1,807
Views
236
CrossRef citations to date
0
Altmetric
Reviews

pH- and ion-sensitive polymers for drug delivery

, PhD, , &
Pages 1497-1513 | Published online: 09 Aug 2013

Bibliography

  • Alam MA, Ali R, Al-Jenoobi FI, et al. Solid dispersions: a strategy for poorly aqueous soluble drugs and technology updates. Expert Opin Drug Deliv 2012;9:1419-40
  • Alani AW, Rao DA, Seidel R, et al. The effect of novel surfactants and Solutol HS 15 on paclitaxel aqueous solubility and permeability across a Caco-2 monolayer. J Pharm Sci 2010;99:3473-85
  • Yoshida T, Kurimoto I, Yoshihara K, et al. Aminoalkyl methacrylate copolymers for improving the solubility of tacrolimus I: evaluation of solid dispersion formulations: Int J Pharm. 2012;428:18-24
  • Sawada T, Kondo H, Nakashima H, et al. Time-release compression-coated core tablet containing nifedipine for chronopharmacotherapy. Int J Pharm 2004;280:103-11
  • Katsuma M, Watanabe S, Kawai H, et al. Effects of absorption promoters on insulin absorption through colon-targeted delivery. Int J Pharm 2006;307:156-62
  • Tirpude RN, Puranik PK. Rabeprazole sodium delayed-release multiparticulates: effect of enteric coating layers on product performance. J Adv Pharm Technol Res 2011;2:184-91
  • Lai TC, Bae Y, Yoshida T, et al. pH-sensitive multi-PEGylated block copolymer as a bioresponsive pDNA delivery vector. Pharm Res 2010;27:2260-73
  • Maeda A, Shinoda T, Ito T, et al. Evaluating tamsulosin hydrochloride-released microparticles prepared using single-step matrix coating. Int J Pharm 2011;408:84-90
  • Yoshida T, Nakanishi K, Maeda A, et al. Pharmaceutical composition containing lipophilic IL-2 production inhibitor. WO2009054463; 2009
  • Babish J, Tripp M, Howell T, Bland JS. Anti-inflammatory pharmaceutical compositions for reducing inflammation and the treatment or prevention of gastric toxicity. US7811610; 2010
  • Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci 2003;92:1343-55
  • Maeda H. The link between infection and cancer: tumor vasculature, free radicals, and drug delivery to tumors via the EPR effect. Cancer Sci 2013; In press
  • Matsumura Y. Preclinical and clinical studies of NK012, an SN-38-incorporating polymeric micelles, which is designed based on EPR effect. Adv Drug Deliv Rev 2011;63:184-92
  • Mizumoto T, Tamura T, Kawai H, et al. Formulation design of an oral, fast-disintegrating dosage form containing taste-masked particles of famotidine. Chem Pharm Bull (Tokyo) 2008;56:946-50
  • Mizumoto T, Tamura T, Kawai H, et al. Formulation design of taste-masked particles, including famotidine, for an oral fast-disintegrating dosage form. Chem Pharm Bull (Tokyo) 2008;56:530-5
  • Yoshida T, Tasaki H, Maeda A, et al. Mechanism of controlled drug release from a salting-out taste-masking system. J Control Release 2008;131:47-53
  • Yoshida T, Tasaki H, Maeda A, et al. Salting-out taste-masking system generates lag time with subsequent immediate release. Int J Pharm 2009;365:81-8
  • Yoshida T, Tasaki H, Maeda A, et al. Optimization of salting-out taste-masking system for micro-beads containing drugs with high solubility. Chem Pharm Bull (Tokyo) 2008;56:1579-84
  • Tasaki H, Yoshida T, Maeda A, et al. Effects of physicochemical properties of salting-out layer components on drug release. Int J Pharm 2009;376:13-21
  • Kurimoto I, Kasashima Y, Kawai H, et al. Drug-containing coated microparticle for orally disintegrating tablet. WO2005039542; 2005
  • Scaffidi-Domianello YY, Legin AA, Jakupec MA, et al. Synthesis, characterization, and cytotoxic activity of novel potentially pH-Sensitive nonclassical platinum(II) complexes featuring 1,3-dihydroxyacetone oxime ligands. Inorg Chem 2011;50:10673-81
  • Richards AC, Santini JR JT, Cima MJ, et al. Microchip devices for delivery of molecules and methods of fabrication thereof. US20020107470; 2002
  • Torchilin V. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur J Pharm Biopharm 2009;71:431-44
  • Douroumis D. Orally disintegrating dosage forms and taste-masking technologies; 2010. Expert Opin Drug Deliv 2011;8:665-75
  • Douroumis D. Practical approaches of taste masking technologies in oral solid forms. Expert Opin Drug Deliv 2007;4:417-26
  • Hashimoto Y, Tanaka M, Kishimoto H, et al. Preparation, characterization and taste-masking properties of polyvinylacetal diethylaminoacetate microspheres containing trimebutine. J Pharm Pharmacol 2002;54:1323-8
  • Randale SA, Dabhi CS, Tekade AR, et al. Rapidly disintegrating tablets containing taste masked metoclopramide hydrochloride prepared by extrusion-precipitation method. Chem Pharm Bull (Tokyo) 2010;58:443-8
  • Sheshala R, Khan N, Darwis Y. Formulation and optimization of orally disintegrating tablets of sumatriptan succinate. Chem Pharm Bull (Tokyo) 2011;59:920-8
  • Yan YD, Woo JS, Kang JH, et al. Preparation and evaluation of taste-masked donepezil hydrochloride orally disintegrating tablets. Biol Pharm Bull 2010;33:1364-70
  • Kayumba PC, Huyghebaert N, Cordella C, et al. Quinine sulphate pellets for flexible pediatric drug dosing: formulation development and evaluation of taste-masking efficiency using the electronic tongue. Eur J Pharm Biopharm 2007;66:460-5
  • Haware RV, Chaudhari PD, Parakh SR, Bauer-Brandl A. Development of a melting tablet containing promethazine HCl against motion sickness. AAPS PharmSciTech 2008;9:1006-15
  • Tasaki H, Ishii T, Kasashima Y, et al. Orally disintegrating tablet. WO2011121824; 2011
  • Shimamo K, Kondo O, Miwa A, et al. Evaluation of uniform-sized microparticles containing a vibration nozzle method. Drug Dev Ind Pharm 1995;21:331-47
  • Lee JH, Choi G, Oh YJ, et al. A nanohybrid system for taste masking of sildenafil. Int J Nanomedicine 2012;7:1635-49
  • Johnson DA, Roach AC, Carlsson AS, et al. Stability of esomeprazole capsule contents after in vitro suspension in common soft foods and beverages. Pharmacotherapy 2003;23:731-4
  • Liu P, Sun B, Lu X, et al. HPLC determination and pharmacokinetic study of tenatoprazole in dog plasma after oral administration of enteric-coated capsule. Biomed Chromatogr 2007;21:89-93
  • Sharma M, Sharma V, Panda AK, Majumdar DK. Development of enteric submicron particles formulation of α-amylase for oral delivery. Pharm Dev Technol 2013;18(3):560-9
  • Sharma M, Sharma V, Panda AK, Majumdar DK. Development of enteric submicron particle formulation of papain for oral delivery. Int J Nanomedicine 2011;6:2097-111
  • Iemma F, Spizzirri UG, Puoci F, et al. pH-sensitive hydrogels based on bovine serum albumin for oral drug delivery. Int J Pharm 2006;312:151-7
  • Katsuma M, Watanabe S, Takemura S, et al. Scintigraphic evaluation of a novel colon-targeted delivery system (CODES) in healthy volunteers. J Pharm Sci 2004;93:1287-99
  • Li J, Yang L, Ferguson SM, et al. In vitro evaluation of dissolution behavior for a colon-specific drug delivery system (CODES) in multi-pH media using United States Pharmacopeia apparatus II and III. AAPS PharmSciTech 2002;3:E33
  • Yang L, Watanabe S, Li J, et al. Effect of colonic lactulose availability on the timing of drug release onset in vivo from a unique colon-specific drug delivery system (CODES). Pharm Res 2003;20:429-34
  • Katsuma M, Watanabe S, Kawai H, et al. Studies on lactulose formulations for colon-specific drug delivery. Int J Pharm 2002;249:33-43
  • Zimová L, Vetchý D, Muselík J, Stembírek J. The development and in vivo evaluation of a colon drug delivery system using human volunteers. Drug Deliv 2012;19:81-9
  • Takaya T, Sawada K, Suzuki H, et al. Application of a colon delivery capsule to 5-aminosalicylic acid and evaluation of the pharmacokinetic profile after administration to beagle dogs. J Drug Targeting 1997;4:271-6
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986;46:6387-92
  • Rowinsky EK, Rizzo J, Ochoa L, et al. A phase I and pharmacokinetic study of pegylated camptothecin as a 1-hour infusion every 3 weeks in patients with advanced solid malignancies. J Clin Oncol 2003;21:148-57
  • Zhou L, Cheng R, Tao H, et al. Endosomal pH-activatable poly(ethylene oxide)-graft-doxorubicin prodrugs: synthesis, drug release, and biodistribution in tumor-bearing mice. Biomacromolecules 2011;12:1460-7
  • Kim D, Gao ZG, Lee ES, Bae YH. In vivo evaluation of doxorubicin-loaded polymeric micelles targeting folate receptors and early endosomal pH in drug-resistant ovarian cancer. Mol Pharm 2009;6:1353-62
  • Lee ES, Gao Z, Kim D, et al. Super pH-sensitive multifunctional polymeric micelle for tumor pH(e) specific TAT exposure and multidrug resistance. J Control Release 2008;129:228-36
  • Gao ZG, Tian L, Hu J, et al. Prevention of metastasis in a 4T1 murine breast cancer model by doxorubicin carried by folate conjugated pH sensitive polymeric micelles. J Control Release 2011;152:84-9
  • Seo K, Chung SW, Byun Y, Kim D. Paclitaxel loaded nano-aggregates based on pH sensitive polyaspartamide amphiphilic graft copolymers. Int J Pharm 2012;424:26-32
  • Min KH, Kim JH, Bae SM, et al. Tumoral acidic pH-responsive MPEG-poly(beta-amino ester) polymeric micelles for cancer targeting therapy. J Control Release 2010;144:259-66
  • Wu XL, Kim JH, Koo H, et al. Tumor-targeting peptide conjugated pH-responsive micelles as a potential drug carrier for cancer therapy. Bioconjug Chem 2010;21:208-13
  • Devalapally H, Shenoy D, Little S, et al. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model. Cancer Chemother Pharmacol 2007;59:477-84
  • Etrych T, Mrkvan T, Chytil P, et al. N-(2-Hydroxypropyl)methacrylamide-Based Polymer Conjugates with pH-Controlled Activation of Doxorubicin. I. New Synthesis, Physicochemical Characterization and Preliminary Biological Evaluation. J Appl Polym Sci 2008;109:3050-61
  • Etrych T, Sírová M, Starovoytova L, et al. HPMA copolymer conjugates of paclitaxel and docetaxel with pH-controlled drug release. Mol Pharm 2010;7:1015-26
  • Duncan R, Vicent MJ. Do HPMA copolymer conjugates have a future as clinically useful nanomedicines? A critical overview of current status and future opportunities. Adv Drug Deliv Rev 2010;62:272-82
  • Nowotnik DP, Cvitkovic E. ProLindac™ (AP5346): a review of the development of an HPMA DACH platinum Polymer Therapeutic. Adv Drug Deliv Rev 2009;61:1214-19
  • Jevsevar S, Kunstelj M, Porekar VG. PEGylation of therapeutic proteins. Biotechnol J 2010;5:113-28
  • Etrych T, Kovář L, Strohalm J, et al. Biodegradable star HPMA polymer-drug conjugates: biodegradability, distribution and anti-tumor efficacy. J Control Release 2011;154:241-8
  • Etrych T, Strohalm J, Chytil P, et al. Novel star HPMA-based polymer conjugates for passive targeting to solid tumors. J Drug Target 2011;19:874-89
  • Bae Y, Fukushima S, Harada A, Kataoka K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed Engl 2003;42:4640-3
  • Bae Y, Nishiyama N, Kataoka K. In vivo antitumor activity of the folate-conjugated pH-sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments. Bioconjug Chem 2007;18:1131-9
  • Mishra S, Webster P, Davis ME. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol 2004;83:97-111
  • Kim JK, Garripelli VK, Jeong UH, et al. Novel pH-sensitive polyacetal-based block copolymers for controlled drug delivery. Int J Pharm 2010;401:79-86
  • Garripelli VK, Kim JK, Namgung R, et al. A novel thermosensitive polymer with pH-dependent degradation for drug delivery. Acta Biomater 2010;6:477-85
  • Chen W, Meng F, Cheng R, Zhong Z. pH-Sensitive degradable polymersomes for triggered release of anticancer drugs: a comparative study with micelles. J Control Release 2010;142:40-6
  • Cohen JA, Beaudette TT, Tseng WW, et al. T-cell activation by antigen-loaded pH-sensitive hydrogel particles in vivo: the effect of particle size. Bioconjug Chem 2009;20:111-19
  • Standley SM, Mende I, Goh SL, et al. Incorporation of CpG oligonucleotide ligand into protein-loaded particle vaccines promotes antigen-specific CD8 T-cell immunity. Bioconjug Chem 2007;18:77-83
  • Tang R, Ji W, Wang C. Amphiphilic block copolymers bearing ortho ester side-chains: pH-dependent hydrolysis and self-assembly in water. Macromol Biosci 2010;10:192-201
  • Tang R, Ji W, Panus D, et al. Block copolymer micelles with acid-labile ortho ester side-chains: synthesis, characterization, and enhanced drug delivery to human glioma cells. J Control Release 2011;151:18-27
  • Lin S, Du F, Wang Y, et al. An acid-labile block copolymer of PDMAEMA and PEG as potential carrier for intelligent gene delivery systems. Biomacromolecules 2008;9:109-15
  • Shin J, Shum P, Thompson DH. Acid-triggered release via dePEGylation of DOPE liposomes containing acid-labile vinyl ether PEG-lipids. J Control Release 2003;91:187-200
  • Xu Z, Gu W, Chen L, et al. A smart nanoassembly consisting of acid-labile vinyl ether PEG-DOPE and protamine for gene delivery: preparation and in vitro transfection. Biomacromolecules 2008;9:3119-26
  • Milletti F. Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today 2012;17:850-60
  • El-Sayed A, Futaki S, Harashima H. Delivery of Macromolecules Using Arginine-Rich Cell-Penetrating Peptides: ways to Overcome Endosomal Entrapment. AAPS J 2009;11:13-22
  • Esbjörner EK, Oglecka K, Lincoln P, et al. Membrane binding of pH-sensitive influenza fusion peptides. positioning, configuration, and induced leakage in a lipid vesicle model. Biochemistry 2007;46:13490-504
  • Li W, Nicol F, Szoka FC Jr, et al. GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv Drug Deliv Rev 2004;56:967-85
  • Sasaki K, Kogure K, Chaki S, et al. An artificial virus-like nano carrier system: enhanced endosomal escape of nanoparticles via synergistic action of pH-sensitive fusogenic peptide derivatives. Anal Bioanal Chem 2008;391:2717-27
  • Deshayes S, Morris MC, Divita G, et al. Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell Mol Life Sci 2005;62:1839-49
  • Min SH, Lee DC, Lim MJ, et al. A composite gene delivery system consisting of polyethylenimine and an amphipathic peptide KALA. J Gene Med 2006;8:1425-34
  • Pujals S, Fernández-Carneado J, López-Iglesias C, et al. Mechanistic aspects of CPP-mediated intracellular drug delivery: relevance of CPP self-assembly. Biochim Biophys Acta 2006;1758:264-79
  • Kämper N, Day PM, Nowak T, et al. A membrane-destabilizing peptide in capsid protein L2 is required for egress of papillomavirus genomes from endosomes. J Virol 2006;80:759-68
  • Lundberg P, El-Andaloussi S, Sutlu T, et al. Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB J 2007;21:2664-71
  • Pack DW, Hoffman AS, Pun S, et al. Design and development of polymers for gene delivery. Nat Rev Drug Discov 2005;4:581-93
  • Kim YH, Park JH, Lee M, et al. Polyethylenimine with acid-labile linkages as a biodegradable genecarrier. J Control Release 2005;103:209-19
  • Thomas M, Lu JJ, Ge Q, et al. Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc Natl Acad Sci 2005;102:5679-84
  • Tang GP, Guo HY, Alexis F, et al. Low molecular weight polyethylenimines linked by beta-cyclodextrin for gene transfer into the nervous system. J Gene Med 2006;8:736-44
  • Kichler A, Leborgne C, Danos O, et al. Characterization of the gene transfer process mediated by histidine-rich peptides. J Mol Med 2007;85:191-200
  • Hatefi A, Megeed Z, Ghandehari H. Recombinant polymer–protein fusion: a promising approach towards efficient and targeted gene delivery. J Gene Med 2006;8:468-76
  • Mason AJ, Martinez A, Glaubitz C, et al. The antibiotic and DNA transfecting peptide LAH4 selectively associates with, and disorders, anionic lipids in mixed membranes. FASEB J 2006;20:320-2
  • Ghosn B, Kasturi SP, Roy K. Enhancing polysaccharide-mediated delivery of nucleic acids through functionalization with secondary and tertiary amines. Curr Top Med Chem 2008;8:331-40
  • Ghosn B, Singh A, Li M, et al. Efficient gene silencing in lungs and liver using imidazole-modified chitosan as a nanocarrier for small interfering RNA. Oligonucleotides 2010;20:163-72
  • Lin C, Zhong ZY, Lok MC, et al. Novel bioreducible poly(amido amine)s for highly efficient gene delivery. Bioconjug Chem 2007;18:138-45
  • Mateos-Timoneda MA, Lok MC, Hennink WE, et al. Poly(amido amine)s as gene delivery vectors: effects of quaternary nicotinamide moieties in the side chains. ChemMedChem 2008;3:478-86
  • Guo X, Chang RK, Hussain MA. Ion-exchange resins as drug delivery carriers. J Pharm Sci 2009;98:3886-902
  • Nadkar S, Lokhande C. Current trends in novel drug delivery - An OTC perspective. Pharma Times 2010;42:17-23
  • Bodmeier R, Guo X, Sarabia RE, Skultety PF. The influence of buffer species and strength on diltiazem HCl release from beads coated with the aqueous cationic polymer dispersions, Eudragit RS, RL 30D. Pharm Res 1996;13:52-6
  • Narisawa S, Nagata M, Hirakawa Y, et al. An organic acid-induced sigmoidal release system for oral controlled-release preparations. 2. Permeability enhancement of Eudragit RS coating led by the physicochemical interactions with organic acid. J Pharm Sci 1996;85:184-8
  • Narisawa S, Nagata M, Danyoshi C, et al. An organic acid-induced sigmoidal release system for oral controlled-release preparations. Pharm Res 1994;11:111-16
  • Furyk S, Zhang Y, Ortiz-Acosta D, et al. Effects of end group polarity and molecular weight on the lower critical solution temperature of poly(N-isopropylacrylamide). J Polym Sci Part A: Polym Chem 2006;44:1492-501
  • Karewicz A, Zasada K, Szczubiałka K, et al. “Smart” alginate-hydroxypropylcellulose microbeads for controlled release of heparin. Int J Pharm 2010;385:163-9
  • Crespy D, Rossi RM. Temperature-responsive polymers with LCST in the physiological range and their applications in textiles. Polymer Int 2007;56:1461-8
  • Yoshida T, Tasaki H, Katsuma M, et al. Timed-limited release type granular pharmaceutical composition for oral administration and intraoral rapid disintegration tablet containing the composition. EP1787640A1; 2007
  • Hofmeister F. Zur Lehre von der Wirkung der Salze. Arch Exp Pathol Pharmakol 1888;24:247-60
  • Park KH, Song HC, Na K, et al. Ionic strength-sensitive pullulan acetate nanoparticles (PAN) for intratumoral administration of radioisotope: ionic strength-dependent aggregation behavior and (99m)Technetium retention property. Colloids Surf B Biointerfaces 2007;59:16-23
  • Eeckman F, Moës AJ, Amighi K. Evaluation of a new controlled-drug delivery concept based on the use of thermoresponsive polymers. Int J Pharm 2002;241:113-25
  • Morihara M, Aoyagi N, Kaniwa N, et al. Assessment of gastric acidity of Japanese subjects over the last 15 years. Biol Pharm Bull 2001;24:313-15
  • Lafourcade C, Sobo K, Kieffer-Jaquinod S, et al. Regulation of the V-ATPase along the endocytic pathway occurs through reversible subunit association and membrane localization. PLoS ONE 2008;3:e2758
  • Marshansky V. The V-ATPase a2-subunit as a putative endosomal pH-sensor. Biochem Soc Trans 2007;35:1092-9
  • Hinton A, Sennoune SR, Bond S, et al. Function of a subunit isoforms of the V-ATPase in pH homeostasis and in vitro invasion of MDA-MB231 human breast cancer cells. J Biol Chem 2009;284:16400-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.