1,135
Views
243
CrossRef citations to date
0
Altmetric
Reviews

Therapeutic applications of hydrogels in oral drug delivery

, , &

Bibliography

  • Liechty WB, Kryscio DR, Slaughter BV, et al. Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 2010;1:149-73
  • Vermonden T, Censi R, Hennink WE. Hydrogels for protein delivery. Chem Rev 2012;112(5):2853-88
  • Morishita M, Peppas NA. Is the oral route possible for peptide and protein drug delivery? Drug Discov Today 2006;11(19):905-10
  • Peppas NA, Wood KM, Blanchette JO. Hydrogels for oral delivery of therapeutic proteins. Expert Opin Biol Ther 2004;4(6):1-7
  • Blanchette J, Peppas NA. Oral Chemotherapeutic delivery: design and cellular response. Ann Biomed Eng 2005;33(2):142-9
  • Shofner JP, Phillips MA, Peppas NA. Cellular evaluation of synthesized insulin/transferrin bioconjugates for oral insulin delivery using intelligent complexation hydrogels. Macromol Biosci 2010;10(3):299-306
  • Morishita M, Peppas N, Sant S, et al. Microfabrication technologies for oral drug delivery. Adv Drug Deliv Rev 2012;64(6):496-507
  • Antosova Z, Mackova M, Kral V, et al. Therapeutic application of peptides and proteins: parenteral forever? Trends Biotechnol 2009;27(11):628-35
  • Blanchette J, Park K, Peppas NA. Oral administration of chemotherapeutic agents using complexation hydrogels. MRS Proc 2002;724:N10.4-N.4
  • Peppas NA, Bures P, Leobandung W, et al. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 2000;50(1):27-46
  • Kim B, Peppas NA. Poly(ethylene glycol)-containing hydrogels for oral protein delivery applications. Biomed Microdevices 2003;5(4):333-41
  • Ratner BD, Hoffman AS, Schoen FJ, et al. Biomaterials science: an introduction to materials in medicine. 2nd edition. Academic Press, San Diego, CA; 2004
  • Arora R, Jain S, Monga S, et al. Efficacy of continuous wear PureVision contact lenses for therapeutic use. Contact Lens Anterior Eye 2004;27(1):39-43
  • Balakrishnan B, Banerjee R. Biopolymer-based hydrogels for cartilage tissue engineering. Chem Rev 2011;111(8):4453-74
  • Nguyen KT, West JL. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 2002;23(22):4307-14
  • Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev 2001;101(7):1869-80
  • Chen J, Yang Y, Qian P, et al. Drug carrying hydrogel base wound dressing. Radiat Phys Chem 1993;42(4):915-18
  • Hoffman AS. Hydrogels for biomedical applications. Ann NY Acad Sci 2006;944(1):62-73
  • Peppas NA, Hilt JZ, Khademhosseini A, et al. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 2006;18(11):1345-60
  • Coviello T, Matricardi P, Marianecci C, et al. Polysaccharide hydrogels for modified release formulations. J Control Release 2007;119(1):5-24
  • Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 2001;53(3):321-39
  • Kim SW, Bae YH, Okano T. Hydrogels: swelling, drug loading, and release. Pharm Res 1992;9(3):283-90
  • Mason MN, Metters AT, Bowman CN, et al. Predicting controlled-release behavior of degradable PLA- b -PEG- b -PLA hydrogels. Macromolecules 2001;34(13):4630-5
  • Amsden B. Solute diffusion within hydrogels. Mechanisms and models. Macromolecules 1998;31(23):8382-95
  • Lustig SR, Peppas NA. Solute diffusion in swollen membranes. IX. Scaling laws for solute diffusion in gels. J Appl Polym Sci 1988;36(4):735-47
  • Canal T, Peppas NA. Correlation between mesh size and equilibrium degree of swelling of polymeric networks. J Biomed Mater Res 1989;23(10):1183-93
  • Robinson DN, Peppas NA. Preparation and characterization of pH-responsive poly(methacrylic acid- g -ethylene glycol) nanospheres. Macromolecules 2002;35(9):3668-74
  • Torres-Lugo M, García M, Record R, et al. Physicochemical behavior and cytotoxic effects of p(methacrylic acid–g-ethylene glycol) nanospheres for oral delivery of proteins. J Control Release 2002;80(1–3):197-205
  • Mastropietro DJ, Omidian H, Park K. Drug delivery applications for superporous hydrogels. Expert Opin Deliv 2012;9(1):71-89
  • des Rieux A, Fievez V, Théate I, et al. An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells. Eur J Pharm Sci 2007;30(5):380-91
  • O'Neill MJ, Bourre L, Melgar S, et al. Intestinal delivery of non-viral gene therapeutics: physiological barriers and preclinical models. Drug Discov Today 2011;16(5):203-18
  • Jain A, Jain SK. In vitro and cell uptake studies for targeting of ligand anchored nanoparticles for colon tumors. Eur J Pharm Sci 2008;35(5):404-16
  • Bayat A, Dorkoosh FA, Dehpour AR, et al. Nanoparticles of quaternized chitosan derivatives as a carrier for colon delivery of insulin: ex vivo and in vivo studies. Int J Pharm 2008;356(1–2):259-66
  • Rubinstein A, Haupt SM. The colon as a possible target for orally administered peptide and protein drugs. Crit Rev Ther Drug Carrier Syst 2002;19(6):499-552
  • Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 2012;64(6):557-70
  • Carr DA, Gómez-Burgaz M, Boudes MC, et al. Complexation hydrogels for the oral delivery of growth hormone and salmon calcitonin. Ind Eng Chem Res 2010;49(23):11991-5
  • Centers for Disease Control and Prevention. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Atlanta, GA; 2011
  • Gupta V, Hwang BH, Lee J, et al. Mucoadhesive intestinal devices for oral delivery of salmon calcitonin. J Control Release 2013;172(3):753-62
  • Hennink W, Liechty WB, Caldorera-Moore M, et al. Advanced molecular design of biopolymers for transmucosal and intracellular delivery of chemotherapeutic agents and biological therapeutics. J Control Release 2011;155(2):119-27
  • Sparreboom A, de Jonge MJA, Verweij J. The use of oral cytotoxic and cytostatic drugs in cancer treatment. Eur J Cancer 2002;38(1):18-22
  • Kanard A, Jatoi A, Castillo R, et al. Oral vinorelbine for the treatment of metastatic non-small cell lung cancer in elderly patients: a phase II trial of efficacy and toxicity. Lung Cancer 2004;43(3):345-53
  • Pescovitz MD, Rabkin J, Merion RM, et al. Valganciclovir results in improved oral absorption of ganciclovir in liver transplant recipients. Antimicrob Agents Chemother 2000;44(10):2811-15
  • O'Neill VJ, Twelves CJ. Oral cancer treatment: developments in chemotherapy and beyond. Br J Cancer 2002;87(9):933-7
  • Schoener CA, Hutson HN, Peppas NA. pH-responsive hydrogels with dispersed hydrophobic nanoparticles for the oral delivery of chemotherapeutics. J Biomed Mater Res A 2013;101(8):2229-36
  • Kreuter J. Nanoparticles and microparticles for drug and vaccine delivery. J Anat 1996;189:503-5
  • Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol Rev 2001;53(2):283-318
  • Arruebo M, Fernandez-Pacheco R, Ibarra MR, et al. Magnetic nanoparticles for drug delivery. Nano Today 2007;2(3):22-32
  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013;12(11):991-1003
  • Kim B, La Flamme K, Peppas NA. Dynamic swelling behavior of pH-sensitive anionic hydrogels used for protein delivery. J Appl Polym Sci 2003;89(6):1606-13
  • Siegel RA, Firestone BA. pH-dependent equilibrium swelling properties of hydrophobic polyelectrolyte copolymer gels. Macromolecules 1988;21(11):3254-9
  • Khare AR, Peppas NA. Swelling/deswelling of anionic copolymer gels. Biomaterials 1995;16(7):559-67
  • De SK, Aluru NR, Johnson B, et al. Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations. J Microelectromech Syst 2002;11(5):544-55
  • Elliott JE, Macdonald M, Nie J, et al. Structure and swelling of poly(acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer (Guildf) 2004;45(5):1503-10
  • Raemdonck K, Demeester J, De Smedt S. Advanced nanogel engineering for drug delivery. Soft Matter 2009;5(4):707-15
  • Randale SA, Dabhi CS, Tekade AR, et al. Rapidly disintegrating tablets containing taste masked metoclopramide hydrochloride prepared by extrusion-precipitation method. Chem Pharm Bull 2010;58(4):443-8
  • Yoshida T, Lai TC, Kwon GS, et al. pH- and ion-sensitive polymers for drug delivery. Expert Opin Drug Deliv 2013;10(11):1497-513
  • Douroumis D. Orally disintegrating dosage forms and taste-masking technologies; 2010. Expert Opin Drug Deliv 2011;8(5):665-75
  • Douroumis D. Practical approaches of taste masking technologies in oral solid forms. Expert Opin Drug Deliv 2007;4(4):417-26
  • Hashimoto Y, Tanaka M, Kishimoto H, et al. Preparation, characterization and taste-masking properties of polyvinylacetal diethylaminoacetate microspheres containing trimebutine. J Pharm Pharmacol 2002;54(10):1323-8
  • Bell CL, Peppas NA. Modulation of drug permeation through interpolymer complexed hydrogels for drug delivery applications. J Control Release 1996;39(2):201-7
  • Lowman AM, Peppas NA. Analysis of the complexation/decomplexation phenomena in graft copolymer networks. Macromolecules 1997;30(17):4959-65
  • Klier J, Scranton AB, Peppas NA. Self-associating networks of poly(methacrylic acid-g-ethylene glycol). Macromolecules 1990;23(23):4944-9
  • Peppas NA, Klier J. Controlled release by using poly(methacrylic acid-g-ethylene glycol) hydrogels. J Control Release 1991;16(1):203-14
  • Bell CL, Peppas NA. Swelling/syneresis phenomena in gel-forming interpolymer complexes. J Biomater Sci Polymer Ed 1996;7(8):671-83
  • Lowman AM, Peppas NA. Molecular analysis of interpolymer complexation in graft copolymer networks. Polymer (Guildf) 2000;41(1):73-80
  • Lowman AM, Morishita M, Kajita M, et al. Oral delivery of insulin using pH-responsive complexation gels. J Pharm Sci 1999;88(9):933-7
  • Ichikawa H, Peppas NA. Novel complexation hydrogels for oral peptide delivery: in vitro evaluation of their cytocompatibility and insulin-transport enhancing effects using Caco-2 cell monolayers. J Biomed Mater Res A 2003;67(2):609-17
  • Torres-Lugo M, Peppas NA. molecular design and in vitro studies of novel pH-sensitive hydrogels for the oral delivery of calcitonin. Macromolecules 1999;32(20):6646-51
  • Kamei N, Morishita M, Chiba H, et al. Complexation hydrogels for intestinal delivery of interferon beta and calcitonin. J Control Release 2009;134(2):98-102
  • Peppas NA. Devices based on intelligent biopolymers for oral protein delivery. Int J Pharm 2004;277(1-2):11-17
  • Peppas NA, Huang YB. Nanoscale technology of mucoadhesive interactions. Adv Drug Deliv Rev 2004;56(11):1675-87
  • Huang Y, Leobandung W, Foss A, et al. Molecular aspects of muco- and bioadhesion. J Control Release 2000;65(1):63-71
  • George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan — a review. J Control Release 2006;114(1):1-14
  • Chen L, Tian Z, Du Y. Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials 2004;25(17):3725-32
  • Chen S-C, Wu Y-C, Mi F-L, et al. A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Control Release 2004;96(2):285-300
  • Kulkarni AR, Soppimath KS, Aminabhavi TM, et al. In-vitro release kinetics of cefadroxil-loaded sodium alginate interpenetrating network beads. Eur J Pharm Biopharm 2001;51(2):127-33
  • Edelmana ER, Nathan A, Katada M, et al. Perivascular graft heparin delivery using biodegradable polymer wraps. Biomaterials 2000;21(22):2279-86
  • Rasmussen MR, Snabe T, Pedersen LH. Numerical modelling of insulin and amyloglucosidase release from swelling Ca–alginate beads. J Control Release 2003;91(3):395-405
  • Lee B-J, Min G-H. Oral controlled release of melatonin using polymer-reinforced and coated alginate beads. Int J Pharm 1996;144(1):37-46
  • Kim B, Bowersock T, Griebel P, et al. Mucosal immune responses following oral immunization with rotavirus antigens encapsulated in alginate microspheres. J Control Release 2002;85(1):191-202
  • Romalde JL, Luzardo-Alvárez A, Ravelo C, et al. Oral immunization using alginate microparticles as a useful strategy for booster vaccination against fish lactoccocosis. Aquaculture 2004;236(1):119-29
  • Hurteaux R, Edwards-Lévy F, Laurent-Maquin D, et al. Coating alginate microspheres with a serum albumin-alginate membrane: application to the encapsulation of a peptide. Eur J Pharm Sci 2005;24(2-3):187-97
  • Hébrard G, Hoffart V, Beyssac E, et al. Coated whey protein/alginate microparticles as oral controlled delivery systems for probiotic yeast. J Microencapsul 2010;27(4):292-302
  • Pitarresi G, Craparo EF, Palumbo FS, et al. Composite nanoparticles based on hyaluronic acid chemically cross-linked with alpha,beta-polyaspartylhydrazide. Biomacromolecules 2007;8(6):1890-8
  • Pitarresi G, Pierro P, Giammona G, et al. Drug release from alpha,beta-poly(N-2-hydroxyethyl)-dl-aspartamide-based microparticles. Biomaterials 2004;25(18):4333-43
  • Fiorica C, Pitarresi G, Palumbo FS, et al. A new hyaluronic acid pH sensitive derivative obtained by ATRP for potential oral administration of proteins. Int J Pharm 2013;457(1):150-7
  • Han LN, Zhao YF, Yin LF, et al. Insulin-loaded pH-sensitive hyaluronic acid nanoparticles enhance transcellular delivery. AAPS PharmSciTech 2012;13(3):836-45
  • Shepherd R, Reader S, Falshaw A. Chitosan functional properties. Glycoconj J 1997;14(4):535-42
  • Muzzarelli R, Baldassarre V, Conti F, et al. Biological activity of chitosan: ultrastructural study. Biomaterials 1988;9(3):247-52
  • Yao KD, Peng T, Feng HB, et al. Swelling kinetics and release characteristic of crosslinked chitosan: polyether polymer network (semi-IPN) hydrogels. J Polymer Sci A 1994;32(7):1213-23
  • Mi F-L, Shyu S-S, Lee S-T, et al. Kinetic study of chitosan-tripolyphosphate complex reaction and acid-resistive properties of the chitosan-tripolyphosphate gel beads prepared by in-liquid curing method. J Polymer Sci B 1999;37(14):1551-64
  • Khalid MN, Ho L, Agnely F, et al. Swelling properties and mechanical characterization of a semi-interpenetrating chitosan/polyethylene oxide network: comparison with a chitosan reference gel. STP Pharma Sci 2002;9(4):359-64
  • Patel VR, Amiji MM. Preparation and characterization of freeze-dried chitosan-poly(ethylene oxide) hydrogels for site-specific antibiotic delivery in the stomach. Pharm Res 1996;13(4):588-93
  • Aly AS. Self-dissolving chitosan, I. Preparation, characterization and evaluation for drug delivery system. Die Angewandte Makromolekulare Chemie 1998;259(1):13-18
  • Yamada K, Chen T, Kumar G, et al. Chitosan Based Water-Resistant Adhesive. Analogy to Mussel Glue. Biomacromolecules 2000;1(2):252-8
  • Guggi D, Krauland AH, Bernkop-Schnürch A. Systemic peptide delivery via the stomach: in vivo evaluation of an oral dosage form for salmon calcitonin. J Control Release 2003;92(1):125-35
  • Sandri G, Rossi S, Bonferoni MC, et al. Buccal penetration enhancement properties of N-trimethyl chitosan: influence of quaternization degree on absorption of a high molecular weight molecule. Int J Pharm 2005;297(1):146-55
  • Xu Y, Du Y, Huang R, et al. Preparation and modification of N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a protein carrier. Biomaterials 2003;24(27):5015-22
  • Huguet ML, Groboillot A, Neufeld RJ, et al. Hemolglobin encapsulation in chitosan/calcium alginate beads. J Appl Polym Sci 1994;51(8):1427-32
  • You J, Zhang R, Xiong C, et al. Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors. Cancer Res 2012;72(18):4777-86
  • Zhang L, Guo R, Yang M, et al. Thermo and pH dual-responsive nanoparticles for anti-cancer drug delivery. Adv Mater 2007;19(19):2988-92
  • Jin Y, Song L, Su Y, et al. Oxime linkage: a robust tool for the design of pH-sensitive polymeric drug carriers. Biomacromolecules 2011;12(10):3460-8
  • Du Y, Chen W, Zheng M, et al. pH-sensitive degradable chimaeric polymersomes for the intracellular release of doxorubicin hydrochloride. Biomaterials 2012;33(29):7291-9
  • Ahmed M, Narain R. Intracellular delivery of DNA and enzyme in active form using degradable carbohydrate-based nanogels. Mol Pharm 2012;9(11):3160-70
  • Lee ES, Kim D, Youn YS, et al. A Virus-Mimetic Nanogel Vehicle. Angew Chem 2008;120(13):2452-5
  • Zhou T, Xiao C, Fan J, et al. A nanogel of on-site tunable pH-response for efficient anticancer drug delivery. Acta Biomater 2013;9(1):4546-57
  • Chang Kang H, Bae YH. Co-delivery of small interfering RNA and plasmid DNA using a polymeric vector incorporating endosomolytic oligomeric sulfonamide. Biomaterials 2011;32(21):4914-24
  • Thambi T, Yoon HY, Kim K, et al. Bioreducible block copolymers based on poly(ethylene glycol) and poly(γ-benzyl L-glutamate) for intracellular delivery of camptothecin. Bioconjug Chem 2011;22(10):1924-31
  • Rowland IR. Factors affecting metabolic activity of the intestinal microflora. Drug Metab Rev 1988;19(3-4):243-61
  • Hovgaard L, Brøndsted H. Dextran hydrogels for colon-specific drug delivery. J Control Release 1995;36(1):159-66
  • Basan H, Gumusderelioglu M, Orbey MT. Release characteristics of salmon calcitonin from dextran hydrogels for colon-specific delivery. Eur J Pharm Biopharm 2007;65(1):39-46
  • Yeh P-Y, Kopečkova P, Kopeček J. Degradability of hydrogels containing azoaromatic crosslinks. Macromol Chem Phys 1995;196(7):2183-202
  • Ghandehari H, Kopečková P, Yeh P-Y, et al. Biodegradable and pH sensitive hydrogels: synthesis by a polymer-polymer reaction. Macromol Chem Phys 1996;197(3):965-80
  • Akala EO, Kopečková P, Kopeček J. Novel pH-sensitive hydrogels with adjustable swelling kinetics. Biomaterials 1998;19(11–12):1037-47
  • Glangchai LC, Caldorera-Moore M, Shi L, et al. Nanoimprint lithography based fabrication of shape-specific, enzymatically-triggered smart nanoparticles. J Control Release 2008;125(3):263-72
  • Chellat F, Tabrizian M, Dumitriu S, et al. Study of biodegradation behavior of chitosan-xanthan microspheres in simulated physiological media. J Biomed Mater Res 2000;53(5):592-9
  • He H, Cao X, Lee LJ. Design of a novel hydrogel-based intelligent system for controlled drug release. J Control Release 2004;95(3):391-402
  • Chowdary KPR, Rao YS. Mucoadhesive microspheres for controlled drug delivery. Biolo Pharm Bull 2004;27(11):1717-24
  • Barthe L, Bessouet M, Woodley JF, et al. The improved everted gut sac: a simple method to study intestinal P-glycoprotein. Int J Pharm 1998;173(1):255-8
  • Alam MA, Al-Jenoobi FI, Al-Mohizea AM. Everted gut sac model as a tool in pharmaceutical research: limitations and applications. J Pharm Pharmacol 2012;64(3):326-36
  • Steed E, Balda MS, Matter K. Dynamics and functions of tight junctions. Trends Cell Biol 2010;20(3):142-9
  • Mesiha M, Plakogiannis F, Vejosoth S. Enhanced oral absorption of insulin from desolvated fatty acid-sodium glycocholate emulsions. Int J Pharm 1994;111(3):213-16
  • Kotzé AF, Thanou MM, Luebetaen HL, et al. Enhancement of paracellular drug transport with highly quaternized N-trimethyl chitosan chloride in neutral environments: in vitro evaluation in intestinal epithelial cells (Caco-2). J Pharm Sci 1999;88(2):253-7
  • Lueßen HL, Rentel CO, Kotzé AF, et al. Mucoadhesive polymers in peroral peptide drug delivery. IV. Polycarbophil and chitosan are potent enhancers of peptide transport across intestinal mucosae in vitro. J Control Release 1997;45(1):15-23
  • Fasano A, Ghandehari H, Salama NN, et al. Tight junction modulation and its relationship to drug delivery. Adv Drug Deliv Rev 2006;58(1):15-28
  • Aungst BJ. Intestinal permeation enhancers. J Pharm Sci 2000;89(4):429-42
  • Camenisch G, Alsenz J, van de Waterbeemd H, et al. Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs' lipophilicity and molecular weight. Eur J Pharm Sci 1998;6(4):313-19
  • Giacomini KM, Huang S-M, Tweedie DJ, et al. Membrane transporters in drug development. Nat Rev Drug Discov 2010;9(3):215-36
  • Tsuji A, Tamai I. Carrier-mediated intestinal transport of drugs. Pharm Res 1996;13(7):963-77
  • Kavimandan NJ, Losi E, Peppas NA. Novel delivery system based on complexation hydrogels as delivery vehicles for insulin–transferrin conjugates. Biomaterials 2006;27(20):3846-54
  • Kadiyala I, Loo Y, Roy K, et al. Transport of chitosan–DNA nanoparticles in human intestinal M-cell model versus normal intestinal enterocytes. Eur J Pharm Sci 2010;39(1):103-9
  • Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport1PII of original article: S0169-409X(96)00415-2. The article was originally published in Advanced Drug Delivery Reviews 22 (1996) 67–84.1. Adv Drug Del Rev 2001;46(1):27-43
  • Hilgers AR, Conradi RA, Burton PS. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm Res 1990;7(9):902-10
  • D'Souza VM, Shertzer HG, Menon AG, et al. High glucose concentration in isotonic media alters caco-2 cell permeability. AAPS PharmSci 2003;5(3):E24
  • Okada T, Narai A, Matsunaga S, et al. Assessment of the marine toxins by monitoring the integrity of human intestinal Caco-2 cell monolayers. Toxicol In Vitro 2000;14(3):219-26
  • Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun 1991;175(3):880-5
  • Yee S. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man–fact or myth. Pharm Res 1997;14(6):763-6
  • Yin L, Ding J, He C, et al. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials 2009;30(29):5691-700
  • Wikman-Larhed A, Artursson P. Co-cultures of human intestinal goblet (HT29-H) and absorptive (Caco-2) cells for studies of drug and peptide absorption. Eur J Pharm Sci 1995;3(3):171-83
  • Behrens I, Stenberg P, Artursson P, et al. Transport of lipophilic drug molecules in a new mucus-secreting cell culture model based on HT29-MTX Cells. Pharm Res 2001;18(8):1138-45
  • Walter E, Janich S, Roessler BJ, et al. HT29-MTX/Caco-2 cocultures as an in vitro model for the intestinal epithelium: in vitro-in vivo correlation with permeability data from rats and humans. J Pharm Sci 1996;85(10):1070-6
  • Kim HJ, Huh D, Hamilton G, et al. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 2012;12(12):2165-74
  • Morishita M, Goto T, Peppas NA, et al. Mucosal insulin delivery systems based on complexation polymer hydrogels: effect of particle size on insulin enteral absorption. J Control Release 2004;97(1):115-24
  • Nakamura K, Murray RJ, Joseph JI, et al. Oral insulin delivery using P(MAA-g-EG) hydrogels: effects of network morphology on insulin delivery characteristics. J Control Release 2004;95(3):589-99
  • McClean S, Prosser E, Meehan E, et al. Binding and uptake of biodegradable poly-dl-lactide micro- and nanoparticles in intestinal epithelia. Eur J Pharm Sci 1998;6(2):153-63
  • Morishita M, Goto T, Nakamura K, et al. Novel oral insulin delivery systems based on complexation polymer hydrogels: single and multiple administration studies in type 1 and 2 diabetic rats. J Control Release 2006;110(3):587-94
  • Feijen J, Hennink WE, Sam AP, et al. Gene transfer to hemophilia a mice via oral delivery of FVIII–chitosan nanoparticles. J Control Release 2008;132(3):252-9
  • Bowersock TL, Hogenesch H, Suckow M, et al. Oral vaccination with alginate microsphere systems. J Control Release 1996;39(2):209-20
  • Chen M-C, Wong H-S, Lin K-J, et al. The characteristics, biodistribution and bioavailability of a chitosan-based nanoparticulate system for the oral delivery of heparin. Biomaterials 2009;30(34):6629-37
  • Kamei N, Morishita M, Kanayama Y, et al. Molecular imaging analysis of intestinal insulin absorption boosted by cell-penetrating peptides by using positron emission tomography. J Control Release 2010;146(1):16-22
  • Bae YH, Grainger DW, Hennink WE, et al. Noninvasive imaging oral absorption of insulin delivered by nanoparticles and its stimulated glucose utilization in controlling postprandial hyperglycemia during OGTT in diabetic rats. J Control Release 2013;172(2):513-22

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.