusion and transport mechanism of dry powder microparticulate salbutamol, at the respiratory epithelia. Mol Pharm 2012;9(6):1717-26
  • Grainger C, Saunders M, Buttini F, et al. Critical characteristics for corticosteroid solution metered dose inhaler bioequivalence. Mol Pharm 2012;9(3):563-9
  • Bur M, Huwer H, Muys L, Lehr C-M. Drug transport across pulmonary epithelial cell monolayers: effects of particle size, apical liquid volume, and deposition technique. J Aerosol Med Pulm Drug Deliv 2010;23(3):119-27
  • Hein S, Bur M, Schaefer UF, Lehr CM. A new Pharmaceutical Aerosol Deposition Device on Cell Cultures (PADDOCC) to evaluate pulmonary drug absorption for metered dose dry powder formulations. Eur J Pharm Biopharm 2011;77(1):132-8
  • Mathias NR, Timoszyk J, Stetsko PI, et al. Permeability characteristics of calu-3 human bronchial epithelial cells: in vitro-in vivo correlation to predict lung absorption in rats. J Drug Target 2002;10(1):31-40
  • Agu RU, Ugwoke MI. In vitro and in vivo testing methods for respiratory drug delivery. Expert Opin Drug Deliv 2011;8(1):57-69
  • Pezron I, Mitra R, Pal D, Mitra AK. Insulin aggregation and asymmetric transport across human bronchial epithelial cell monolayers (Calu-3). J Pharm Sci 2002;91(4):1135-46
  • Hamilton KO, Yazdanian MA, Audus KL. Modulation of P-glycoprotein activity in Calu-3 cells using steroids and β-ligands. Int J Pharm 2001;228(1):171-9
  • Brillault J, De Castro WV, Couet W. Relative contributions of active mediated transport and passive diffusion of fluoroquinolones with various lipophilicities in a Calu-3 lung epithelial cell model. Antimicrob Agents Chemother 2010;54(1):543-5
  • Endter S, Francombe D, Ehrhardt C, Gumbleton M. RT-PCR analysis of ABC, SLC and SLCO drug transporters in human lung epithelial cell models. J Pharm Pharmacol 2010;61(5):583-91
  • Bosquillon C. Drug transporters in the lung‚ do they play a role in the biopharmaceutics of inhaled drugs? J Pharm Sci 2010;99(5):2240-55
  • Hamilton KO, Topp E, Makagiansar I, et al. Multidrug resistance-associated protein-1 functional activity in Calu-3 cells. J Pharmacol Exp Ther 2001;298(3):1199-205
  • Hamilton KO, Backstrom G, Yazdanian MA, Audus KL. P-glycoprotein efflux pump expression and activity in Calu-3 cells. J Pharm Sci 2001;90(5):647-58
  • Florea BI, Van Der Sandt IC, Schrier SM, et al. Evidence of P‐glycoprotein mediated apical to basolateral transport of flunisolide in human broncho‐tracheal epithelial cells (Calu ). Br J Pharmacol 2001;134(7):1555-63
  • Florea BI, Cassará ML, Junginger HE, Borchard G. Drug transport and metabolism characteristics of the human airway epithelial cell line Calu-3. J Control Release 2003;87(1):131-8
  • Paturi DK, Kwatra D, Ananthula HK, et al. Identification and functional characterization of breast cancer resistance protein in human bronchial epithelial cells (Calu-3). Int J Pharm 2010;384(1):32-8
  • Søndergaard HB, Brodin B, Nielsen CU. hPEPT1 is responsible for uptake and transport of Gly-Sar in the human bronchial airway epithelial cell-line Calu-3. Pflügers Archiv 2008;456(3):611-22
  • Stentebjerg-Andersen A, Notlevsen IV, Brodin B, Nielsen CU. Calu-3 cells grown under AIC and LCC conditions: implications for dipeptide uptake and transepithelial transport of substances. Eur J Pharm Biopharm 2011;78(1):19-26
  • Brillault J, De Castro WV, Harnois T, et al. P-glycoprotein-mediated transport of moxifloxacin in a Calu-3 lung epithelial cell model. Antimicrob Agents Chemother 2009;53(4):1457-62
  • Weiner M, Burman W, Luo C-C, et al. Effects of rifampin and multidrug resistance gene polymorphism on concentrations of moxifloxacin. Antimicrob Agents Chemother 2007;51(8):2861-6
  • Nijland H, Ruslami R, Suroto AJ, et al. Rifampicin reduces plasma concentrations of moxifloxacin in patients with tuberculosis. Clin Infect Dis 2007;45(8):1001-7
  • Mamlouk M, Young PM, Bebawy M, et al. Salbutamol sulfate absorption across Calu-3 bronchial epithelia cell monolayer is inhibited in the presence of common anionic NSAIDs. J Asthma 2013;50(4):334-41
  • Raben D, Helfrich B, Chan DC, et al. The effects of cetuximab alone and in combination with radiation and/or chemotherapy in lung cancer. Clin Cancer Res 2005;11(2):795-805
  • Anabousi S, Bakowsky U, Schneider M, et al. In vitro assessment of transferrin-conjugated liposomes as drug delivery systems for inhalation therapy of lung cancer. Eur J Pharm Sci 2006;29(5):367-74
  • Hanauske A-R, Oberschmidt O, Hanauske-Abel H, et al. Antitumor activity of enzastaurin (LY317615. HCl) against human cancer cell lines and freshly explanted tumors investigated in vitro soft-agar cloning experiments. Invest New Drugs 2007;25(3):205-10
  • Hickinson DM, Klinowska T, Speake G, et al. AZD8931, an equipotent, reversible inhibitor of signaling by epidermal growth factor receptor, ERBB2 (HER2), and ERBB3: a unique agent for simultaneous ERBB receptor blockade in cancer. Clin Cancer Res 2010;16(4):1159-69
  • Saito A, Yamashita T, Mariko Y, et al. A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci USA 1999;96(8):4592-7
  • Pratesi G, Perego P, Polizzi D, et al. A novel charged trinuclear platinum complex effective against cisplatin-resistant tumours: hypersensitivity of p53-mutant human tumour xenografts. Br J Cancer 1999;80(12):1912
  • Scheuer W, Friess T, Burtscher H, et al. Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Res 2009;69(24):9330-6
  • Cascone T, Morelli MP, Morgillo F, et al. Synergistic anti-proliferative and pro-apoptotic activity of combined therapy with bortezomib, a proteasome inhibitor, with anti-epidermal growth factor receptor (EGFR) drugs in human cancer cells. J Cell Physiol 2008;216(3):698-707
  • Friess T, Scheuer W, Hasmann M. Combination treatment with erlotinib and pertuzumab against human tumor xenografts is superior to monotherapy. Clin Cancer Res 2005;11(14):5300-9
  • Brouillard F, Tondelier D, Edelman A, Baudouin-Legros M. Drug resistance induced by ouabain via the stimulation of MDR1 gene expression in human carcinomatous pulmonary cells. Cancer Res 2001;61(4):1693-8
  • Adi H, Young PM, Chan H-K, et al. Controlled release antibiotics for dry powder lung delivery. Drug Dev Ind Pharm 2010;36(1):119-26
  • Salama RO, Traini D, Chan H-K, Young PM. Preparation and characterisation of controlled release co-spray dried drug-polymer microparticles for inhalation 2: evaluation of in vitro release profiling methodologies for controlled release respiratory aerosols. Eur J Pharm Biopharm 2008;70(1):145-52
  • Salama R, Ladd L, Chan H-K, et al. Development of an ovine dry powder inhalation model for the evaluation of conventional and controlled release microparticles. AAPS J 2009;11(3):465-8
  • Ventura CA, Tommasini S, Crupi E. Chitosan microspheres for intrapulmonary administration of moxifloxacin: interaction with biomembrane models and in vitro permeation studies. Eur J Pharm Biopharm 2008;68(2):235-44
  • Jauhari S, Dash AK. A mucoadhesive in situ gel delivery system for paclitaxel. AAPS PharmSciTech 2006;7(2):154-9
  • Bhat M, Toledo-Velasquez D, Wang L, et al. Regulation of tight junction permeability by calcium mediators and cell cytoskeleton in rabbit tracheal epithelium. Pharm Res 1993;10(7):991-7
  • Rojanasakul Y, Wang L-Y, Bhat M, et al. The transport barrier of epithelia: a comparative study on membrane permeability and charge selectivity in the rabbit. Pharm Res 1992;9(8):1029-34
  • Sachs L, Finkbeiner W, Widdicombe J. Effects of media on differentiation of cultured human tracheal epithelium. In Vitro CellDev Biol Anim 2003;39(1):56-62
  • Widdicombe J. Airway and alveolar permeability and surface liquid thickness: theory. J Appl Physiol 1997;82(1):3-12
  • Madlova M, Bosquillon C, Asker D, et al. In-vitro respiratory drug absorption models possess nominal functional P-glycoprotein activity. J Pharm Pharmacol 2009;61(3):293-301
  • Edsbäcker S, Johansson C-J. Airway selectivity: an update of pharmacokinetic factors affecting local and systemic disposition of inhaled steroids. Basic Clin Pharmacol Toxicol 2006;98(6):523-36
  • Patton JS, Brain JD, Davies LA, et al. The particle has landed—characterizing the fate of inhaled pharmaceuticals. J Aerosol Med Pulm Drug Deliv 2010;23(S2):71-87
  • Lin H, Li H, Cho HJ, et al. Air liquid interface (ALI) culture of human bronchial epithelial cell monolayers as an in vitro model for airway drug transport studies. J Pharm Sci 2007;96(2):341-50
  • Mukherjee M, Pritchard D, Bosquillon C. Evaluation of air-interfaced Calu-3 cell layers for investigation of inhaled drug interactions with organic cation transporters in vitro. Int J Pharm 2012;426(1-2):7-14
  • Witschi C, Mrsny RJ. In vitro evaluation of microparticles and polymer gels for use as nasal platforms for protein delivery. Pharm Res 1999;16(3):382-90
  • Patel J, Pal D, Vangala V, et al. Transport of HIV-protease inhibitors across 1α, 25di-hydroxy vitamin D 3-treated Calu-3 cell monolayers: modulation of P-glycoprotein activity. Pharm Res 2002;19(11):1696-703
  • Loman S, Radl J, Jansen H, et al. Vectorial transcytosis of dimeric IgA by the Calu-3 human lung epithelial cell line: upregulation by IFN-gamma. Am J Physiol 1997;272(5):L951-8
  • Pezron I, Mitra R, Pal D, Mitra AK. Insulin aggregation and asymmetric transport across human bronchial epithelial cell monolayers (Calu ). J Pharm Sci 2002;91(4):1135-46
  • Marin L, Traini D, Bebawy M, et al. Multiple dosing of simvastatin inhibits airway mucus production of epithelial cells: implications in the treatment of chronic obstructive airway pathologies. Eur J Pharm Biopharm 2013; doi: http://dx.doi.org/10.1016/j.ejpb.2013.01.021
  • Ehrhardt C, Kneuer C, Bies C, et al. Salbutamol is actively absorbed across human bronchial epithelial cell layers. Pulm Pharmacol Ther 2005;18(3):165
  • Aoki M, Iguchi M, Hayashi H, et al. Active uptake of ulifloxacin from plasma to lung that controls its concentration in epithelial lining fluid. Biol Pharm Bull 2009;32(6):1095-100

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.